JPS598276A - Battery - Google Patents

Battery

Info

Publication number
JPS598276A
JPS598276A JP11623882A JP11623882A JPS598276A JP S598276 A JPS598276 A JP S598276A JP 11623882 A JP11623882 A JP 11623882A JP 11623882 A JP11623882 A JP 11623882A JP S598276 A JPS598276 A JP S598276A
Authority
JP
Japan
Prior art keywords
negative electrode
discharge capacity
battery
effective
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11623882A
Other languages
Japanese (ja)
Inventor
Kohei Yamamoto
浩平 山本
Yoshiro Harada
吉郎 原田
Yasuhiro Ishiguro
康裕 石黒
Masanori Nakanishi
正典 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11623882A priority Critical patent/JPS598276A/en
Publication of JPS598276A publication Critical patent/JPS598276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To increase the period maintaining a constant discharge current by increasing by 120-160% theoretical dischrge capacity of a negative electrode spreading in both directions to enlarge its surface area against effective theoretical discharge capacity of a positive electrode in a battery using a light metal such as lithium as a negative electrode. CONSTITUTION:When MnO2, CuO, or FeS2 is used in a positive electrode 18, effective theoretical discharge capacity is calculated based on theoretical discharge capacity in the dischrge reaction which Mn<4+> is discharged to Mn<3+>, Cu<2+> to Cu, or Fe<4+> to Fe. Increase of theoretical discharge capacity of a negative electrode 22 results in increase of utilization of a positive electrode 18 and prevention of decrease of effective reaction area of the negative electrode 22. Decrease of effective reaction area is substantially prevented when theoretical discharge capacity of the negative electrode 22 is increased by 120% or more against effective discharge capacity of the positive electrode 18. Even if theoretical discharge capacity of the negative electrode 22 is increased by 160% or more against effective discharge capacity, decrease of effective reaction area is prevented, but increase of more than 160% is not profitable.

Description

【発明の詳細な説明】 この発明は電池、特にリチウム等の軽金属を非水電解液
とともに用いたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to batteries, particularly those using a light metal such as lithium together with a non-aqueous electrolyte.

この種の電池は、その負極にリチウム、カリウム、ブー
トリウム、カルシウム、マグネシウムあるいはアルミニ
ラ11等の軽金属を用いることにより高い理論的エネル
ギー密度が得られ、従って特に小型で敢雷容量の大きな
電池を構成づるのに適している。この秤の電池は、リチ
ウム等の軽金属を用いることから軽金属電池、あるいは
非水1りの電FI’l’液を用いることからノ]水電解
液電池−9と呼ばれCいる。第1図はぞの非水電解液電
池の一例を承り。fi′I1図に承り電池は、偏゛1!
なホタン型に形成された重油り−ス16内に光電東累3
0が密封状態で収納されCいる。電池クース16は、止
棒ff1lO,′C′41本喘子12および封口ガスク
ツ1〜14からなる。また、発電要素30は、二酸化マ
ンガン等の金属酸化物を主剤とづる正極18.非水電解
液が含浸されるセパレータ20および金属リチウ1、か
ら4する負極22からなる。負極22は、図示例では1
1′I!解を容易にするために誇張して厚く示しである
が、実際には面り向1薄く展開されてそのモの表面積を
拡大され、これにJ、り高電流密度を管られるようにし
ている。。
This type of battery has a high theoretical energy density by using a light metal such as lithium, potassium, botrium, calcium, magnesium, or aluminium-11 for the negative electrode, and therefore can be constructed as a particularly small battery with a high lightning capacity. suitable for. The battery of this scale is called a light metal battery because it uses a light metal such as lithium, or an aqueous electrolyte battery because it uses a non-aqueous electrolyte solution. Figure 1: An example of a non-aqueous electrolyte battery. According to the fi'I1 diagram, the battery is ゛1!
The photoelectric power station 3 is placed inside the heavy oil reservoir 16, which is formed in the shape of a hotan.
0 is stored in a sealed state. The battery cooler 16 consists of a stopper rod ff1lO, 'C' 41 pieces 12 and sealing gas shoes 1-14. Further, the power generation element 30 includes a positive electrode 18. whose main ingredient is a metal oxide such as manganese dioxide. It consists of a separator 20 impregnated with a non-aqueous electrolyte and a negative electrode 22 made of metal lithium. In the illustrated example, the negative electrode 22 is 1
1'I! Although it is exaggerated and shown thick to make it easier to solve, it is actually expanded to be thinner in the plane direction, expanding the surface area of the plane, and making it possible to conduct a higher current density. . .

また、第2図に1ユ円筒型の非水電解液電池の一例を示
−す。同図に承り電池は、円筒状に形成された電池ケー
ス16内に渦巻状に巻回された構造を(Jづる発電要素
30が密封状態で収納されている。i[捧18、レバレ
ータ20および負極22はぞれぞれ帯状に形成され、か
つnいにfIi層された状態Cもつ(巻1111され、
J1水電解液24を入れた電池ダース1G内に密封状態
で収納されている。この場合、正極18および負4II
22はそれぞれ正極り一1〜線26および負極リードF
A28を介して負極ff112△および正極端子10△
に電気的に接続され−(いる。また、発′t1[、、要
素30ど負極化12△の底面との間には絶縁板32が介
在さけられている。負極22はシート状に博く展開され
、またパンヂドメタル(穿孔金属板)等からなる芯体を
兼ねる負極集電部材34によっC支持・保形されている
。また、正極18t)同゛様にパンヂドメタル等から4
fる芯体を兼ねる正極集電部材35によって支持・保形
されている。
Further, FIG. 2 shows an example of a 1U cylindrical non-aqueous electrolyte battery. As shown in the figure, the battery has a spirally wound structure in a cylindrical battery case 16 (a power generation element 30 is housed in a sealed state). The negative electrodes 22 are each formed into a band shape and have a state C in which they are layered with fIi (volume 1111,
It is stored in a sealed state in a battery dozen 1G containing a J1 water electrolyte 24. In this case, positive electrode 18 and negative electrode 4II
22 are positive electrode leads 1 to 26 and negative electrode leads F, respectively.
Negative terminal ff112△ and positive terminal 10△ via A28
In addition, an insulating plate 32 is interposed between the source t1[,, element 30, and the bottom surface of the negative electrode 12Δ. The positive electrode 18t) is expanded and is supported and shaped by a negative electrode current collecting member 34 which also serves as a core made of punched metal (perforated metal plate) or the like.
It is supported and shaped by a positive electrode current collecting member 35 which also serves as a core body.

以上のように、この種の電池では、その負極22をなる
べく薄くして表面積を大きくづることによりに!+電流
密度を1!7るようにしでいる。そしく、このように負
極22を薄く展開して表面積を拡大せしめることにJ、
す、その理論的−[ネルギー密磨の高さを有効に生かし
て小型で高放電性能の電池を初めて得る口とがひきるの
ぐある。ところで、従来のこの種の電池に83L)る負
極の理論放電容量は、1に殉の実効理論放電音tf4に
り・1して約lO〜110%であ」だ。仮に、正極18
どC1極22を理想的に反応さl!ることができれLf
、ぞの負極22の理論放電音10は止[i18の実効理
論放電音tl′1に対して 100%−(’あればよい
。しかし、このようなことは現実にはあり1i7ず、そ
こで従来においては正極と負極のイれぞ゛れの理論容量
を石干異ならせる試みが行なわれてきた。その試みとは
、負極22の理論h51宙容tβを1−II 14i 
18の実効理論放電容量まりも20%程度少くすること
である。これにより、負極22の利用率が高まるととb
に、負極22の方が先に消費されつくしくしようことに
より放電終期が明瞭になるということである。しかしな
がら、不発明畜らが知得しkどころによるど。この種の
電池にお(]る0極は、放電の進行にともなう消耗かか
ならヂしも均一に進(jせず、このため放電の終期が明
瞭にあられれるような放電特性を1することは、現実に
はかなりtn t、いことであることが判明した。とい
うのは、この秒の電池にお4Jる負極22、は萌述し/
j 、J、うに、Cさるだけ高い電流密度を1qるため
になるべく薄く展開してその表面積を拡大づるようにし
な【)れば<jらず、このように薄く展開された負極2
2をセパレータ20を介して正極18に面対面さUるこ
とにより発電要素30を構成した場合は、第3図に承り
ように、その負極22の消耗がcノつして一様には行な
われす゛、放電の進行どどもに部分的に欠陥が生じ、さ
らに放電の進行が進むとその欠陥が拡大するような形で
消耗されていくことが確認された。
As mentioned above, in this type of battery, by making the negative electrode 22 as thin as possible to increase the surface area! + The current density is set to 1!7. Therefore, in expanding the surface area by expanding the negative electrode 22 thinly in this way, J.
Theoretically, there is an opportunity to make effective use of the high energy density to create a compact battery with high discharge performance for the first time. By the way, the theoretical discharge capacity of the negative electrode of a conventional battery of this type (83L) is about 10 to 110% of the effective theoretical discharge sound tf4. If the positive electrode 18
What C1 pole 22 reacts ideally! I can do it Lf
, the theoretical discharge sound 10 of the negative electrode 22 stops [100%-(' with respect to the effective theoretical discharge sound tl'1 of i18). Attempts have been made to make the theoretical capacities of the positive and negative electrodes very different.
The effective theoretical discharge capacity of No. 18 is to be reduced by about 20%. This increases the utilization rate of the negative electrode 22.
In addition, since the negative electrode 22 is consumed first, the end of discharge becomes clearer. However, it depends on the uninventive people who have learned it. The zero pole in this type of battery has a discharge characteristic that allows the wear and tear to proceed uniformly as the discharge progresses, so that the end of the discharge can be clearly seen. It turns out that this is actually quite difficult, since the negative electrode 22, which has 4J in this second battery, is
j, J, Uni, C In order to obtain as high a current density as possible by 1q, it is necessary to expand the surface area by expanding the surface area by expanding the negative electrode 2 as thinly as possible.
When the power generating element 30 is constructed by placing the negative electrode 22 face-to-face with the positive electrode 18 via the separator 20, as shown in FIG. It was confirmed that as the discharge progressed, defects were formed partially, and as the discharge progressed further, the defects were expanded and consumed.

つまり、放電の進行にともなってその厚みが全体的に均
一に減少するのではなく、放電の進行とどちにぞの有効
反応面積が減少して行くのである。
In other words, the thickness does not decrease uniformly as a whole as the discharge progresses, but each effective reaction area decreases as the discharge progresses.

このため、負I!1i、22の理論IIi電容準を1[
極18のでれよりも減らしてb、実際には、第4Mのグ
ラフ中の曲線Aに示すような放電特性しか得ることかで
゛きず、同グラフ中の曲線Bに示りJ、うな放電時t!
iをi′?ることは現実には非常に困難であった。負極
22の消耗が全面にねたっC均一に行なわれない111
由は、iE極18に対りる密着状態、負極22自体の濡
れの状態、あるいはレバレータ20の厚さなどにd3り
るバラク4−が大きな原因どなっているが、これらのバ
ラツキをすべて押えることは現実には不可01;Cある
。まZ、:、i″’44!+ 22の即論放電容lハを
1lE4118の実効理論放電容量J、りも小さくりる
ことは、イの11捧22の利用率を高めるという点では
確かに有効であるかも知れないが、しかし今1島LL 
ilE 14!18の利用率が確実に低トしてしまう。
For this reason, negative I! 1i, the theoretical IIi capacity standard of 22 is 1[
By reducing the deviation of pole 18, in reality, only the discharge characteristics shown in curve A in the graph of 4th M can be obtained. T!
i′? In reality, it was extremely difficult. The consumption of the negative electrode 22 is not uniform over the entire surface 111
The reason for this is the close contact with the iE electrode 18, the wetness of the negative electrode 22 itself, or the thickness of the lever lever 20, which is largely due to the difference in d3, but all of these variations can be suppressed. This is impossible in reality. It is certain that reducing the effective theoretical discharge capacity J of 1lE4118 from the immediate theoretical discharge capacity l of 22 to the effective theoretical discharge capacity J of 11E4118 will increase the utilization rate of 22 It may be effective for
The usage rate of ile 14!18 will definitely drop.

こ(Z c、この神の電池が持つ高1ネルギー密度は、
負極22の物質自体が持つ電気化学的な理論、1ネル″
1゛−密度の高さによるどころが多く、従って、負極2
2の理論放電容部を減らし−C゛11極18の実効理論
放電容量をふAゝ)りことは、発電要素30の容積を増
Jことにはなり−Cム、放電音ωを増すことには余り寄
りし4rい。
This (Z c, the high 1 energy density of this divine battery is
The electrochemical theory of the material of the negative electrode 22, 1Nel''
1゛- It depends a lot on the height of the density, so the negative electrode 2
Reducing the theoretical discharge capacity of 2 - C 11 and increasing the effective theoretical discharge capacity of 18 poles A) means increasing the capacity of the power generation element 30 - C and increasing the discharge sound ω. It's too close to 4r.

なげ′ならば、体積当たりの理論放電音fiは、この秤
の電池では負極の方が追かに大きいからである。
This is because the theoretical discharge sound fi per volume is even larger at the negative electrode in a battery of this scale.

他方、負i22の理論放電容量を1極の実効理論放電音
φに対して 110%程度に増りこと一6従来にJjい
(行なわれたことがある。しかしこれは、tE極18の
利用率を高めるという効果を背ることが−できるが、放
電の進行とどもに負極22が不均一反応によって有効反
応面積が減少することは防ぐことがて゛きなかった。従
って、この電池においても、ぞの放電特性は、第4図の
グラフ中の曲線へて示1ように、放電の終期が明M[に
現れず、/J51雷の中期から後期にか(〕で放電電流
が緩慢に低下するようIJ特性どなっ(いた、。
On the other hand, the theoretical discharge capacity of negative i22 is increased to about 110% with respect to the effective theoretical discharge sound φ of one pole. Although it is possible to avoid the effect of increasing the rate, it is impossible to prevent the negative electrode 22 from decreasing its effective reaction area due to non-uniform reaction as the discharge progresses. As shown in the curve in the graph of Figure 4, the discharge characteristics of the discharge current do not appear in the light M [1], and the discharge current slowly decreases in the middle to late () of /J51 lightning. What about the IJ characteristics?

この発明は、以上のような従来の問題を鑑みてなされた
もので、での[」的どりることろは、理論1ネルギ一密
度の高いリチウムのごとき軽金属を負極に用いた電池に
おいて、小型C放電容量が大きいという特質をそこなう
ことなく、ぞの負極の有効反応面積を、!電終期まで紐
持さU、これにより一定の放電電流を紺持できる期間を
従来よりも長く確保することかでさる一方、そのM電の
終期を明瞭に判別できるようにし、この結果、正極おJ
、び負極の利用率を総合的に向上さけて実際に有効に利
用できる可使用放電容量を大幅に高められるJ、うにし
た電池を提供リ−ることにある。
This invention was made in view of the above-mentioned conventional problems. The effective reaction area of the negative electrode can be increased without sacrificing the characteristic of large C discharge capacity! By holding the current until the end of the current, it is possible to secure a longer period than before for which a constant discharge current can be maintained, while at the same time making it possible to clearly distinguish the end of the current from the positive electrode. J
The object of the present invention is to provide a battery that can greatly increase the usable discharge capacity that can be actually used effectively, while comprehensively improving the utilization rate of the negative electrode and the negative electrode.

上記の目的を達成するため(こ、この発明は、リチウム
等の軽金属を面方向に薄く展開して表面積を拡大してな
る負極と、非水電解液を含むセパレータを介して一1記
負搏に面ス・1向させられたil:14とからなる光電
′1に素を右りる電池d3い−(、上記負極の理論放電
容量を上記1F極の実効理論放電容量に対し 120・
〜・160%にしたことを特徴どりる。
In order to achieve the above object (this invention), the negative electrode as described in 11. A battery d3 consisting of a photovoltaic cell d3 with an element oriented to the photoelectrode '1' which is oriented in the direction of 1F (the theoretical discharge capacity of the negative electrode is 120.
~・It is characterized by setting it to 160%.

以上、この発明の好適な実施例を図面に基づ゛い−(説
明する。なJ3、以下の説明では、前jホした従来例を
説明Mるのに参照した図面を使用し、また符月につい°
Cも同一あるいは相当する部分は同符号を用いることに
する。
As mentioned above, preferred embodiments of the present invention will be described based on the drawings. About the moon
The same reference numerals will be used for the same or corresponding parts in C.

まヂ、この弁明の実施例にJ、る電池は、第1図、13
よび第2図にそれぞれ示?J−J、うに、ぞの基本的構
成は前述した従来のものど同様である。ただ、その【1
極22の1IIj論放電容C1が1捗18の実効I(1
1論敢7【(容fi k一対し120−、160%ニ’
J −、) ’Cイる。ここで、本発明者らが知得した
ことろによると、例えば金属リチウムからなる軽金属を
面方向に薄く展開して表面積を拡大してなる負(〜22
を用いた電池におい(、その負I4122の理論放電容
fdを【[、極18の実効放電容量よりも大幅に増大さ
けること(jl 、J、す、■捧18の利用率が高xL
ることtiLb〕うろん、ぞれ以外に従来において未解
決ぐあ・)だ負極22の有効反応面積の減少が確実に防
止されることが判明()た。
The battery used in this defense example is shown in Figure 1, 13.
and are shown in Figure 2, respectively. The basic structure of JJ, Uni, and Zo is the same as the conventional one described above. However, that [1
The 1IIj theoretical discharge capacity C1 of the pole 22 is the effective I(1
1 argument 7 [(for one pair 120-, 160% ni'
J-,) 'C Iru. According to the knowledge of the present inventors, for example, a negative electrode (~22
In a battery using
In addition to this, it has been found that the decrease in the effective reaction area of the negative electrode 22, which has not been solved in the past, can be reliably prevented.

さらに、その有効反応面積の減少は、負極22の理論放
電容(iを正極18の実効理論放電容量よりちり20%
以上増人さけたところから急に現れることムN Faさ
れた。また、さらにその負極22の理論放電容量を正極
1極の実効M電容吊に対し160%以上にしても、その
付近では有効反応面積の減少を確実に防止することかで
きるものの、負極22の穴をやたらに増(だ番〕で利益
が−ないことも確認された。
Furthermore, the reduction in the effective reaction area is due to the fact that the theoretical discharge capacity of the negative electrode 22 (i is 20% smaller than the effective theoretical discharge capacity of the positive electrode 18).
It was disgusting that the number of people suddenly appeared even though the number of people was expected to increase. Further, even if the theoretical discharge capacity of the negative electrode 22 is set to 160% or more of the effective M capacitance of the positive electrode 1, it is possible to reliably prevent a decrease in the effective reaction area in the vicinity; It was also confirmed that there was no profit from increasing the amount too much.

この発明は以上のような知得に基づいてなされたしので
あるが、ここでiE極側の実効放電容量は次のようにし
て算出される。1なわち、正極18がMnot、GuQ
およびFe 32のいずれかを主剤トリル場合は、M 
114−1がMn31.CIJ2+がCU、I”84+
が「eになるときの理論放電容量に基づき算出される。
This invention has been made based on the above knowledge, and the effective discharge capacity on the iE electrode side is calculated as follows. 1, that is, the positive electrode 18 is Mnot, GuQ
If either of Fe32 or Fe32 is used as the main agent, M
114-1 is Mn31. CIJ2+ is CU, I”84+
is calculated based on the theoretical discharge capacity when it becomes "e".

イして、以上のように負極22の理論放電容量を定めた
電池では、正極18の利用率が向」−ツることにより放
電容量を向−]−さけることができるとともに、その放
電容帛がある間は」−記11(飼22のイj効反応面槓
か紺1.′JされC一定の放電電流を持続さUることが
(パさ、これにJ、すi[挿18および負極22の総合
的な利用率が向トして結果的に放電容Mが増大させられ
る。まl5、での放電特性は、第4図のグラフ中の曲線
13で小り、J、うに、放電終期が明瞭に現れるJ、う
な%4s牲どなり、これにJりその放電の終期ぎりぎり
まC電池をイ1効に利用りることがCぎるどど6に、電
池の交換時期を的確に知ることが(゛きるコ、うになる
。、1.たさらに、tl負極2は従来のものJ、リム多
く使用されるが、しかしその使用量は該負極22の理論
成型容f口が11ル18の実効放電容量に対し120へ
・16 (1%に4rる範囲であるから、このJ、うな
範囲での負極22の使用tt1は、該11極22自身が
高い−しネルギー密亀を持つことから、発電質素30の
仝休の容積に比べればほどんど無視でさるばど小さく1
ムの(ある。むしろ、放電容…を高めるために正極の叩
論放電容1遣1を0極のそれよリム多くした従来のもの
に比へると、回じ/1り電容吊を1qるのに従来よりb
小さな発電要素の容積で良い。
Therefore, in a battery in which the theoretical discharge capacity of the negative electrode 22 is determined as described above, the utilization rate of the positive electrode 18 can be improved by increasing the discharge capacity. 11 (The effect of the reaction surface of 22 is 1.'J and the constant discharge current is maintained.) The overall utilization rate of the negative electrode 22 is increased, and the discharge capacity M is increased as a result. , the end of discharge clearly appears, and the end of discharge is just at the very end of the cycle.The best way to use the battery is to accurately determine when to replace the battery. 1. Furthermore, the conventional negative electrode 2 is often used, but the amount used is such that the theoretical molding volume of the negative electrode 22 is 11 ru. Since the effective discharge capacity of 18 is in the range of 4r to 120/16 (1%), the use of the negative electrode 22 in this J range is such that the 11 electrode 22 itself has a high energy density. Therefore, compared to the idle volume of the power generating element 30, it is almost negligible and is very small.
In fact, in order to increase the discharge capacity, the positive electrode's discharge capacity is 1 liter more than that of the 0 pole. b than before
The volume of the power generating element is small.

以りのJ、うにこの発明による電池は、リチウム等の理
論上ネルギー密j印の高い負極を用いた電池の特質を1
0うことなく、その負極の有効反応面積を放電の終期ま
で維持覆ることができ、これにより負極a3よび正極の
総合的な利用率が向上して放電性能をJl’lすことが
出来さらに放電終期の状態t〕明瞭になって電池を最後
まで効率良く利用することができる。
The battery according to this invention has one of the characteristics of a battery using a negative electrode such as lithium, which has a theoretically high energy density J mark.
It is possible to maintain the effective reaction area of the negative electrode until the final stage of discharge without causing any loss, thereby improving the overall utilization rate of the negative electrode and positive electrode, improving the discharge performance, and further discharging. Final state t] becomes clear and the battery can be used efficiently to the end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれこの発明にかかる電池の
構成例を示す断面図。第3図は従来の電池におIJる負
極の有効反応面積の減少の状態を承り図、第4図はこの
発明による電池と従来の電池の放電特性曲線を比較して
示1グラフである。 10・・・ ・・・ ・・・ i]i  #旬 缶10
Δ・・・・・・正極端子 12・・・・・・・・・負極端子 12△・・・・・・0極缶 14・・・・・・・・・110刀スケツ1へ1に・・・
・・・・・・電池グーノ 18・・・・・・・・・1「極 20・・・・・・・・・レバレータ 22・・・・・・・・・f1極 24・・・・・・・・・非水型Wf 8’j。 30・・・・・・・・・発電肚累 精工′1出願人       富士電気化学株式会社代
 埋 人      弁即士 〜 色 叶 軸筒1図 第2図 第3図 第4図 吟間−
FIG. 1 and FIG. 2 are sectional views each showing an example of the configuration of a battery according to the present invention. FIG. 3 is a graph showing the reduction in the effective reaction area of the negative electrode of the IJ in a conventional battery, and FIG. 4 is a graph comparing the discharge characteristic curves of the battery according to the present invention and the conventional battery. 10... ・・・ ・・・ i]i #season can 10
Δ...Positive terminal 12...Negative terminal 12△...0 pole can 14...110 To sword 1 to 1.・・・
...Battery Guno 18...1 "Pole 20...Leverator 22...F1 pole 24... ...Non-aqueous type Wf 8'j. 30......Generation Susume Seiko'1 Applicant Fuji Electrochemical Co., Ltd. Representative Bentoshi ~ Color Kano Shaft cylinder 1 Figure 2 Figure 3 Figure 4 Ginma-

Claims (1)

【特許請求の範囲】[Claims] リチウム等の軽金属を面り向に薄く展開して表面積を拡
大してなる負極と、非水電解液を含むセパレータを介し
て上記負極に面対向さけられた正極とからなる発電要素
を有づる電池において、上記負極の理論放電容量を上記
正極の実効理論放電容量に対し 120〜160%にし
たことを特徴とした電池。
A battery having a power generation element consisting of a negative electrode formed by spreading a light metal such as lithium thinly in a planar direction to increase its surface area, and a positive electrode facing the negative electrode through a separator containing a non-aqueous electrolyte. A battery characterized in that the theoretical discharge capacity of the negative electrode is 120 to 160% of the effective theoretical discharge capacity of the positive electrode.
JP11623882A 1982-07-06 1982-07-06 Battery Pending JPS598276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11623882A JPS598276A (en) 1982-07-06 1982-07-06 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11623882A JPS598276A (en) 1982-07-06 1982-07-06 Battery

Publications (1)

Publication Number Publication Date
JPS598276A true JPS598276A (en) 1984-01-17

Family

ID=14682222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11623882A Pending JPS598276A (en) 1982-07-06 1982-07-06 Battery

Country Status (1)

Country Link
JP (1) JPS598276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356736A (en) * 1989-03-31 1994-10-18 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
CN100352086C (en) * 2005-12-14 2007-11-28 山东海特电池科技有限公司 Lithium-ferrous disulfide disposable button cell and its preparing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876767A (en) * 1971-12-01 1973-10-16
JPS5581467A (en) * 1978-11-24 1980-06-19 Mallory & Co Inc P R Chemical battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876767A (en) * 1971-12-01 1973-10-16
JPS5581467A (en) * 1978-11-24 1980-06-19 Mallory & Co Inc P R Chemical battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356736A (en) * 1989-03-31 1994-10-18 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
CN100352086C (en) * 2005-12-14 2007-11-28 山东海特电池科技有限公司 Lithium-ferrous disulfide disposable button cell and its preparing method

Similar Documents

Publication Publication Date Title
TW511305B (en) Coin-shaped battery
JPS5873968A (en) Electrode unit, battery cell and method of improving inversion thereof
US6180285B1 (en) Exposed conductive core battery
JPS598276A (en) Battery
JP2001143708A5 (en)
JPS60198055A (en) Manufacture of plate for lead storage battery
US3261715A (en) Negative electrode assembly for alkaline batteries
US4048408A (en) Zinc electrode for alkaline reserve batteries
JPH0770315B2 (en) Non-aqueous electrolyte battery
JPS58115775A (en) Lead-acid battery
JP2000340237A (en) Alkaline battery
JPS6089075A (en) Nonaqueous electrolyte secondary battery
JPS5990360A (en) Solid secondary battery
JPS6065479A (en) Lithium secondary battery
JPS6220258A (en) Sealed nickel-cadmium storage battery
JPS61264663A (en) Silver oxide battery
JPH04284369A (en) Nickel-metal hydride storage battery
JPS5933754A (en) Lead-acid battery
JPH07335227A (en) Alkaline battery
US1462795A (en) Electric battery
JPS59194348A (en) Electrolyte-holding member for nonaqueous solution battery
JPH02121259A (en) Lead storage battery
JPS58212056A (en) Separator for enclosed lead battery
JPS58157064A (en) Battery
JPH02276157A (en) Nonaqueous electrolyte battery