JPH0333998B2 - - Google Patents

Info

Publication number
JPH0333998B2
JPH0333998B2 JP57061428A JP6142882A JPH0333998B2 JP H0333998 B2 JPH0333998 B2 JP H0333998B2 JP 57061428 A JP57061428 A JP 57061428A JP 6142882 A JP6142882 A JP 6142882A JP H0333998 B2 JPH0333998 B2 JP H0333998B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange element
air
partition plate
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57061428A
Other languages
Japanese (ja)
Other versions
JPS58178189A (en
Inventor
Nobuyuki Yano
Akira Aoki
Yoshizo Oomukae
Shinji Ogawa
Kazufumi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP57061428A priority Critical patent/JPS58178189A/en
Publication of JPS58178189A publication Critical patent/JPS58178189A/en
Publication of JPH0333998B2 publication Critical patent/JPH0333998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall

Description

【発明の詳細な説明】 本発明はビルなどで使用される屋外空気の給気
と、室内空気の排気などの熱交換気装置に関する
ものであり、その目的は設置場所が節約出来てメ
インテナスが容易で全熱交換効率が高く、しか
も、排気の給気側への移行を極力押えることが出
来る機構をもち、かつ機能面でも全熱交換気、顕
熱交換気、同時給排換気、空調循環などが容易に
出来得る全熱交換装置を提供するものである。
[Detailed Description of the Invention] The present invention relates to a heat exchange device for supplying outdoor air and exhausting indoor air used in buildings, etc., and its purpose is to save installation space and facilitate maintenance. It has a high total heat exchange efficiency, and has a mechanism that can suppress the transfer of exhaust gas to the air supply side as much as possible, and has functions such as total heat exchange air, sensible heat exchange air, simultaneous supply and exhaust ventilation, air conditioning circulation, etc. The purpose of the present invention is to provide a total heat exchange device that can be easily constructed.

従来、ビルなどの空調用に用いられている全熱
交換器として回転式のものが多く使用されている
が、この欠点として設置場所が広くいるメイテナ
ンスがやりにくいことなどがある。また給気と排
気のまざり防止対策を十分とる必要があり機能と
しても全熱交換換気と同時給排換気が主たるもの
である。一方、静止透過式の場合もやはり、大き
い設備面積を必要とし、仕切板を通しての空気の
もれ(給排の混合)があるなどの欠点があり、機
能としても全熱交換換気が主たるものである。
Conventionally, rotary type total heat exchangers have been used in many cases for air conditioning in buildings, etc., but the disadvantage of this is that they require a large installation space and are difficult to maintain. It is also necessary to take sufficient measures to prevent mixing of supply air and exhaust air, and the main functions are total heat exchange ventilation and simultaneous supply and exhaust ventilation. On the other hand, the stationary permeable type still requires a large facility area and has drawbacks such as air leakage through the partition plate (mixing of supply and exhaust air), and its main function is total heat exchange ventilation. be.

第1図は従来のビルなどの空調用として多く用
いられている回転式の全熱交換装置の分解組立図
である。図中、1はローター、2はそのケーシン
グである。この場合、比較的径の大きいローター
1が必要であるのみならず、ケーシング2の前後
のダクワーク部4〜7にスペースを多く要し、設
置面積が大きくなるのみならず、これらのダクト
ワーク部4〜7のため、ローター1のメインテナ
ンスに手間がかかる。
FIG. 1 is an exploded view of a conventional rotary total heat exchanger that is often used for air conditioning in buildings. In the figure, 1 is the rotor and 2 is its casing. In this case, not only is a rotor 1 with a relatively large diameter required, but also a large amount of space is required for the ductwork parts 4 to 7 at the front and rear of the casing 2, which not only increases the installation area but also requires the use of these ductwork parts 4. ~7, so maintenance of the rotor 1 is time-consuming.

第2図は回転式全熱交換器の場合の給排のまざ
りを示す図である。この場合、まざりには還気が
給気に移行する還気移行Aや外気が排気に移行す
る外気移行Bがある。特に還気移行Aは病院の手
術室や特殊な実験室などでは問題になり、防止せ
ねばならないことである。また、外気移行はフア
ンの負荷を増す原因ともなる。現在、排気が給気
側へ移行するのを防止するため、ローターの回転
に伴う移行に対しては、パージセクター3によつ
て防止されており、シール漏れによる移行に対し
ては、給気気送風機の静圧バランスを考慮するこ
とにより防止している。一方、透過式の場合、熱
交換器の仕切板は通気性をもつているため、仕切
板を通しての給排の混合は避けることができない
が、排気の給気側への移行防止は給排用送風機の
静圧バランスを考慮することにより行なつてい
る。
FIG. 2 is a diagram showing the arrangement of supply and discharge in the case of a rotary total heat exchanger. In this case, the mixture includes a return air transition A where return air is transferred to the supply air and an outside air transition B where outside air is transferred to the exhaust air. In particular, return air transfer A is a problem in hospital operating rooms and special laboratories, and must be prevented. Furthermore, the transfer of outside air also causes an increase in the load on the fan. Currently, in order to prevent the exhaust gas from moving to the supply air side, purge sector 3 is used to prevent the exhaust gas from moving to the air supply side due to the rotation of the rotor. This is prevented by considering the static pressure balance of the blower. On the other hand, in the case of a permeable type heat exchanger, the partition plate of the heat exchanger has ventilation, so mixing of air supply and exhaust air through the partition plate cannot be avoided. This is done by considering the static pressure balance of the blower.

本発明は上記従来技術にもとづき、ダクト中に
非通気性の区画板をもつ熱交換器を挿入設置する
とともにシヤツターを組わせて、設置面積を極力
小さくし、メインテナンスも比較的容易に行ない
また排気の給気側への移行も必要な場合にはシヤ
ツターの開閉操作で防止することができ、上記従
来法の欠点を解消するのみならず、その構造およ
び方式上、熱交換効率も高くすることができ、ま
た容易に付加できる機能として、全熱交換換気以
外に同時給排換気、顕熱交換換気、空調循環など
ができる従来法よりすぐれた換気装置を提供する
ものである。
The present invention is based on the above-mentioned conventional technology, by inserting and installing a heat exchanger with a non-ventilating partition plate in a duct and assembling a shutter, thereby minimizing the installation area, making maintenance relatively easy, and exhausting air. If necessary, the transfer of heat to the air supply side can be prevented by opening and closing the shutter.This method not only eliminates the drawbacks of the conventional method described above, but also improves heat exchange efficiency due to its structure and method. In addition to total heat exchange ventilation, the present invention provides a ventilation system superior to conventional methods that can perform simultaneous supply and exhaust ventilation, sensible heat exchange ventilation, air conditioning circulation, etc. as functions that can be easily added.

以下本発明の一実施例を図面にもとづき説明す
る。第3図は本発明の一実施例の換気装置におけ
る熱交換エレメントの一部外観図であり、図中8
は仕切板、9は間隔板である。材質はどちらも、
プラスチツク板の表面に吸湿剤としてコロイダル
シリカを塗布したものである。
An embodiment of the present invention will be described below based on the drawings. FIG. 3 is a partial external view of a heat exchange element in a ventilation system according to an embodiment of the present invention.
is a partition plate, and 9 is a spacing plate. Both materials are
Colloidal silica is coated on the surface of a plastic board as a moisture absorbent.

第4図は区画板23によつて給排2つの流路に
分割されたダクト中に前記熱交換エレメント10
を組み込んだ本発明の一実施例の換気装置の断面
図、第5図は第4図のA−A′断面における縦断
図面、第6図はその分解斜視図である。この実施
例の場合、熱交換エレメント10の挿入部分のダ
クト11は、前後ダクト26より太くなつている
がダクト26と同じ太さでもよい。その場合、区
画板12は不要になる場合もある。ただし、この
部分のダクトを前後ダクト26より太くする方が
圧損が少なくて済む。13,14は熱交換エレメ
ント10前後のシヤツターで、イ〜チはそれぞれ
のシヤツターで開閉できる開閉部、12,23は
区画板、15〜18は熱交換エレメント10と区
画板12とダクト11とシヤツター13,14に
囲まれたチヤンバーである。
FIG. 4 shows the heat exchange element 10 in a duct divided into two flow paths for supply and discharge by a partition plate 23.
5 is a longitudinal sectional view taken along the line AA' in FIG. 4, and FIG. 6 is an exploded perspective view thereof. In this embodiment, the duct 11 at the insertion portion of the heat exchange element 10 is thicker than the front and rear ducts 26, but may have the same thickness as the duct 26. In that case, the partition plate 12 may become unnecessary. However, if the duct in this part is made thicker than the front and rear ducts 26, the pressure loss can be reduced. 13 and 14 are shutters before and after the heat exchange element 10, 1 to 1 are opening/closing parts that can be opened and closed by each shutter, 12 and 23 are partition plates, and 15 to 18 are the heat exchange element 10, the partition plate 12, the duct 11, and the shutters. It is a chamber surrounded by 13 and 14.

次に熱交換の機構について説明する。第6図に
示すシヤツター13,14の開閉部イ、ロ、ト、
チが開、ハ、ニ、ホ、ヘが閉の場合、一次気流
(室内側からの排気流)19は、シヤツター14
の開閉部チから、チヤンバー15内に入り熱交換
エレメント10の中で二次気流(屋外からの給気
流)20と熱交換して、チヤンバー17内に出て
開閉部イからダクト中に入り気流21になる。一
方、二次気流(屋外からの給気流)20は、開閉
部ロからチヤンバー16内に入り、熱交換エレメ
ント10の中を通り、一次気流19と熱交換して
チヤンバー18を経て開閉部トからダクト中へ出
て気流22となる。次にサイクルが切換わり、開
閉部イ、ロ、ト、チが閉じられ、閉じられていた
ハ、ニ、ホ、ヘが開口されると、熱交換エレメン
ト10の仕切板8にはさまれた各層間を通る一次
気流と二次気流が互いに変換されることになる。
つまり、サイクル切換後は一次気流19は開閉部
ヘを通つてチヤンバー16に出て、熱交換エレメ
ント10を通過してチヤンバー18内に出て、開
閉部ハからダクト中へ入り、気流21となる。一
方、二次気流20は開閉部ニからチヤンバー15
へ入り、熱交換エレメント10を通過してチヤン
バー17から開閉部ホを経てダクト中に入り気流
22となる。このようなシヤツター開閉サイクル
の繰返しによつて、エレメントの仕切板の各層間
を通る気流が互いに交換され全熱交換が行なわれ
る。つまり、顕熱は熱伝導と仕切板8上への蓄熱
潜熱は仕切板8上に塗布された吸湿剤による蓄湿
作用により全熱交換が行なわれる。
Next, the heat exchange mechanism will be explained. The opening/closing parts of the shutters 13 and 14 shown in FIG.
When H is open and C, D, H, and H are closed, the primary airflow (exhaust flow from the indoor side) 19 is the shutter 14.
The air enters the chamber 15 through the opening/closing part A, exchanges heat with the secondary airflow (air supply air from outside) 20 in the heat exchange element 10, exits into the chamber 17, and enters the duct through the opening/closing part A. I'll be 21. On the other hand, the secondary airflow (air supply flow from the outdoors) 20 enters the chamber 16 from the opening/closing part RO, passes through the heat exchange element 10, exchanges heat with the primary airflow 19, passes through the chamber 18, and leaves the opening/closing part T. It exits into the duct and becomes an airflow 22. Next, when the cycle is switched and the opening/closing parts A, B, G, and J are closed, and the closed parts C, D, E, and F are opened, the parts are sandwiched between the partition plates 8 of the heat exchange element 10. The primary airflow and secondary airflow passing between each layer are converted into each other.
That is, after the cycle is switched, the primary air flow 19 passes through the opening/closing section, exits into the chamber 16, passes through the heat exchange element 10, exits into the chamber 18, enters the duct through the opening/closing section C, and becomes the air flow 21. . On the other hand, the secondary airflow 20 flows from the opening/closing part to the chamber 15.
The air enters the duct, passes through the heat exchange element 10, enters the chamber 17 through the opening/closing part E, and becomes an air flow 22. By repeating such a shutter opening/closing cycle, the air currents passing between the layers of the partition plate of the element are exchanged with each other, and total heat exchange is performed. In other words, total heat exchange is performed by heat conduction of sensible heat and storage of latent heat on the partition plate 8 by the moisture storage action of the moisture absorbent applied on the partition plate 8.

この方式がいわゆる蓄熱透過式の全熱交換方式
と呼ばれるものである。この方式では、従来の回
転蓄熱方式や静止透過式の全熱交換方式と比較し
て、特に夏の冷房時の熱交換換気における熱交効
率を高くとることができる。高温高湿の屋外から
の気流と低温低湿の室内からの気流の全熱交換換
気を考える。回転式全熱交換器の場合、エレメン
トは高温高湿の気流中にさらされると、水分の吸
着熱と高温気流により蓄熱がおこり、その温度が
上昇する。エレメント表面の温度上昇はエレメン
トの吸湿能力を低下さすことになる。次に、蓄熱
蓄湿したエレメントが低温湿室の気流にさらされ
るとエレメントの表面から水分の脱着がおこる
が、その量はエレメント表面の温度に関係する。
この場合、エレメント表面からの放熱のため、次
第にエレメントの温度が低下するので、エレメン
トからの水分の脱着が減少することになる。この
ように、回転式ではエレメントへの顕熱の蓄熱お
よびその放熱現象が、その表面における水分の吸
脱着を妨げる作用をするので水分の有効吸着量は
少なくなる。
This method is called a total heat exchange method using heat storage and transmission. In this method, compared to the conventional rotary heat storage method or static permeation type total heat exchange method, it is possible to achieve high heat exchange efficiency especially in heat exchange ventilation during summer cooling. Consider total heat exchange ventilation between the high-temperature, high-humidity airflow from outdoors and the low-temperature, low-humidity indoor airflow. In the case of a rotary total heat exchanger, when the element is exposed to a high-temperature, high-humidity airflow, heat is accumulated due to the heat of moisture adsorption and the high-temperature airflow, and its temperature rises. An increase in the temperature of the element surface will reduce the moisture absorption ability of the element. Next, when the element that has stored heat and moisture is exposed to the airflow in the low-temperature humidity chamber, moisture is desorbed from the surface of the element, and the amount of moisture is related to the temperature of the surface of the element.
In this case, the temperature of the element gradually decreases due to heat dissipation from the surface of the element, so that desorption of moisture from the element decreases. In this manner, in the rotary type, the storage of sensible heat in the element and its radiation phenomenon act to prevent the adsorption and desorption of moisture on the surface of the element, so that the effective amount of moisture adsorption is reduced.

一方、蓄熱透過式の場合は、エレメントの仕切
板の温度上昇は、高温高湿の気流にさらされてい
る場合でも、反対側は低温低湿の気流にさらされ
ているので、回転式の場合より少なく回転式より
多量の水分を吸着することができる。また、脱着
の場合でも、仕切板の表面温度は回転式の場合よ
り高くなるので、回転式より多量の水分を脱着さ
すことができる。このため回転式に比べてエレメ
ントの水分の有効吸着量が大きくなり、潜熱交換
効率を高くすることができる。ただし、この場合
の回転式の回転速度は、10〜15回/1分間の場合
である。回転数が上昇すればエレメントの温度変
化、有効吸着量は少なくなり、結果的には全熱交
換効率が減少する。
On the other hand, in the case of the heat storage transmission type, the temperature rise of the element partition plate is lower than that of the rotary type because even if it is exposed to high temperature and high humidity airflow, the other side is exposed to low temperature and low humidity airflow. It can absorb more moisture than the rotary type. Furthermore, even in the case of desorption, the surface temperature of the partition plate is higher than in the case of the rotary type, so a larger amount of moisture can be desorbed than in the case of the rotary type. Therefore, compared to the rotary type, the effective amount of water adsorption of the element is increased, and the latent heat exchange efficiency can be increased. However, the rotation speed of the rotary type in this case is 10 to 15 times/minute. As the rotational speed increases, the temperature of the element changes and the effective amount of adsorption decreases, resulting in a decrease in total heat exchange efficiency.

また、仕切板が透過性である静止透過式の場合
と比較しても、テスト結果によれば、蓄湿透過式
の方が全熱交換効率を高くとれる場合が多い。こ
れは、蓄熱過方式では顕熱交換は蓄熱と熱伝導
(透過)の両機構により行なわれ、潜熱交換は透
過ではなく、蓄熱、作用によつて行なわれるが、
静止透過式の場合は顕熱交換、潜熱交換の両者と
も、仕切板を介しての熱伝導および透過によつて
のみ行なわれるという機構の違いに起因するもの
と思われる。第7図は37℃、60%、26℃、50%の
気流間の熱交換の場合の、これら両方式の熱交換
方式による全熱交換効率の測定結果を示したもの
である。縦軸は全熱交換効率、横軸は気流交換時
からの経過時間である。図中Aは蓄熱過方式の一
例であり、アルミ板の表面にシリカゲルを塗布し
た材質のエレメントで、60秒の周期で気流を交換
した場合に得られたデータである。BはAと同じ
形状、大きさのエレメントであるが、材質がクラ
フト紙の場合で、気流を交換せず、両気流とも連
続に流し続ける静止透過方式の場合の測定データ
である。
Furthermore, even when compared to a stationary permeation type in which the partition plate is transparent, test results show that the moisture storage permeation type can often achieve higher total heat exchange efficiency. This is because in the heat storage method, sensible heat exchange is performed by both heat storage and heat conduction (transmission) mechanisms, and latent heat exchange is performed not by transmission but by heat storage and action.
This seems to be due to the difference in mechanism in that in the case of the static transmission type, both sensible heat exchange and latent heat exchange are performed only by heat conduction and transmission through the partition plate. FIG. 7 shows the measurement results of the total heat exchange efficiency by both of these heat exchange methods in the case of heat exchange between air flows of 37° C., 60%, and 26° C., 50%. The vertical axis is the total heat exchange efficiency, and the horizontal axis is the elapsed time from the time of air flow exchange. A in the figure is an example of the heat storage method, and data is obtained when the element is made of an aluminum plate coated with silica gel and the airflow is exchanged every 60 seconds. B is an element with the same shape and size as A, but the material is kraft paper, and the measurement data is for a stationary transmission method in which both airflows continue to flow without exchanging airflows.

また、この方式によれば、必要な場合、シヤツ
ターの開閉のタイミングの操作により、シヤツタ
ー切換時の排気の給気側への移行を極力押えるこ
とが可能である。つまり、開閉部イ、ロ、ト、チ
が開・ハ、ニ、ホ、ヘが閉の場合から開閉部イ、
ロ、ト、チが閉・ハ、ニ、ホ、ヘが開にサイクル
が切換わつた直後、シヤツター13と14間には
さまれた一次気流(森内空気の排気流)の風路中
に取残された排気流が、二次気流(室外空気の給
気流)にまざつて室内側へリターンすることを避
けるには、開閉部イの閉鎖と開閉部の開口をサイ
クル切換時から少し遅らせ、前記の取残された排
気流を二次気流にのせて室外へ放出させた後に前
記のシヤツターの開閉を行なえばよい。付加機能
としては、運転中シヤツターの開閉を繰返さずに
固定して定常的に気流を流し続ければ潜熱交換は
なくなり、顕熱交換気ができる。一方、少なくと
も開閉部イ、ロ、ホ、ヘを開、あるいは、開閉部
ハ、ニ、ト、チを開にしたままで運転すれば、気
流は熱交換器をバイパスするので、第8図に示す
ような非熱交換換気、いわゆる同時給排換気が可
能となる。
Further, according to this system, if necessary, by controlling the timing of opening and closing the shutter, it is possible to suppress the transfer of exhaust gas to the air supply side when switching the shutter as much as possible. In other words, if opening/closing parts A, B, G, and J are open and C, D, H, and F are closed, opening/closing part A,
Immediately after the cycle changes to B, G, H closed and C, D, H, H open, the shutter is inserted into the air path of the primary airflow (exhaust flow of forest air) sandwiched between shutters 13 and 14. In order to prevent the remaining exhaust air flow from returning indoors along with the secondary air flow (outdoor air supply flow), the closing of the opening/closing part A and the opening of the opening/closing part are delayed a little from the time of cycle switching, and the above-mentioned steps are taken. The shutter may be opened and closed after the remaining exhaust air is carried by the secondary air stream and discharged to the outside. As an additional function, if the shutter is fixed without repeatedly opening and closing during operation and the airflow continues to flow steadily, there will be no latent heat exchange and sensible heat exchange will occur. On the other hand, if the operation is performed with at least openings A, B, E, and C open, or with openings C, D, G, and C left open, the airflow will bypass the heat exchanger, so Non-heat exchange ventilation, so-called simultaneous supply and exhaust ventilation, as shown in the figure, becomes possible.

一方、開閉部ロ、ハ、ホ、チを開、開閉部イ、
ニ、ト、ヘを閉、または、開閉部ロ、ハ、ホ、チ
を閉、開閉部イ、ニ、ト、ヘを開にして運転すれ
ば第9図のような顕熱交換循環ができる。また、
上記2つの状態間の交互運転を繰返せば全熱交換
循環ができる。この場合、第10図のごとく外気
吸入風路中にヒーター24を設置すれば、除湿循
環も可能となる。
On the other hand, open the opening/closing parts B, C, H, and C, and open the opening/closing part A.
Sensible heat exchange circulation as shown in Figure 9 can be achieved by operating with D, G, and F closed, or with openings B, C, E, and J closed, and opening and closing sections A, D, G, and F open. . Also,
By repeating the alternating operation between the above two states, total heat exchange circulation can be achieved. In this case, if a heater 24 is installed in the outside air intake air path as shown in FIG. 10, dehumidifying circulation is also possible.

なお、上記実施例では仕切板が非透性の場合に
ついて説明したが、仕切板が透湿性のエレメント
の場合はシヤツター開閉による気流の交換の必要
なしに全熱交換換気が行なえるが、顕熱交換換気
は行なえない。しかし、その他の付加機能、設置
場所の節約、メインテナンスの容易さなどに関し
ては仕切板が非透湿性の場合と同様の利点があ
る。
In the above embodiment, the case where the partition plate is non-permeable was explained, but if the partition plate is a moisture permeable element, total heat exchange ventilation can be performed without the need for airflow exchange by opening and closing the shutter. Exchange ventilation is not possible. However, in terms of other additional functions, savings in installation space, ease of maintenance, etc., the partition plate has the same advantages as the non-moisture-permeable case.

一方、仕切板エレメントの仕上仕切板が非透湿
性のエレメントの場合、エレメントが第5図にお
いて、25を中心軸として回動可能になつている
場合でも、エレメントを周期的に90°回動さすこ
とにより、シヤツターの開閉の切換なしに、全熱
交換換気が可能である。
On the other hand, if the finished partition plate of the partition plate element is a moisture-impermeable element, even if the element is rotatable about the central axis 25 in Fig. 5, the element must be periodically rotated 90 degrees. This allows total heat exchange ventilation without switching between opening and closing the shutter.

なお、この場合シヤツターは循環及び一般換気
等のために用いる。
In this case, the shutter is used for circulation and general ventilation.

また上記説明において吸湿性というのは、仕切
板が透湿性の場合、および仕切板が非透湿性で表
面に吸湿性処理を施した場合を意味する。
Furthermore, in the above description, hygroscopic means that the partition plate is moisture permeable, and that the partition plate is non-moisture permeable and the surface has been subjected to a hygroscopic treatment.

このように本発明の全熱交換装置では、従来法
に比べて小さい設置面積、エレメントのメインテ
ナンスも、ダクトの一部分を取りはずすことによ
り比較的容易に行なえ、また、熱交換効率も従来
装置より高くなり、給排の移行も極力押えること
が可能であり、機能も全熱交換換気以外に様々な
換気モードが可能であるという利点をもつてい
る。
In this way, the total heat exchange device of the present invention has a smaller footprint compared to conventional methods, and maintenance of the element can be performed relatively easily by removing a portion of the duct, and the heat exchange efficiency is also higher than that of conventional devices. It has the advantage that it is possible to suppress the transition between supply and exhaust as much as possible, and that various ventilation modes other than total heat exchange ventilation are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のビルなどの空調用として用いら
れている回転式全熱交換装置の分解組立図、第2
図は回転式全熱交換器における給排気のまざりの
説明図、第3図は本発明の一実施例に使用した熱
交換エレメントの一部外観図、第4図はこれをダ
クト中に組み込んだ本発明の一実施例の全熱交換
装置の断面図、第5図は第4図のA−A′面にお
ける縦断面図、第6図は第4図の分解斜視図、第
7図は蓄熱透過式と静止透過式の全熱交換効率の
測定結果を比較した図、第8図から第10図はダ
クト中に組み込んだ本発明の一実施例における
種々の換気モードを示すものであり、第8図は同
時給排換気、第9図は熱交換循環(空調循環)、
第10図は除湿循環の場合の気流の流れを示す図
である。 10……熱交換エレメント、12,23……仕
切板、13,14……シヤツター部、15〜18
……チヤンバー部、19〜22……気流。
Figure 1 is an exploded assembly diagram of a rotary total heat exchanger used for conventional air conditioning in buildings, etc.
The figure is an explanatory diagram of the combination of air supply and exhaust in a rotary total heat exchanger, Figure 3 is a partial external view of a heat exchange element used in an embodiment of the present invention, and Figure 4 is an illustration of this integrated into a duct. A cross-sectional view of a total heat exchange device according to an embodiment of the present invention, FIG. 5 is a vertical cross-sectional view along plane A-A' in FIG. 4, FIG. 6 is an exploded perspective view of FIG. 4, and FIG. 7 is a heat storage Figures 8 to 10, which compare the measurement results of the total heat exchange efficiency of the permeation type and the static permeation type, show various ventilation modes in an embodiment of the present invention incorporated into a duct. Figure 8 shows simultaneous supply and exhaust ventilation, Figure 9 shows heat exchange circulation (air conditioning circulation),
FIG. 10 is a diagram showing the flow of airflow in the case of dehumidifying circulation. 10... Heat exchange element, 12, 23... Partition plate, 13, 14... Shutter part, 15-18
...Chamber section, 19-22...Airflow.

Claims (1)

【特許請求の範囲】 1 伝熱性、非透湿性および吸湿性を有する仕切
板8を所定間隔を置いて複数層に重ね合わせ一次
気流と二次気流とがこれら各層間を交互に通よう
に形成した熱交換エレメント10を設け、 前記熱交換エレメント10は互いに熱交換をす
る2種の気流が別々に通る風路を有し、 前記熱交換エレメント10の仕切板8は前記両
風路にまたがつて、前気風路中の両気流の方向に
対して直角な方向に配置され、 その前後において、前記熱交換エレメント10
に接して配置された4つの開閉部シヤツター1
3,14を設け、 前記熱交換エレメント10の稜部は、直接もし
くは前気風路の気流の方向に対して平行な方向に
配した区画板12を介してダクト26の内壁に接
触し、 前記稜部または区画板12、ダクト26の内壁
前記熱交換エレメント10および前記2つのシヤ
ツター13,14などによつて形成される4つの
チヤンバーに対して、前記シヤツター13,14
の開閉部を、それぞれのチヤンバーへの気流の出
入口に対応させ、 前記熱交換エレメント10と前記シヤツター1
3,14を相対的に駆動する手段を設けたことを
特徴とする全熱交換装置。 2 相対的に駆動可能させる手段は熱交換エレメ
ント10を回動させるものであり、前記熱交換エ
レメント10は、仕切板8の中心を通り、かつ前
記仕切板8に直角方向の直線を回転の中心として
回転することを特徴とする特許請求の範囲第1項
記載の全熱交換装置。
[Claims] 1. A plurality of partition plates 8 having heat conductivity, moisture impermeability, and moisture absorption properties are stacked at predetermined intervals in a plurality of layers so that primary airflow and secondary airflow alternately pass between these layers. A heat exchange element 10 is provided, the heat exchange element 10 has an air passage through which two types of air currents that exchange heat with each other pass separately, and the partition plate 8 of the heat exchange element 10 spans both the air passages. The heat exchange element 10 is arranged in a direction perpendicular to the direction of both air flows in the front air passage, and the heat exchange element 10
Four opening/closing shutters 1 placed in contact with
3 and 14, and the ridge of the heat exchange element 10 contacts the inner wall of the duct 26 directly or via a partition plate 12 arranged in a direction parallel to the direction of air flow in the front air passage, For the four chambers formed by the section or partition plate 12, the inner wall of the duct 26, the heat exchange element 10, the two shutters 13, 14, etc., the shutters 13, 14
The opening/closing parts of the heat exchange element 10 and the shutter 1 are made to correspond to the inlet/outlet of the airflow to each chamber.
A total heat exchange device characterized in that a means for relatively driving the parts 3 and 14 is provided. 2. The means for relatively driving the heat exchange element 10 is to rotate the heat exchange element 10, and the heat exchange element 10 has a straight line passing through the center of the partition plate 8 and perpendicular to the partition plate 8 as the center of rotation. 2. The total heat exchange device according to claim 1, wherein the total heat exchange device rotates as follows.
JP57061428A 1982-04-12 1982-04-12 Total heat exchanging device Granted JPS58178189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061428A JPS58178189A (en) 1982-04-12 1982-04-12 Total heat exchanging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061428A JPS58178189A (en) 1982-04-12 1982-04-12 Total heat exchanging device

Publications (2)

Publication Number Publication Date
JPS58178189A JPS58178189A (en) 1983-10-19
JPH0333998B2 true JPH0333998B2 (en) 1991-05-21

Family

ID=13170783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061428A Granted JPS58178189A (en) 1982-04-12 1982-04-12 Total heat exchanging device

Country Status (1)

Country Link
JP (1) JPS58178189A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063730U (en) * 1983-10-04 1985-05-04 三菱電機株式会社 Ceiling-mounted air conditioning ventilation system
JPS6118451U (en) * 1984-07-10 1986-02-03 ワイケイケイ株式会社 ventilation system
CN100434819C (en) * 2004-06-09 2008-11-19 乐金电子(天津)电器有限公司 Ventilator
CN102305448A (en) * 2011-09-23 2012-01-04 广东朗能电器有限公司 Total heat exchanger
JP6262445B2 (en) * 2013-04-25 2018-01-17 新晃工業株式会社 Total heat exchanger using water vapor permselective membrane
NL2012548B1 (en) * 2014-04-02 2016-02-15 Level Holding Bv Recuperator, the heat exchange channels of which extend transversely to the longitudinal direction of the housing.
CN107543274A (en) * 2016-06-24 2018-01-05 帕赛波活力日本株式会社 Air exchange system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449666A (en) * 1977-09-27 1979-04-19 Mitsubishi Electric Corp Heat exchanging apparatus
JPS5495053A (en) * 1978-01-13 1979-07-27 Mitsubishi Electric Corp Manufacturing of counter flow heat exchanging element
JPS54119153A (en) * 1978-03-08 1979-09-14 Mitsubishi Electric Corp Manufacture of heat exchange devices for air conditioning
JPS5565888A (en) * 1978-11-10 1980-05-17 Toyo Netsu Kogyo Kk Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449666A (en) * 1977-09-27 1979-04-19 Mitsubishi Electric Corp Heat exchanging apparatus
JPS5495053A (en) * 1978-01-13 1979-07-27 Mitsubishi Electric Corp Manufacturing of counter flow heat exchanging element
JPS54119153A (en) * 1978-03-08 1979-09-14 Mitsubishi Electric Corp Manufacture of heat exchange devices for air conditioning
JPS5565888A (en) * 1978-11-10 1980-05-17 Toyo Netsu Kogyo Kk Heat exchanger

Also Published As

Publication number Publication date
JPS58178189A (en) 1983-10-19

Similar Documents

Publication Publication Date Title
KR100707448B1 (en) Air-conditioner
US20140318369A1 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
JP4639485B2 (en) Air conditioner
JPS6080044A (en) Ventilating device
JP4340756B2 (en) Dehumidifying air conditioner
JPH0333998B2 (en)
JPH07755A (en) Dehumidifying air conditioner
JPS6136641A (en) Air conditioning and air ventilation device
JPS5896988A (en) Heat exchange method
JPH0814600A (en) Desiccant type air conditioner
JPS59208339A (en) Ventilator
JP2835695B2 (en) Total heat exchange ventilator
JP2003004255A (en) Air conditioner
JPH06101930A (en) Air cooler using moisture absorbent
JP3649203B2 (en) Humidity control device
JPS6324228B2 (en)
JPH0331975B2 (en)
JP2779386B2 (en) Total heat exchange ventilator
JP2001311537A (en) Humidity control system
JPH10325584A (en) Ventilator
JPS58178135A (en) Air conditioning ventilating fan
JPS58179746A (en) Air-conditioning ventilating fan
JP2001263727A (en) Moisture adjusting system
JPS5855637A (en) Air conditioner
JPS58179744A (en) Air-conditioning ventilating fan