JPS5984091A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS5984091A
JPS5984091A JP57194119A JP19411982A JPS5984091A JP S5984091 A JPS5984091 A JP S5984091A JP 57194119 A JP57194119 A JP 57194119A JP 19411982 A JP19411982 A JP 19411982A JP S5984091 A JPS5984091 A JP S5984091A
Authority
JP
Japan
Prior art keywords
rotor
heat exchanger
heat exchange
heat
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194119A
Other languages
Japanese (ja)
Other versions
JPH0366593B2 (en
Inventor
Nobuyuki Yano
矢野 宣行
Takuro Kodera
小寺 卓郎
Toshio Utagawa
歌川 敏男
Akira Aoki
亮 青木
Kazufumi Watanabe
渡辺 和文
Masao Wakai
若井 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP57194119A priority Critical patent/JPS5984091A/en
Priority to PCT/JP1983/000392 priority patent/WO1984001817A1/en
Priority to DE8383903413T priority patent/DE3371247D1/en
Priority to EP83903413A priority patent/EP0127683B1/en
Priority to US06/629,844 priority patent/US4574872A/en
Publication of JPS5984091A publication Critical patent/JPS5984091A/en
Publication of JPH0366593B2 publication Critical patent/JPH0366593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1052Rotary wheel comprising a non-axial air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PURPOSE:To improve heat exchanging efficiency and reduce sliding sounds by a method wherein a rotor is formed by laminating a plurality of layers of partitioning plates having heat transfer properties and humidity permeating properties into circumferential direction with spaces and the rotor is rotated. CONSTITUTION:The rotor 1 is formed by a method wherein the first elements 4, having paths penetrating into the axial direction of a tube, and the second element 5, having paths communicating two openings of an inner cylindrical tube through which airstream is passing in-and-out into the radial direction thereof which is orthogonal to the axial direction of the first element 4, are laminated through partitioning walls 6 of a material having heat transfer properties and humidity permeating properties. Heat, generated on the surfaces of the element, may be transferred to the other element in accompanied with the absorption or releasing of the accumulated latent heat of the elements and moisture by rotating the cylindrical rotor 1 and exchanging the primary airstream and the secondary airstream periodically, therefore, the rotating speed thereof may be lowered and the sliding sounds may be reduced. The effective moisture absorbing amount into the element is increased, therefore, the heat exchanging efficiency may be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回転式空調換気扇等に用いる熱交換装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in heat exchange devices used in rotary air conditioning ventilation fans and the like.

従来例の構成とその問題点 従来の全熱交換方式には、ロータへの蓄熱およ  −び
蓄湿を利用した蓄熱回転式と、仕切板を介して全熱交換
さす静止透過式の2方式がある。蓄熱回転式はロータの
蓄熱容量が少ないため、通常約16回転/分程度のロー
タの回転数が必要となる。
Conventional configuration and problems There are two conventional total heat exchange systems: a heat storage rotation type that utilizes heat and moisture storage in the rotor, and a stationary transmission type that exchanges total heat through a partition plate. There is. Since the heat storage rotary type has a small rotor heat storage capacity, the rotor usually requires a rotation speed of about 16 revolutions/minute.

このため回転にともなう摺動音が発生しゃすい。Therefore, sliding noise is likely to occur due to rotation.

また、ロータへの顕熱蓄熱や水分の吸着熱や脱着熱の影
響によシ、エレメントへの水分の有効吸着量が減少する
という欠点がある。
Furthermore, there is a drawback that the effective amount of moisture adsorption to the element is reduced due to the effects of sensible heat storage in the rotor and heat of adsorption and desorption of moisture.

一方、静止−透過式では顕熱交換および潜熱交換は仕切
板中の熱伝導機構および透湿現象のみによって行なわれ
るので、一般的に全熱交換効率は低い。
On the other hand, in the static-permeation type, sensible heat exchange and latent heat exchange are performed only by the heat conduction mechanism in the partition plate and the moisture permeation phenomenon, so the total heat exchange efficiency is generally low.

発明の目的 従来よりも高効率で、しかも回転数が従来の蓄熱回転式
に比べ少なくてすむため、摺動音が低いという特長をも
った蓄熱透過回転式熱交換装置なるものを提供するもの
である。
OBJECT OF THE INVENTION It is an object of the present invention to provide a heat storage transmission rotary heat exchange device which has higher efficiency than conventional heat exchange devices and has the feature of lower sliding noise because the number of revolutions is lower than that of the conventional heat storage rotary type. be.

発明の構成 透湿性をもった仕、切板を間隔を置いて円周方向に複数
層重ね合わせ、−次気流と二次気流とをこれら各層間を
交互忙通るように形成した円筒状ロータを構成要素とし
、これを回転させることにより、これら−次気流と二次
気流を周期的に入れ換えて前記仕切板間の各層を通すこ
とを繰返す全熱交換方式を採用することにより、エレメ
ントへの蓄積顕熱や水分の吸脱着にともなってエレメン
トの表面で発生する熱を、ロータの回転のみで他方へ移
動させるのでなく、そのある程度の部分を仕切板中の熱
伝導により他方へ移動させることができるので、従来の
回転式全熱交換装置に比べ、回転速度を落すことが出来
、摺動音を減することが出来る。また、エレメントへの
水分の有効吸着量が増大するので熱交換効率が高くなる
。また、この構成では従来の静止透過式全熱交換法に比
べ、熱交換機構に蓄熱、蓄湿機構が加わるので、より効
率を高くすることが可能である。
Structure of the invention A cylindrical rotor is constructed by stacking a plurality of layers of moisture-permeable partitions and cutting plates in the circumferential direction at intervals, and forming a secondary air flow and a secondary air flow to flow alternately between these layers. By rotating this as a component and adopting a total heat exchange method in which the secondary airflow and the secondary airflow are periodically exchanged and passed through each layer between the partition plates, the accumulation in the element is reduced. The heat generated on the surface of the element due to adsorption and desorption of sensible heat and moisture is not transferred to the other side only by the rotation of the rotor, but a certain amount of it can be transferred to the other side by heat conduction in the partition plate. Therefore, compared to conventional rotary total heat exchange equipment, the rotation speed can be lowered and sliding noise can be reduced. Furthermore, since the effective amount of moisture adsorbed to the element increases, the heat exchange efficiency increases. In addition, in this configuration, compared to the conventional static permeation type total heat exchange method, a heat storage and moisture storage mechanism is added to the heat exchange mechanism, so it is possible to further increase efficiency.

実施例の説明 以下本発明の実施例を図にもとづいて説明する。Description of examples Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の熱交換方式を実現するための実施例の
円筒形ロータの部分的な概略外観と、関連する気体の流
出入経路を示した図である。図中1は円筒形のロータ、
2はその内円筒部分で後で説明するように気流通路入換
部がついている。3は両気流を分離するセパレータであ
る。この構造のロータ1の場合、セパレータ3の一方側
からロータ1に入った気流はセパレータ3の同一側から
′ロータ1を出る。
FIG. 1 is a diagram showing a partial schematic appearance of a cylindrical rotor according to an embodiment for realizing the heat exchange system of the present invention, and related gas inflow and outflow paths. In the figure, 1 is a cylindrical rotor,
2 is an inner cylindrical portion with an airflow passage switching section as will be explained later. 3 is a separator that separates both air flows. In the case of the rotor 1 having this structure, airflow entering the rotor 1 from one side of the separator 3 exits the rotor 1 from the same side of the separator 3.

この口〜夕1は第2図に示すよ之に、筒軸方向に貫通す
る通路を有する第1のエレメント4と、これに直角な半
径方向に気流が出入する内円筒部の2つの開1コ部間を
連通ずる通路を有する第2のエレメント5を隔壁6を介
して、円周方向に互いに積層させた構成をしている。
As shown in FIG. 2, this opening 1 includes a first element 4 having a passage passing through in the axial direction of the cylinder, and two openings 1 in the inner cylindrical part through which air flows in and out in the radial direction perpendicular to the first element 4. It has a structure in which second elements 5 having passages communicating between the parts are laminated on each other in the circumferential direction with partition walls 6 interposed therebetween.

第3図はこのようなa−夕1を構成するエレメントの実
施例で、基本、素子7,8の一対を交互に積重ねてロー
タ1を構成している。この場合、基本素子7および8は
クラフト紙の表面に吸湿剤との気流通路は内円筒部入口
の一方よシ入り、内円筒部の他方の出口より出る構造に
なっている。
FIG. 3 shows an example of elements constituting such an a-tube 1. Basically, the rotor 1 is constructed by stacking a pair of elements 7 and 8 alternately. In this case, the basic elements 7 and 8 have a structure in which the air flow passage with the moisture absorbent enters through one of the inlets of the inner cylindrical part and exits from the other outlet of the inner cylindrical part on the surface of the kraft paper.

第4図はロータ1を構成している基本素子の他の実施例
である。この場合、基本素子9の隔壁6間の間隔は半径
方向で異なるが、基本素子10の通路間隔は一定である
ので、基本素子1o内の通路の抵抗は基本素子8の場合
より小さいという特徴がある。
FIG. 4 shows another embodiment of the basic elements constituting the rotor 1. In FIG. In this case, although the spacing between the partition walls 6 of the basic element 9 varies in the radial direction, the passage spacing of the basic element 10 is constant, so that the resistance of the passage in the basic element 1o is smaller than that of the basic element 8. be.

第6図はこのような円筒形ロータ1を使った場合の本実
施例の熱交換器の断面模式図で、熱交換器内の気流の流
れを模式的に示したものである。
FIG. 6 is a schematic cross-sectional view of the heat exchanger of this embodiment when such a cylindrical rotor 1 is used, and schematically shows the flow of air within the heat exchanger.

図中11.12はロータ1に入る両気流の通路を分ける
セパレータである。これは1枚の仕切板16の中央部を
軸として両端を180°ひねったものを用いているが他
の構成であってもよい。
In the figure, reference numerals 11 and 12 indicate separators that separate the paths of both air flows entering the rotor 1. Although this uses one partition plate 16 whose both ends are twisted by 180° with the central portion thereof as an axis, other configurations may be used.

13.14は内円筒部気流通路の出入口に設けられた気
流通路入換部で、基本的には第6図のような構造をもっ
たもので、そのXl、 X2間に相当するものである。
13.14 is an airflow passage exchange part provided at the entrance and exit of the inner cylindrical airflow passage, which basically has the structure as shown in Figure 6, and corresponds to the area between Xl and X2. .

図中X1 、 X2間で両気流の通路を分ける仕切板1
6が180°回転しているため、この部分で仕切板16
の両側の気流の通路が互いに入換わるようになっている
。このような構造において、熱交換時に筒軸を中心にし
て回転するものは、ロータ1とロータ1と一体構造にな
っている仕切部16のみで、セパレータ11,12や気
流通路入換部13.14は固定されているので動かない
Partition plate 1 that separates both airflow paths between X1 and X2 in the figure
6 has been rotated 180 degrees, so the partition plate 16
The airflow passages on both sides of the airflow exchange with each other. In such a structure, the only parts that rotate around the cylinder axis during heat exchange are the rotor 1 and the partition part 16 that is integrally constructed with the rotor 1, and the separators 11, 12, the airflow passage exchange part 13. 14 is fixed and does not move.

内気流間の熱交換は、第2図における第1のエレメント
4と第2のエレメント6の間の隔壁6を通して全熱交換
が行なわれるだけでなく、ロータ1の回転により、例え
ば第6図に示すように、図中ロータ1の上面部では第1
のエレメント4には気流B、第2のエレメント6には気
流Aが流れているが、下面部では第1のエレメント4に
は気流A、第2のエレメント6には気流Bというように
、互いに入換わることをぼ返すことにより、エレメント
に蓄熱、蓄湿された顕熱と水分が他方の気流中に移行す
ることにより全熱交換が行なわれる。
The heat exchange between the internal air flows not only takes place through the partition wall 6 between the first element 4 and the second element 6 in FIG. 2, but also by the rotation of the rotor 1, for example, As shown, on the upper surface of the rotor 1 in the figure, the first
The airflow B flows through the element 4, and the airflow A flows through the second element 6. However, on the bottom surface, the airflow A flows through the first element 4, and the airflow B flows through the second element 6, and so on. By reversing the exchange, the sensible heat and moisture stored in the element are transferred to the other airflow, resulting in total heat exchange.

従来の蓄熱回転式の全熱交換器と比べて、この方式の利
点はエレメントへの水分の吸着および脱着にともなう吸
着熱も脱着熱、あるいは高温気流中の顕熱をロータの回
転だけによらず、第1のエレメント4と第2のエレメン
ト6間の隔壁6を通して大部分移行させることができる
ため、エレメントの水分の有効吸着量を多くとることが
でき効率を高くできる。また隔壁6を通しての顕熱移行
によりロータ1が静止していてもエレメントの蓄熱容量
が飽和に達しないため、従来の回転式に比ベロータの回
転速度を遅くすることができる。従来の蓄熱回転式の最
適回転数は16回転/分前後であるが、実験結果による
と新方式では1回転/分前後が最適であるととがわかっ
た。このことは新方式が従来の回転式に比べ回転にとも
なう摺動音が小さくなる原因である。寸だ、この方式は
従来の静止透過式に比べても高効率のデータが得られて
いる。これは全熱交換機構が静止透過式では伝導と透過
のみであるが、新方式ではこれらに蓄湿の筒機構が加わ
ってくるためと考えられる。
Compared to conventional heat storage rotary type total heat exchangers, the advantage of this method is that the adsorption heat associated with adsorption and desorption of moisture on the element is also converted into desorption heat, or the sensible heat in the high-temperature air flow is not only generated by the rotation of the rotor. Since most of the water can be transferred through the partition wall 6 between the first element 4 and the second element 6, the effective amount of moisture adsorbed by the element can be increased and efficiency can be increased. Furthermore, the heat storage capacity of the element does not reach saturation even when the rotor 1 is stationary due to sensible heat transfer through the partition wall 6, so that the rotation speed of the bellows can be lowered compared to the conventional rotary type. The optimal rotation speed for the conventional heat storage rotary type is around 16 revolutions/minute, but experimental results show that the optimal rotation speed for the new system is around 1 revolution/minute. This is the reason why the new system produces less sliding noise due to rotation than the conventional rotary system. Indeed, this method yields more efficient data than the conventional static transmission method. This is thought to be because the total heat exchange mechanism is only conduction and permeation in the static permeation type, but in the new type, a moisture storage cylinder mechanism is added to these.

第7図は本発明の熱交換方式を実現するための他の実施
例の円筒形ロータの概略外観と関連する気体の流出入経
路を示した図である。この実施例の場合、ロータ17は
第8図に示すように筒袖方向の一端側23と他端側に近
い内円筒側に開1」部24をもった第1のエレメント1
8と、これとは逆に筒軸方向の他端側26とそれと反対
側の内円筒側に開口部26をもった第2のエレメント1
9を隔壁20を介して円周方向に互いに積層させた構成
をしている。第9図はこの場合のロータ17を構成する
エレメントの実施例で、基本素子21゜22一対を交互
に積重ねてロータ17を構成している。この場合の基本
素子21.22も前記実施例と同様、クラフト紙に吸湿
剤としてL iClを塗布したものである。このような
基本素子21.22を積層しだロータでは、内部の気流
の流れは内部で900方向転換するようになっておシ、
この両通路とも風路抵抗が同一になるという特徴をもっ
ている。固気流通路間の風圧が等しくなるので、伝熱・
透過による熱交換率が向上する1゜第1o図はこの例の
ロータ17を使った場合の熱交換器の断面模式図で熱交
換器内の気流の流れを模式化したものである。この例の
ような場合でも、熱交換機構は前記ロータ1の気流通路
の場合の熱交換機構と同様である。
FIG. 7 is a diagram showing a schematic appearance of a cylindrical rotor according to another embodiment for realizing the heat exchange method of the present invention and related gas inflow and outflow paths. In the case of this embodiment, the rotor 17 has a first element 1 having an opening 24 at one end 23 in the sleeve direction and at the inner cylindrical side near the other end, as shown in FIG.
8 and, conversely, a second element 1 having an opening 26 on the other end side 26 in the cylinder axis direction and on the inner cylinder side on the opposite side.
9 are stacked on each other in the circumferential direction with partition walls 20 in between. FIG. 9 shows an embodiment of the elements constituting the rotor 17 in this case, and the rotor 17 is constructed by stacking pairs of basic elements 21 and 22 alternately. The basic elements 21 and 22 in this case are also made of kraft paper coated with LiCl as a moisture absorbent, as in the previous embodiment. In a rotor in which such basic elements 21 and 22 are laminated, the internal airflow changes direction by 900 degrees.
Both passages have the characteristic that the air passage resistance is the same. Since the wind pressure between the solid air flow paths is equal, heat transfer and
Figure 1o is a cross-sectional schematic diagram of a heat exchanger when the rotor 17 of this example is used, and schematically shows the flow of air within the heat exchanger. Even in a case like this example, the heat exchange mechanism is the same as the heat exchange mechanism in the case of the airflow passage of the rotor 1.

第11図は第6図の熱交換器を使い、36°′c。Figure 11 uses the heat exchanger shown in Figure 6, and the temperature is 36°'c.

60チ、26°(: 、50%風量2 n? / mi
 nの内気流間の熱交換効率をロータの回転数を変化さ
せてとったデータである。図中Aは全熱交換効率、Bは
顕熱交換効率、Cは潜熱交換効率である。このデータか
ら分かるように、ロータの回転数を変化させることによ
り、顕熱交換効率と潜熱交換効率中にしめる割合を変化
させることができるので、より高度な空調に対応できる
可能性を有していることを示している。なお、第12図
は比較のため従来の蓄熱回転式の場合の同様の実験デー
タを示したもので、エレメントとしてはコルゲート加工
したクラフト紙をロータ状にまいた構造である。この場
合は、データに示すように口・−タの回転数が変化して
も、顕熱交換効率と潜熱交換効率の全熱交換効率中にし
める割合は、第11図の蓄熱透過式程には変化しないこ
とがわかる。
60 inches, 26 degrees (: , 50% air volume 2 n?/mi
This is data obtained by changing the rotational speed of the rotor to determine the heat exchange efficiency between n internal airflows. In the figure, A is the total heat exchange efficiency, B is the sensible heat exchange efficiency, and C is the latent heat exchange efficiency. As can be seen from this data, by changing the rotation speed of the rotor, it is possible to change the proportion of sensible heat exchange efficiency and latent heat exchange efficiency, which has the potential to support more advanced air conditioning. It is shown that. For comparison, FIG. 12 shows similar experimental data in the case of a conventional heat storage rotary type, and the elements have a structure in which corrugated kraft paper is spread in the shape of a rotor. In this case, as shown in the data, even if the rotational speed of the rotor changes, the ratio of sensible heat exchange efficiency and latent heat exchange efficiency to the total heat exchange efficiency will not be as high as the heat storage transmission equation shown in Figure 11. You can see that it doesn't change.

興明の効果 以上のごとぐ本発明の熱交換装置では全熱交換効率を従
来法より相当高くできる。また、回転数制御により顕熱
交換効率と潜熱変換効率の比率を変化さずことができる
。このような特徴をもった本発明の熱交換装置を空調機
に使用することにより大きな省エネルギー効果が期待で
きる。
With the heat exchange device of the present invention, the total heat exchange efficiency can be considerably higher than that of the conventional method. Furthermore, by controlling the rotation speed, the ratio between sensible heat exchange efficiency and latent heat conversion efficiency can be maintained without changing. By using the heat exchange device of the present invention having such characteristics in an air conditioner, a large energy saving effect can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱交換装置を実現するだめの一実施例
の円筒形ロータの部分的概略説明図、第2図は第1図の
部分的な詳細図、第3図は前記ロータを構成する基本素
子の斜視図、第4図は基本間の他の実施例の円筒形ロー
タの部分的概略説明図、第8図は第7図のロータの部分
的詳細図、第9図は前記ロータを構成する基本素子の斜
視図、第10図は本発明の異方る実施例の熱交換装置の
断面模式図、第11図は第6図の熱交換装置を使い両気
流間の熱交換効率を示す図、第12図は第11図に示す
データと比較するだめの従来の蓄熱回転式の熱交換効率
を示す図である。 1・・・・・・ロータ、2・・・・・・内円筒部分、3
・・・・・・セパレータ、4,6・・・・・・エレメン
ト、6・・・・・・lW[,7〜10・・・・・基本素
子、11.12・・・・・セノくレータ、13.14・
・・・・・気流通路入換部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1多党1
図 第2図 ・s)3 1ソC1 第4図 第7図 箇8図 第9図 8110図
FIG. 1 is a partial schematic explanatory view of a cylindrical rotor according to an embodiment of the heat exchange device of the present invention, FIG. 2 is a partial detailed view of FIG. 1, and FIG. FIG. 4 is a partial schematic explanatory diagram of a cylindrical rotor according to another embodiment of the basic structure, FIG. 8 is a partial detailed diagram of the rotor of FIG. 7, and FIG. A perspective view of the basic elements constituting the rotor, FIG. 10 is a schematic cross-sectional view of a heat exchange device according to a different embodiment of the present invention, and FIG. 11 is a heat exchange between both air streams using the heat exchange device of FIG. 6. A diagram showing the efficiency, FIG. 12, is a diagram showing the heat exchange efficiency of the conventional heat storage rotary type for comparison with the data shown in FIG. 1... Rotor, 2... Inner cylindrical part, 3
...Separator, 4,6...Element, 6...1W[,7-10...Basic element, 11.12...Senoku Rator, 13.14・
...Airflow passage exchange section. Name of agent Patent attorney Toshio Nakao and 1 other party 1
Figure 2 s) 3 1 So C1 Figure 4 Figure 7 Section 8 Figure 9 Figure 8110

Claims (1)

【特許請求の範囲】 (リ 第1.第2のエレメントを交互に積層して中空の
円筒を形成し、前記第1.第2のエレメント間に存在す
る隔壁は伝熱性を有しかつ透湿性であり、前記一方のエ
レメントに一次気流通路、他方のエレメントを二次気流
通路とし、前記円筒状熱交換器を回転させることによっ
て前記−吹気流と二次気流の通路を周期的に入れ換え、
前記円筒状熱交換器の中空部の少なくとも一端に気流通
路入換部を設けた熱交換装置。 (2)第1のエレメントは円筒軸方向に気流の通過孔を
有し、前記第2のエレメントは前記中空部に対して複数
の開口を有し、一方の開口部から他方の開口部へ気流を
通過可能にした特許請求の範囲第1項記載の熱交換装置
。 (3)第1のエレメントは円筒状熱交換器の一端から軸
方向通路を介して中空部へ通じ、前記第2のエレメント
は前記円筒状熱交換器の他端から軸方(4)円筒状熱交
換器の直径方向にセパレータを介在させ、前記円筒状熱
交換器および中空部を2分する特許請求の範囲第2項ま
たは第3項記載の熱交換装置。 (6)気流通路入換部は、伸縮自在の平板の中央線を円
筒状熱交換器の軸と一致させ両端を1800ひねった形
状である特許請求の範囲第1項か考俯猷弄0骨任赤其記
載の熱交換装置。
[Scope of Claims] (1. Second elements are alternately stacked to form a hollow cylinder, and a partition wall existing between the first and second elements has heat conductivity and moisture permeability. , wherein one element has a primary air flow passage and the other element has a secondary air flow passage, and the blow air flow and secondary air flow passages are periodically exchanged by rotating the cylindrical heat exchanger,
A heat exchange device comprising an airflow passage switching section at at least one end of the hollow section of the cylindrical heat exchanger. (2) The first element has an air flow passage hole in the cylindrical axial direction, and the second element has a plurality of openings in the hollow part, and air flows from one opening to the other opening. The heat exchange device according to claim 1, which allows the passage of the heat exchanger. (3) The first element communicates from one end of the cylindrical heat exchanger to the hollow part via an axial passage, and the second element communicates with the hollow part from the other end of the cylindrical heat exchanger in an axial direction (4). The heat exchange device according to claim 2 or 3, wherein a separator is interposed in the diametrical direction of the heat exchanger to divide the cylindrical heat exchanger and the hollow portion into two. (6) The air flow passage switching section has a shape in which the center line of a stretchable flat plate is aligned with the axis of the cylindrical heat exchanger and both ends are twisted by 1800 degrees. The heat exchange device described in Ninseki.
JP57194119A 1982-11-04 1982-11-04 Heat exchanger Granted JPS5984091A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57194119A JPS5984091A (en) 1982-11-04 1982-11-04 Heat exchanger
PCT/JP1983/000392 WO1984001817A1 (en) 1982-11-04 1983-11-02 Heat exchanger
DE8383903413T DE3371247D1 (en) 1982-11-04 1983-11-02 Heat exchanger
EP83903413A EP0127683B1 (en) 1982-11-04 1983-11-02 Heat exchanger
US06/629,844 US4574872A (en) 1982-11-04 1983-11-02 Heat exchanger apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194119A JPS5984091A (en) 1982-11-04 1982-11-04 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS5984091A true JPS5984091A (en) 1984-05-15
JPH0366593B2 JPH0366593B2 (en) 1991-10-17

Family

ID=16319227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194119A Granted JPS5984091A (en) 1982-11-04 1982-11-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS5984091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662545B1 (en) * 2013-11-13 2015-01-28 多田 禮子 High performance total heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949238A (en) * 1972-09-14 1974-05-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949238A (en) * 1972-09-14 1974-05-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662545B1 (en) * 2013-11-13 2015-01-28 多田 禮子 High performance total heat exchanger

Also Published As

Publication number Publication date
JPH0366593B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
US4574872A (en) Heat exchanger apparatus
US4093435A (en) Total heat energy exchangers
JPH10141876A (en) Counter flow type heat exchanger
WO2011085609A1 (en) Counterflow heat exchange core body for fresh air exchanger
US5099915A (en) Helical jet impingement evaporator
JPS5984091A (en) Heat exchanger
JPS6131889A (en) Heat exchanging device
JPS5984092A (en) Heat exchanger
US11466938B2 (en) Rotating heat exchanger with improved heat transfer efficiency
JPS6131888A (en) Heat exchanging device
JP2011115715A (en) Desiccant rotor and desiccant system
JPS6133425Y2 (en)
JPH0760072B2 (en) Counterflow heat exchanger
JPH0366598B2 (en)
JPH0366595B2 (en)
JPS59112193A (en) Heat exchanger
JP2018059692A (en) Total heat exchanger
JPS59112194A (en) Heat exchanger
JPS5934276B2 (en) heat exchange equipment
JPH0470556B2 (en)
JPS6086388A (en) Heat exchanger
JPH0718568B2 (en) Heat recovery type heating / cooling machine
JPH0248773Y2 (en)
JPS6110109Y2 (en)
JPS61186750A (en) Heat exchanging ventilation fan