JPS5982777A - Amorphous thin film solar battery - Google Patents

Amorphous thin film solar battery

Info

Publication number
JPS5982777A
JPS5982777A JP57193003A JP19300382A JPS5982777A JP S5982777 A JPS5982777 A JP S5982777A JP 57193003 A JP57193003 A JP 57193003A JP 19300382 A JP19300382 A JP 19300382A JP S5982777 A JPS5982777 A JP S5982777A
Authority
JP
Japan
Prior art keywords
substrate
roughnesses
thin film
amorphous thin
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57193003A
Other languages
Japanese (ja)
Inventor
Koshiro Mori
森 幸四郎
Masatoshi Kitagawa
雅俊 北川
Shinichiro Ishihara
伸一郎 石原
Masaharu Ono
大野 雅晴
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57193003A priority Critical patent/JPS5982777A/en
Publication of JPS5982777A publication Critical patent/JPS5982777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive the improvement of the photoelectric conversion factor of the titled battery by a method wherein the roughness on a substrate surface is specified. CONSTITUTION:An electrode and an amorphous thin film layer are provided on a substrate with the surface having 500-3,000Angstrom of roughnesses. For example, a glass substrate is first washed in water without using soap and etched with acid and alkali solution such as an HF solution and an NaOH solution, etc. Then, the substrate is washed in water and dried. Due to this substrate treatment process, roughnesses of approximately 500-3,000Angstrom are provided on the surface of the glass substrate. When a transparent electrode of indium oxide and tin oxide, etc., is formed approximately 500-1,000Angstrom on the glass substrare provided with the roughnesses, roughnesses of approximately 500-3,000Angstrom are grown on the surface of the transparent electrode as well, reflecting the roughnesses on the substrate surface. As one of the methods for providing roughnesses on the surface of a glass substrate, a mechanical abrasion method, etc., by abrasives can be applied.

Description

【発明の詳細な説明】 産業上の利用分野 基板の表面粗さと薄膜太陽電池の関係をLt、し、その
最適の表面粗さを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The relationship between the surface roughness of an industrial application substrate and a thin film solar cell is defined as Lt, and the optimum surface roughness thereof is provided.

従来例の構成とその問題点 従来、この種の非晶質薄膜形成の基板は薄膜が剥離しな
い程度の表面粗さでよいということで、表面粗さを50
0Å以下に押えていた。そしてその表面処理は、■基板
の水洗、■有機溶剤処理、■水洗、■乾燥の工程を経て
行われていた。この工程を経たガラス基板の表面は微視
的にみて極めてなめらかであシ、この上に形成した酸化
インジウムや酸化錫等は電子顕微鏡観察では500人以
2A°−ジ 下である。従来、この基板の表面粗さと光電変換率につ
いて言及された例はない。
Conventional structure and its problems Conventionally, the surface roughness of substrates for forming this type of amorphous thin film was set at 50%, because the surface roughness was sufficient to prevent the thin film from peeling off.
It was kept below 0 Å. The surface treatment was performed through the following steps: (1) washing the substrate with water, (2) treating it with an organic solvent, (2) washing with water, and (2) drying. The surface of the glass substrate that has undergone this process is microscopically extremely smooth, and the indium oxide, tin oxide, etc. formed thereon are observed under an electron microscope of 500 or more 2A°. Conventionally, there has been no mention of the surface roughness and photoelectric conversion rate of this substrate.

発明の目的 基板表面の粗さを特定し光電変換率の向上をはかる。purpose of invention Identify the roughness of the substrate surface and aim to improve the photoelectric conversion rate.

発明の構成 基板上に透明電極、非晶質薄膜材料を形成するに際し、
基板の表面粗さを500〜3000人の凹凸にする。
When forming transparent electrodes and amorphous thin film materials on the constituent substrate of the invention,
The surface roughness of the substrate is made to have an unevenness of 500 to 3000.

実施例の説明 ガラス基板を第1図に示すプロセスによ多処理する。ま
ず水洗し、HF溶液やNaOH溶液等の酸やアルカリ溶
液でエツチングする。そして水洗、乾燥させる。この基
板処理プロセスによシガラス基板表面に500人〜30
00人程度の凹凸を設ける0この凹凸を設けたガラス基
板上に酸化インジウムや酸化錫等の透明電極を500λ
〜1000λ程度形成すると、基板表面の凹凸を反映し
て透明電極表面もやはシロ00人〜3000人程度の凹
凸が生じる。
DESCRIPTION OF THE EMBODIMENTS A glass substrate is processed by the process shown in FIG. First, it is washed with water and etched with an acid or alkaline solution such as HF solution or NaOH solution. Then wash with water and dry. This substrate treatment process produces 500 to 30 particles on the surface of the glass substrate.
A transparent electrode made of indium oxide, tin oxide, etc. is placed on a glass substrate with a thickness of 500 λ on the glass substrate with this unevenness.
When a thickness of about 1,000 λ is formed, the surface of the transparent electrode becomes uneven by about 00 to 3,000 λ, reflecting the unevenness of the substrate surface.

31− なお、ガラス基板表面に凹凸を設ける方法は研磨剤によ
る機械的研磨によっても可能である。
31- Note that mechanical polishing using an abrasive can also be used to provide unevenness on the surface of the glass substrate.

第2図は従来の基板を用いてP、I、N層等を形成した
アモルファス太陽電池イと、上記実施例の基板を用いて
作成したアモルファス太陽電池口の開放電圧VOCと短
絡電流’Tscの関係を示す図である。この出力特性は
白色螢光灯下150ルック7腐の条件で測定した。従来
例より本発明の一実施例の太陽電池の方が短絡電流Js
c、開放電圧VOCともに高く、したがって最大変換効
率点−sx  点も高い。なお、3000Å以上の凹凸
の場合はPIN層を形成すると接合が悪くなり、このた
めに変換効率が低下する。
Figure 2 shows an amorphous solar cell in which P, I, N layers, etc. are formed using a conventional substrate, and an open circuit voltage VOC and a short circuit current 'Tsc at the amorphous solar cell opening made using the substrate of the above example. It is a figure showing a relationship. This output characteristic was measured under a white fluorescent light condition of 150 looks and 7 degrees. The solar cell according to the embodiment of the present invention has a higher short-circuit current Js than the conventional example.
Both c and open circuit voltage VOC are high, and therefore the maximum conversion efficiency point -sx is also high. Note that in the case of irregularities of 3000 Å or more, forming a PIN layer will cause poor bonding, resulting in a reduction in conversion efficiency.

第3図は基板表面の粗さと、それを用いたアモルファス
薄膜太陽電池の変換効率の関係を示すものであり、60
0〜3000 Aの間で変換効率のよいことがわかる。
Figure 3 shows the relationship between the roughness of the substrate surface and the conversion efficiency of an amorphous thin film solar cell using the same.
It can be seen that the conversion efficiency is good between 0 and 3000 A.

なお3000Å以上の凹凸ではPIN層の接合状態が悪
くなる。
Note that if the unevenness is 3000 Å or more, the bonding state of the PIN layer will deteriorate.

発明の効果 アモルファスシリコン層が形成される基板表面の粗さを
特定し光電変換効率を高めることができる。
Effects of the Invention It is possible to specify the roughness of the substrate surface on which an amorphous silicon layer is formed and to improve the photoelectric conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のアモルファス簿膜太陽電池
に用いる基板の処理過程を示す図、第2図は従来例と本
発明の一実施例のアモルファス薄膜太陽電池の出力特性
を示す図、第3図は基板の表面の凹凸の程度とそれを用
いたアモルファス薄膜太陽電池の変換効率の関係を示す
図である。 イ・・・・・・従来例、口・・・・・・本発明の一実施
例。
Fig. 1 is a diagram showing the processing process of a substrate used in an amorphous thin film solar cell according to an embodiment of the present invention, and Fig. 2 is a diagram showing the output characteristics of a conventional example and an amorphous thin film solar cell according to an embodiment of the present invention. , FIG. 3 is a diagram showing the relationship between the degree of unevenness on the surface of a substrate and the conversion efficiency of an amorphous thin film solar cell using the same. A: Conventional example, A: An embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 表面が500〜3000人の凹凸である基板上に電極お
よびアモルファス薄膜層を設けたアモルファス薄膜太陽
電池。
An amorphous thin film solar cell in which an electrode and an amorphous thin film layer are provided on a substrate whose surface has a roughness of 500 to 3000 people.
JP57193003A 1982-11-02 1982-11-02 Amorphous thin film solar battery Pending JPS5982777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193003A JPS5982777A (en) 1982-11-02 1982-11-02 Amorphous thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193003A JPS5982777A (en) 1982-11-02 1982-11-02 Amorphous thin film solar battery

Publications (1)

Publication Number Publication Date
JPS5982777A true JPS5982777A (en) 1984-05-12

Family

ID=16300587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193003A Pending JPS5982777A (en) 1982-11-02 1982-11-02 Amorphous thin film solar battery

Country Status (1)

Country Link
JP (1) JPS5982777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2596753A1 (en) * 1986-04-08 1987-10-09 Glaverbel MATE GLASS, MATE GLASS MANUFACTURING METHOD, PHOTOVOLTAIC CELL COMPRISING SUCH A GLASS, AND METHOD OF MANUFACTURING SUCH A CELL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2596753A1 (en) * 1986-04-08 1987-10-09 Glaverbel MATE GLASS, MATE GLASS MANUFACTURING METHOD, PHOTOVOLTAIC CELL COMPRISING SUCH A GLASS, AND METHOD OF MANUFACTURING SUCH A CELL
BE1001108A4 (en) * 1986-04-08 1989-07-18 Glaverbel Matt glass, method of manufacturing glass mate, photovoltaic cell including such glass and method for making such a cell.

Similar Documents

Publication Publication Date Title
CN110993700A (en) Heterojunction solar cell and preparation process thereof
CN109638103A (en) Monocrystalline silicon heterojunction solar cell two sides differentiation suede structure and preparation method
CN112542531A (en) Silicon wafer pretreatment and heterojunction battery preparation method
US4931412A (en) Method of producing a thin film solar cell having a n-i-p structure
WO2024174454A1 (en) Monocrystalline textured silicon wafer with polished edge, and solar cell and preparation method
WO2020156239A1 (en) Photodiode and preparation method therefor, and electronic device
JPS5914682A (en) Amorphous silicon solar battery
CN105489709B (en) PERC solar cells and preparation method thereof
CN113140640B (en) Efficient back reflection crystalline silicon heterojunction solar cell and preparation method thereof
Ishihara et al. High efficiency thin film silicon solar cells prepared by zone‐melting recrystallization
CN110571289A (en) InP-graphene solar cell and preparation method thereof
Pratiwi et al. Fabrication of porous silicon using photolithography and reactive ion etching (RIE)
Murali et al. Brush plated CdSe films and their photoelectrochemical characteristics
CN102969390A (en) Windowing process of solar crystalline silicon battery
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
Chen et al. Improvement of conversion efficiency of multi-crystalline silicon solar cells using reactive ion etching with surface pre-etching
JPS5982777A (en) Amorphous thin film solar battery
CN105938793A (en) Cleaning technology for back plating wafers
JPH05267701A (en) Transparent, conductive tin oxide film pattering method
CN210429835U (en) InP-graphene solar cell
JPH0766437A (en) Manufacture of substrate for photoelectric transducer
CN102709378A (en) Preparation method of selective emitting electrode crystalline silicon solar battery
CN109560202B (en) Perovskite battery with nano structure at anode grating protrusion and preparation method thereof
US6103546A (en) Method to improve the short circuit current of the porous silicon photodetector
JP2001217435A (en) Thin film solar cell and its manufacturing method