JPS598028B2 - Battery separator and its manufacturing method - Google Patents

Battery separator and its manufacturing method

Info

Publication number
JPS598028B2
JPS598028B2 JP6520277A JP6520277A JPS598028B2 JP S598028 B2 JPS598028 B2 JP S598028B2 JP 6520277 A JP6520277 A JP 6520277A JP 6520277 A JP6520277 A JP 6520277A JP S598028 B2 JPS598028 B2 JP S598028B2
Authority
JP
Japan
Prior art keywords
film
battery separator
synthetic resin
monomer
separator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6520277A
Other languages
Japanese (ja)
Other versions
JPS53149634A (en
Inventor
紫朗 丹宗
和雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP6520277A priority Critical patent/JPS598028B2/en
Publication of JPS53149634A publication Critical patent/JPS53149634A/en
Publication of JPS598028B2 publication Critical patent/JPS598028B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Separators (AREA)

Description

【発明の詳細な説明】 本発明は電池用セパレータ、特にアルカリ水溶フ液を電
解液とする電池用セパレータ並にその製造法に関するも
ので、幹ポリマーとなる合成樹脂フィルムに厚さ方向で
グラフト率が異なるように親水基を有するモノマーをグ
ラフト共重合することを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery separator, particularly a battery separator using an alkaline aqueous solution as an electrolyte, and a method for producing the same. It is characterized by graft copolymerization of monomers having hydrophilic groups such that they have different hydrophilic groups.

5 アルカリ水溶液を電解液とする電池、特に酸化銀又
は過酸化銀を陽極とし、亜鉛又はカドミウムを陰極とす
る、いわゆる酸化銀電池において、陽極活物質である酸
化銀はアルカリ水溶液に僅かではあるが溶解する。
5. In batteries that use an alkaline aqueous solution as the electrolyte, especially in so-called silver oxide batteries that use silver oxide or silver peroxide as the anode and zinc or cadmium as the cathode, silver oxide, which is the anode active material, is present in the alkaline aqueous solution, albeit in a small amount. dissolve.

その溶解度は40%水酸化力0 リウム水溶液中に約4
×IOJNであわ錫酸イオンは電解液中の濃度勾配で陰
極の方へ拡散し遂。には陰極へ到達する。陰極で錫酸イ
オンは還元され自己放電を行い、更に析出した銀が陽極
との間にブリッジを形成し短絡する。これを防止するた
ゞ5めに極めて微細な孔を有する半透膜を用いて錫酸イ
オンの陰極への移動を阻止していた。半透膜としては従
来より再生セルロース膜が用いられていたが、再生セル
ロース膜は陽極及び銀酸イオンの酸化によ)著しく劣化
し、セパレータとしての機能を十分にはたすことができ
なかつた。これを改良するために近年耐薬品性を有する
合成樹脂フイルム、例えばポリエチレンフイルム等に親
水基を有するモノマーをグラフト共重合させたグラフト
共重合体膜が提案された。これによつてセパレータの酸
化劣化は改良されるが、このグラフト共重合体膜は電気
抵抗が高く電池用セパレータとしては不適当であり、従
つて電気抵抗を下げるためそのグラフト率を高くするこ
とが必要であつた。グラフト率を高くすることは膜の緻
密さが損なわれ、空隙率が増加する。このため銀酸イオ
ンの移動を阻止するという機能が低下し自己放電が大き
くなる。グラフト率を低下せしめて膜を緻密にすること
は有効であるが、そのために電気抵抗が増加する欠点が
ある。本発明は上記従来の欠点を除去するもので、グラ
フト共重合体膜に訃いて他の部分よ)グラフト率の低い
表面層を有することを特徴とする。
Its solubility is about 40% in an aqueous solution with 0 hydroxide power.
×IOJN's stannate ions finally diffuse toward the cathode due to the concentration gradient in the electrolyte. reaches the cathode. At the cathode, stannate ions are reduced and self-discharge occurs, and the deposited silver forms a bridge with the anode, causing a short circuit. In order to prevent this, a semipermeable membrane having extremely fine pores was used to prevent the movement of stannate ions to the cathode. Regenerated cellulose membranes have conventionally been used as semipermeable membranes, but the regenerated cellulose membranes have deteriorated significantly (due to oxidation of the anode and silvery acid ions) and have been unable to function satisfactorily as separators. In order to improve this problem, a graft copolymer film has recently been proposed in which a monomer having a hydrophilic group is graft-copolymerized onto a synthetic resin film having chemical resistance, such as a polyethylene film. Although this improves the oxidative deterioration of the separator, this graft copolymer film has a high electrical resistance and is unsuitable for use as a battery separator.Therefore, it is necessary to increase the grafting ratio in order to lower the electrical resistance. It was necessary. Increasing the grafting ratio impairs the density of the membrane and increases the porosity. As a result, the function of inhibiting the movement of silver acid ions deteriorates, and self-discharge increases. Although it is effective to make the film denser by lowering the grafting ratio, it has the disadvantage of increasing electrical resistance. The present invention eliminates the above-mentioned conventional drawbacks, and is characterized in that the graft copolymer membrane has a surface layer with a low grafting rate (compared to other parts).

即ちニグラフト率の低い薄い層を一部に設けることによ
りグラフト率の低下による電気抵抗の増加を防止すると
ともにこの緻密な層による銀酸イオンの移動を抑制する
ものである。本発明の一実施例製造法は、幹ポリマーと
なる 二合成樹脂フイルムに電子線を照射し、後フイル
ムの片面を失活させた後、親水基を有するモノマー例え
ばアクリル酸、メタアクリル酸、スチレンスルホン酸と
、前記合成樹脂を膨潤させる有機溶媒、例えばジオキサ
ン、二塩化エチレン、キシレン、 5四塩化炭素、ベン
ゼンとからなる溶液中に浸漬するなどして接触させてグ
ラフト化を行う。
That is, by providing a thin layer with a low graft ratio in a part, an increase in electrical resistance due to a decrease in the graft ratio is prevented, and movement of silver acid ions by this dense layer is suppressed. One embodiment of the production method of the present invention involves irradiating two synthetic resin films that will become the backbone polymer with an electron beam, deactivating one side of the film, and then using a monomer having a hydrophilic group such as acrylic acid, methacrylic acid, styrene, etc. Grafting is carried out by contacting the synthetic resin by immersion in a solution consisting of sulfonic acid and an organic solvent that swells the synthetic resin, such as dioxane, ethylene dichloride, xylene, carbon tetrachloride, or benzene.

この方法は照射工程とグラフト化工程とを分離している
ので、フイルムに電子線を照射することによう生成した
ラジカルのうち、片側の表面層のラジカル 5をグラフ
ト化前に予じめ失活させることができ、それによシモノ
マ一溶液と接触させる際片面での重合反応を抑制するこ
とができる。即ち緻密な表面層を均一に形成することが
でき、セパレータとして十分な性能を具えている。
ダ以下図及び実施例にて詳細に説明す
る。第1図は本発明による電池用セパレータの断面に於
けるグラフト率の分布状態を示す。
This method separates the irradiation process and the grafting process, so of the radicals generated by irradiating the film with an electron beam, the radicals 5 on the surface layer on one side are deactivated in advance before grafting. This makes it possible to suppress the polymerization reaction on one side during contact with the monomer solution. That is, a dense and uniform surface layer can be formed and has sufficient performance as a separator.
This will be explained in detail in the following figures and examples. FIG. 1 shows the distribution of the graft ratio in the cross section of the battery separator according to the present invention.

第2図は本発明によらない一般のグラフト共重合による
膜の断面に於けるグラフト率の分布状態を示す。横軸は
膜の厚さ、縦軸はグラフト率を示す。一般のグラフト共
重合による膜は、膜,内部へのモノマーの拡散が不十分
であり、膜中心部では相当に厚く緻密層(グラフト率低
い)を形成するため電気抵抗が極めて高くな)セパレー
タとしては使用できない〜 第1図に示した本発明によるセパレータは片面のラジカ
ルを失活させているので、他部のグラフト化を十分に行
うことができ、片面に緻密な薄い表面層を有し、他面は
グラフト率の大きい、即ち空隙率の大きい層が内深部ま
で比較的均一に形成されている。
FIG. 2 shows the distribution of the graft ratio in the cross section of a membrane obtained by general graft copolymerization not according to the present invention. The horizontal axis shows the membrane thickness, and the vertical axis shows the grafting rate. Membranes produced by general graft copolymerization have insufficient diffusion of monomer into the membrane and form a fairly thick and dense layer (low grafting rate) in the center of the membrane, resulting in extremely high electrical resistance). Since the separator according to the present invention shown in FIG. 1 has deactivated radicals on one side, grafting can be carried out sufficiently on the other side, and it has a dense thin surface layer on one side. On the other side, a layer with a high graft ratio, that is, a high porosity, is formed relatively uniformly deep inside.

これに対し第2図の膜はフイルムの両面に空隙率の大き
い層が存任する。
On the other hand, in the film shown in FIG. 2, layers with high porosity exist on both sides of the film.

内深部はモノマーの内部への拡散が不十分であるためグ
ラフト率が低下している。実施例 1 メルトインデツクス20密度0.922高圧法ポリエチ
レン(旭タウ(株)製F−2135)をインフレーシヨ
ン法により厚さ25μのフイルムに成型する。
In the deep part, the monomer does not diffuse sufficiently into the interior, so the grafting rate decreases. Example 1 Melt index 20 density 0.922 high pressure polyethylene (F-2135 manufactured by Asahi Tau Co., Ltd.) was molded into a 25 μm thick film by the inflation method.

このフイルムに加速電圧1.7MeV電流50μAで電
子線を7Mrad照射した後、この照射フイルムの片面
にポリプロピレンフイルムを下記モノマー溶媒に不溶性
で水溶解性を有するポリエチレンイミンにて貼合わせる
。このフイルムをアクリル酸50部キシレン10部二塩
化エチレン30部モール塩0.25部よシなるモノマー
溶液中に温度20゜CN2雰囲気中で1時間浸漬する。
その後水中に浸漬しポリプロビレンフイルムを剥離した
後乾燥する。得られたセパレータ厚さは29μであシ、
平均グラフト率は72%であつた。その断面のグラフト
率の分布状態を干渉顕微鏡にて観察した結果グラフト率
の最大値は75%、最小値は20%、20%〜71%の
層の厚さは2μであシ、71〜75%の厚さは27μで
あつた。電気抵抗は40%水酸化カリウム水溶液中で1
35mΩ・iであつた。試みに本実施例と同一の平均・
グラフト率を有し且つ膜全体がこのグラフト率を有する
グラフト共重合体膜の電気抵抗は115mΩ,dであつ
た。本実施例の最小のグラフト率20%が膜全体に分布
しているグラフト共重合体膜の電気抵抗は1.2Ω.・
dと高いものである。尚本発明に}けるセパレータのグ
ラフト率は次式によつて計算されたものである。実施例
2 メルトインデツクス2.0密度0.923の高圧法ポリ
エチレン(住友化学(株)製スミカセンF−2041)
をTグイ押し出し法により厚さ20μのフイルムを作成
した。
After this film is irradiated with an electron beam of 7 Mrad at an accelerating voltage of 1.7 MeV and a current of 50 μA, a polypropylene film is laminated on one side of the irradiated film using polyethyleneimine, which is insoluble in the following monomer solvent and soluble in water. This film is immersed in a monomer solution consisting of 50 parts of acrylic acid, 10 parts of xylene, 30 parts of ethylene dichloride, and 0.25 parts of Mohr's salt at a temperature of 20 DEG C. for one hour in a CN2 atmosphere.
Thereafter, it is immersed in water, the polypropylene film is peeled off, and then dried. The obtained separator thickness was 29μ,
The average grafting rate was 72%. As a result of observing the distribution state of the grafting rate in the cross section using an interference microscope, the maximum value of the grafting rate was 75%, the minimum value was 20%, and the thickness of the layer between 20% and 71% was 2μ, and 71 to 75%. % thickness was 27μ. The electrical resistance is 1 in a 40% potassium hydroxide aqueous solution.
It was 35 mΩ・i. The same average and
The electrical resistance of the graft copolymer membrane having a grafting rate and the entire membrane having this grafting rate was 115 mΩ,d. The electrical resistance of the graft copolymer film in which the minimum grafting rate of 20% in this example is distributed throughout the film is 1.2Ω.・
It is as high as d. Incidentally, the grafting ratio of the separator according to the present invention was calculated by the following formula. Example 2 High-pressure polyethylene with a melt index of 2.0 and a density of 0.923 (Sumikasen F-2041 manufactured by Sumitomo Chemical Co., Ltd.)
A film with a thickness of 20 μm was prepared using the T-guid extrusion method.

このフイルムを実施例1と同様にして電子線照射を行つ
た。この照射フイルムの片面を温度9『ClO秒間加熱
した後、実施例1と同様にモノマー溶液に浸漬した。得
られたセパレータは平均グラフト率75%であり、グラ
フト率最大値78(fl)最小値18チであつた。グラ
フト率の低い緻密層の厚さは2μであつた。本実施例に
於て片面からの加熱により加熱された部分のラジカルが
失活し、その表面層のグラフト率を低下させることがで
きる。実施例 3 四弗化エチレン−エチレン共重合体(旭硝子(株)製ア
フロン)からなる厚゛さ25μのフイルムに加速電圧1
.5MeV電流15μAにて電子線をN2雰囲気中で1
0Mra?射した。
This film was subjected to electron beam irradiation in the same manner as in Example 1. One side of this irradiated film was heated to a temperature of 9 ClO for seconds, and then immersed in a monomer solution in the same manner as in Example 1. The obtained separator had an average grafting rate of 75%, with a maximum grafting rate of 78 (fl) and a minimum grafting rate of 18 fl. The thickness of the dense layer with a low grafting rate was 2 μm. In this example, by heating from one side, radicals in the heated portion are deactivated, and the grafting ratio of the surface layer can be reduced. Example 3 An accelerating voltage of 1 was applied to a 25μ thick film made of tetrafluoroethylene-ethylene copolymer (Aflon, manufactured by Asahi Glass Co., Ltd.).
.. Electron beam was applied at 5MeV current 15μA in N2 atmosphere for 1
0 Mra? I shot it.

このフイルムの片面に実施例1と同様にポリプロピレン
フイルムを貼う合せ、メタアクリル酸40%二塩化エチ
レン20部アセトン5部キシレン26部モール塩0.2
5部からなるモノマー溶液中に温度40℃で1時間浸漬
する。反応終了後、実施例1と同様ポリプロピレンフイ
ルムを剥離させる。得られたセパレータは平均グラフト
率55%最大グラフト率65%最小グラフト率15%、
片面のグラフト率の低い緻密層の厚さは1.5μであつ
た。尚電気抵抗は220mΩ・dであつた。比較例 実施例1及び実施例2に示した本発明のセパレータと、
電池用セパレータとするために特に実施例1のグラフト
率と同じグラフト率で膜全体に均一にグラフト化した比
較用セパレータを用いてJISGS−12タイプの酸化
銀電池(Ag2O/Zn)を夫々100ケづつ組立てた
A polypropylene film was pasted on one side of this film in the same manner as in Example 1. Methacrylic acid 40% Ethylene dichloride 20 parts Acetone 5 parts Xylene 26 parts Mohr's salt 0.2
Immerse for 1 hour at a temperature of 40° C. in a monomer solution consisting of 5 parts. After the reaction is completed, the polypropylene film is peeled off in the same manner as in Example 1. The obtained separator had an average grafting rate of 55%, a maximum grafting rate of 65%, a minimum grafting rate of 15%,
The thickness of the dense layer with a low grafting rate on one side was 1.5 μm. The electrical resistance was 220 mΩ·d. Comparative Example The separator of the present invention shown in Example 1 and Example 2,
In order to make a battery separator, 100 JISGS-12 type silver oxide batteries (Ag2O/Zn) were each made using comparative separators that were uniformly grafted over the entire membrane with the same grafting rate as in Example 1. Assembled one by one.

この電池の保存特性試験の結果は表−1に示す。表−1
から見られる如く、本発明実施例はセパレータの保存性
能に著るしく優れている。
The results of the storage characteristics test for this battery are shown in Table 1. Table-1
As can be seen, the examples of the present invention are significantly superior in the storage performance of the separator.

試験電池を解体しセパレータを顕微鏡観察したところ、
実施例セパレータはグラフト率の低い薄い緻密表面層に
よつて銀酸イオンの拡散移動を阻止しており、また緻密
層は極めて薄いので電気抵抗の増加は少ない。比較用セ
パレータの3ケ月保存後のものは銀酸イオンが陰極に到
達して}り、自己放電が生じていることが見出された。
本発明に}いて、グラフト率の低い緻密層の厚さに電気
抵抗は比例するから、薄いことが必要であり、その厚さ
は10μ以下、好ましくは5μ以下がよい。
When the test battery was disassembled and the separator was observed under a microscope,
In the example separator, a thin dense surface layer with a low graft ratio prevents the diffusion and movement of silver acid ions, and since the dense layer is extremely thin, there is little increase in electrical resistance. It was found that in the comparison separator that had been stored for three months, silver acid ions reached the cathode, causing self-discharge.
In the present invention, the electrical resistance is proportional to the thickness of the dense layer with a low grafting rate, so it needs to be thin, and the thickness is preferably 10 μm or less, preferably 5 μm or less.

膜のグラフト率は平均グラフト率としては50〜100
%が好ましく、この際緻密な層のグラフト率は30%以
下好ましくは10〜25%が良い。グラフト率の高い層
は55〜110%範囲のグラフト率が好ましい。尚グラ
フト率が110f1)以上になると膜がゲル状を呈し始
め取)扱いが困難である。本発明の製造法に?いて、電
子線を予じめフイルムに照射し、その後重合させる方法
は、重合反応時の浴中のモノマーがホモポリマーを形成
することがなく、浴中溶液の性状が変わらずフイルム中
へのモノマーの拡散が均一に行われることにより均一な
グラフト化を得ることができる。
The average grafting rate of the membrane is 50 to 100.
%, and in this case, the grafting ratio of the dense layer is preferably 30% or less, preferably 10 to 25%. The layer with a high grafting rate preferably has a grafting rate in the range of 55 to 110%. When the grafting ratio exceeds 110 f1), the membrane begins to take on a gel-like appearance and is difficult to handle. To the manufacturing method of the present invention? The method of pre-irradiating the film with an electron beam and then polymerizing it prevents the monomers in the bath during the polymerization reaction from forming a homopolymer, and the properties of the solution in the bath remain unchanged. Uniform grafting can be obtained by uniformly diffusing the particles.

また本製造法は照射工程とグラフト工程とに分離し、そ
の間に緻密な層を形成するための前処理、例えば照射に
より生成したラジカルを加熱する方法、ラジカル面を他
のフイルムで被覆する方法(即ち前者はラジカルの活性
の調節、後者は重合反応の制御)などにより片面のラジ
カルを失活させてグラフト率を低く施している。モノマ
ーの溶媒としては合成樹脂フイルムを膨潤させる有機溶
媒が好ましく、モノマーをフイルム中へ均一に拡散する
のに有効であり、有機溶媒と水との混合物でもよい。
In addition, this manufacturing method is separated into an irradiation step and a grafting step, and in between, there are pretreatments to form a dense layer, such as a method of heating the radicals generated by irradiation, and a method of covering the radical surface with another film ( That is, in the former case, the radical activity is controlled, and in the latter case, the radicals on one side are deactivated by controlling the polymerization reaction, and the grafting ratio is made low. The solvent for the monomer is preferably an organic solvent that swells the synthetic resin film and is effective for uniformly dispersing the monomer into the film, and may also be a mixture of an organic solvent and water.

親水基を有するモノマーはメタアクリル酸、アクリル酸
、スチレンスルホン酸等が有効であり、重合時の濃度は
10〜50%の範囲が良い。グラフト率は電子線照射量
モノマー濃度、重合時間、反応温度を適宜選択すること
により調節することができる。電子線照射量は5〜10
Mradが50%以上のグラフト率を得るのに適当であ
る。セパレータの強度を上げるためには電子線照射量を
20Mrad以上に上げ、フイルム内部を架橋すること
もできる。
As the monomer having a hydrophilic group, methacrylic acid, acrylic acid, styrene sulfonic acid, etc. are effective, and the concentration during polymerization is preferably in the range of 10 to 50%. The grafting rate can be adjusted by appropriately selecting the electron beam irradiation amount, monomer concentration, polymerization time, and reaction temperature. The electron beam irradiation amount is 5 to 10
Mrad is suitable to obtain a grafting rate of 50% or more. In order to increase the strength of the separator, the electron beam irradiation amount can be increased to 20 Mrad or more to crosslink the inside of the film.

幹ポリマ一としてはポリエチレンフイルム、ポリプロピ
レンフイルム、ポリ四弗化エチレン、四弗化エチレン−
エチレン共重合体、四弗化エチレン一六弗化プロピレン
共重合体を使用できる。以上の如く本発明による電池用
セパレータは電気特性に優れ且つ有害物質の移動阻止能
力に優れたもので工業的画値大である。
The main polymers include polyethylene film, polypropylene film, polytetrafluoroethylene, and tetrafluoroethylene.
Ethylene copolymers and tetrafluoroethylene-hexafluoropropylene copolymers can be used. As described above, the battery separator according to the present invention has excellent electrical properties and an excellent ability to inhibit the movement of harmful substances, and is of high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池用セパレータの断面のグラフ
ト率の分布状態図、第2図は本発明によらない両面同率
グラフト化セパレータの断面のグラフト率分布状態図で
ある。 1・・做密層、2・・・グラフト率の大きい層、3・・
・グラフト分布曲線。
FIG. 1 is a diagram showing the distribution of graft ratios in the cross section of a battery separator according to the present invention, and FIG. 2 is a diagram showing the distribution of graft ratios in the cross section of a separator in which both sides are grafted at the same ratio not according to the present invention. 1. Dense layer, 2. Layer with high graft ratio, 3.
- Graft distribution curve.

Claims (1)

【特許請求の範囲】 1 合成樹脂フィルムに厚さ方向でグラフト率が異なる
ように親水基を有するモノマーをグラフト重合したこと
を特徴とする電池用セパレータ。 2 セパレータの片表面層が他の表面層よりもグラフト
率が低い特許請求の範囲第1項記載の電池用セパレータ
。 3 セパレータの片面若しくは両面の表面層は内部より
グラフト率が低い特許請求の範囲第1項記載の電池用セ
パレータ。 4 合成樹脂がポリオレフィン系樹脂である特許請求の
範囲第1項記載の電池用セパレータ。 5 合成樹脂が弗素系樹脂である特許請求の範囲第1項
記載の電池用セパレータ。 6 親水基を有するモノマーがアクリル酸、メタアクリ
ル酸、スチレンスルホン酸である特許請求の範囲第1項
記載の電池用セパレータ。 7 合成樹脂フィルムに電子線を照射し、後フィルムの
片面を失活させた後、合成樹脂を膨潤し且つモノマーと
相溶性を有する有機溶剤にモノマーを含有させたモノマ
ー溶液に浸漬し、その後乾燥することを特徴とする電池
用セパレータの製造法。 8 合成樹脂フィルムに電子線を照射した後、フィルム
の片面に他のフィルムを貼付して失活させる特許請求の
範囲第7項記載の電池用セパレータの製造法。 9 合成樹脂フィルムに電子線を照射した後、フィルム
の片面を加熱して失活させる特許請求の範囲第7項記載
の電池用セパレータの製造法。
[Scope of Claims] 1. A battery separator characterized in that a monomer having a hydrophilic group is graft-polymerized onto a synthetic resin film so that the grafting ratio varies in the thickness direction. 2. The battery separator according to claim 1, in which one surface layer of the separator has a lower grafting rate than the other surface layers. 3. The battery separator according to claim 1, wherein the surface layer on one or both sides of the separator has a lower grafting rate than the inside. 4. The battery separator according to claim 1, wherein the synthetic resin is a polyolefin resin. 5. The battery separator according to claim 1, wherein the synthetic resin is a fluorine resin. 6. The battery separator according to claim 1, wherein the monomer having a hydrophilic group is acrylic acid, methacrylic acid, or styrene sulfonic acid. 7 After irradiating the synthetic resin film with an electron beam and deactivating one side of the film, the synthetic resin is swollen and immersed in a monomer solution containing the monomer in an organic solvent that is compatible with the monomer, and then dried. A method for manufacturing a battery separator characterized by: 8. The method for producing a battery separator according to claim 7, which comprises irradiating the synthetic resin film with an electron beam and then attaching another film to one side of the film to deactivate it. 9. The method for producing a battery separator according to claim 7, which comprises irradiating the synthetic resin film with an electron beam and then heating one side of the film to deactivate it.
JP6520277A 1977-06-01 1977-06-01 Battery separator and its manufacturing method Expired JPS598028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6520277A JPS598028B2 (en) 1977-06-01 1977-06-01 Battery separator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6520277A JPS598028B2 (en) 1977-06-01 1977-06-01 Battery separator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS53149634A JPS53149634A (en) 1978-12-27
JPS598028B2 true JPS598028B2 (en) 1984-02-22

Family

ID=13280084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6520277A Expired JPS598028B2 (en) 1977-06-01 1977-06-01 Battery separator and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS598028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551674U (en) * 1991-12-17 1993-07-09 義豊 宮川 catalog

Also Published As

Publication number Publication date
JPS53149634A (en) 1978-12-27

Similar Documents

Publication Publication Date Title
US4339473A (en) Gamma radiation grafting process for preparing separator membranes for electrochemical cells
JP5196241B2 (en) Cation exchange membrane and method for producing the same
JPH0582114A (en) Secondary battery
US6827986B2 (en) Grafted polymer electrolyte membrane, method of producing a grafted polymer electrolyte membrane, and fuel cell comprising the same
JPH08503574A (en) Electrochemical cell with polymer electrolyte and method for producing polymer electrolyte
JPS5924491B2 (en) Membrane for battery separator
JP4880824B2 (en) Porous film
KR20160043768A (en) Organic/inorganic composite separator, method for manufacturing the same and electrochemical device containing the same
US4376794A (en) Process for production of separators for use in cells
JP2013249510A (en) Diaphragm for alkaline water electrolysis
JP4858719B2 (en) Method for producing functional membrane and method for producing electrolyte membrane for fuel cell
JPS6118307B2 (en)
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
JPS598028B2 (en) Battery separator and its manufacturing method
JPH11121020A (en) Manufacture of ion exchange membrane usable as separator in fuel cell
JP5657977B2 (en) Porous film, electrical insulation sustaining film, separator for nonaqueous electrolyte battery, and electrochemical element
JP3521523B2 (en) Battery separator and battery using the same
JPS6229864B2 (en)
KR101763356B1 (en) Method of Preparing Polymer Film Using iCVD
JPS638582B2 (en)
JPH0371736B2 (en)
JPS6329694B2 (en)
JPH0430142B2 (en)
JP2004087380A (en) Electrolyte film for fuel cell, and its manufacturing method
JPS641907B2 (en)