KR101763356B1 - Method of Preparing Polymer Film Using iCVD - Google Patents

Method of Preparing Polymer Film Using iCVD Download PDF

Info

Publication number
KR101763356B1
KR101763356B1 KR1020160023381A KR20160023381A KR101763356B1 KR 101763356 B1 KR101763356 B1 KR 101763356B1 KR 1020160023381 A KR1020160023381 A KR 1020160023381A KR 20160023381 A KR20160023381 A KR 20160023381A KR 101763356 B1 KR101763356 B1 KR 101763356B1
Authority
KR
South Korea
Prior art keywords
icvd
electrode
sulfur
poly
initiator
Prior art date
Application number
KR1020160023381A
Other languages
Korean (ko)
Inventor
임성갑
차국현
유영민
김의태
김도흥
Original Assignee
한국과학기술원
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 서울대학교산학협력단 filed Critical 한국과학기술원
Priority to KR1020160023381A priority Critical patent/KR101763356B1/en
Application granted granted Critical
Publication of KR101763356B1 publication Critical patent/KR101763356B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

By utilizing initiated chemical vapor deposition (iCVD) reactor using an initiator, various polymer films are formed on various substrates coated with a sulfur copolymer (poly (S-r-DIB)), especially, on a sulfur copolymer electrode of a lithium-sulfur secondary battery, and the coated polymer film exhibits good adhesion to the substrate coated with the sulfur copolymer, wherein the coated polymer film exhibits an effect of preventing polysulfide anion eluted between the charging and discharging processes of the coated polymer film from escaping from an anode to an electrolyte layer when the polymer film is applied to a sulfur copolymer electrode.

Description

개시제를 사용하는 화학기상증착 반응기(iCVD)를 이용한 고분자 막의 제조방법{Method of Preparing Polymer Film Using iCVD}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for preparing a polymer membrane using a chemical vapor deposition reactor (iCVD)

본 발명은 개시제를 사용하는 화학기상증착 반응기(iCVD)를 이용한 고분자 막의 제조방법에 관한 것으로서, 더욱 상세하게는 iCVD 반응기에 황 공중합체가 코팅된 기판을 올려 놓고 고정시키고 단량체와 개시제를 iCVD 반응기에 투입하여 상기 황 공중합체가 코팅된 기판 상에서 단량체의 중합을 통해 고분자를 증착시키는 개시제를 사용하는 화학기상증착 반응기(iCVD)를 이용한 고분자 막의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a polymer membrane using a chemical vapor deposition reactor (iCVD) using an initiator, and more particularly, to a method of manufacturing a polymer membrane using an iCVD reactor in which a substrate coated with a sulfur copolymer is placed and fixed, (ICVD) using an initiator for introducing a polymer onto a substrate coated with the sulfur copolymer and polymerizing the polymer on the substrate coated with the sulfur copolymer.

리튬 이차전지는 고에너지 밀도를 가지는 것으로부터 휴대전화나 퍼스널 컴퓨터 등의 휴대 기기뿐만 아니라 하이브리드(hybrid) 자동차, 전기 자동차, 전력 저장 축전 시스템 등에 다양하게 적용되고 있다. 이와 같은 리튬 이차전지의 하나로서, 최근 양극 활물질을 황(sulfur)으로 하고, 음극 활물질을 리튬으로 하여, 리튬과 황의 반응에 의해 충방전하는 리튬-황 이차전지가 주목 받고 있다.Since the lithium secondary battery has a high energy density, it has been widely applied not only to portable devices such as cellular phones and personal computers but also to hybrid cars, electric vehicles, and electric power storage and storage systems. As one of such lithium secondary batteries, a lithium-sulfur secondary battery has recently been attracting attention, in which sulfur is used as the cathode active material, lithium is used as the anode active material, and the charge and discharge are performed by the reaction of lithium and sulfur.

리튬-황 이차전지에서는 황 1개에 반응하는 리튬 이온이 최대 2개이며, 황이 전이금속에 비해 가볍기 때문에, 리튬-황 이차전지의 비용량을 향상시킬 수 있다는 이점이 있다. 그러나 리튬-황 이차전지는 기존의 리튬이온 전지에 비해 높은 에너지 저장용량을 지녔음에도 불구하고, 충/방전간에 황 전극에서 발생하는 Sx 2-가 전해질로 용출되고 표면에 비가역적으로 석출되어 전기화학적 활성을 지닌 물질이 지속적으로 감소하는 현상이 나타난다. 이로 인해, 에너지용량이 급격히 감소하고, 수명이 매우 짧다는 문제가 있어 상용화되지 못하고 있는 실정이다.In the lithium-sulfur secondary battery, there are a maximum of two lithium ions that react with one sulfur, and since sulfur is lighter than the transition metal, there is an advantage that the specific capacity of the lithium-sulfur secondary battery can be improved. However, although lithium-sulfur secondary batteries have a higher energy storage capacity than conventional lithium ion batteries, S x 2- generated from the sulfur electrode between charge and discharge is eluted into electrolyte and irreversibly precipitates on the surface, There is a continuous decrease in the chemical active substance. As a result, there is a problem that the energy capacity is rapidly reduced and the lifetime is very short, so that it is not commercialized.

이를 해결하고자, 양극 활물질인 황을 나노미터 규모로 감싸서 Sx 2 - 용출을 물리적으로 막거나, 화학적으로 흡착하는 기술이 기존에 많이 보고 되었지만, 제조공정이 복잡하고 비싸다는 단점이 있다. 상대적으로 저렴하고 단순한 공정으로서, 분자단위의 황과 화학적으로 결합된 고분자 공중합체 합성에 관한 연구가 진행되었다. Poly(S-r-DIB)를 이차전지 전극으로 활용하여 저장용량 및 수명을 획기적으로 향상시켰지만, Sx 2 -의 용출을 완전히 막지는 못하였다.In order to solve this problem, there have been reported many techniques for physically blocking or chemically adsorbing S x 2 - elution by wrapping sulfur, which is a cathode active material, on a nanometer scale, but the manufacturing process is complicated and expensive. As a relatively inexpensive and simple process, studies have been conducted on the synthesis of polymeric copolymers chemically bonded to molecular units of sulfur. Poly (S- r- DIB) was used as a secondary battery electrode to dramatically improve storage capacity and lifetime, but could not completely prevent the elution of S x 2 - .

또한 황 전극과 분리막 사이에 확산방지막을 추가적으로 제조함으로써 Sx 2 - 용출을 막는 기술에 대하여 연구되었지만, 황 전극과 확산방지막 사이의 접촉이 불균일하기 때문에, 틈 사이에 활물질이 확산되어 나온 후 석출됨으로써 발생하는 활물질 감소의 문제가 있다.In addition, S x 2 by making further the anti-diffusion between the sulfur electrode and the membrane-being precipitated after the out is been studied the technique to prevent the dissolution, because the contact is not uniform between the sulfur electrode and the diffusion prevention layer, the active material in the cracks spread There is a problem of reducing the active material generated.

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 개시제를 이용한 기상증착 공정인 iCVD 공정을 이용하여 황 전극 표면에 고분자 막을 균일하게 접착하여 전극을 제조할 경우, 기존 리튬-황 이차전지의 문제점인 Sx 2 -의 확산 현상을 효과적으로 방지하면서 에너지용량 및 수명을 보장할 수 있는 리튬-황 이차전지용 전극을 경제적으로 제조할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.The present inventors have made intensive efforts to solve the above problems. As a result, the present inventors have found that when an electrode is manufactured by uniformly adhering a polymer membrane to a surface of a sulfur electrode using an iCVD process, which is a vapor deposition process using an initiator, It is possible to economically manufacture an electrode for a lithium-sulfur secondary battery capable of effectively preventing the diffusion phenomenon of S x 2 - and ensuring an energy capacity and a service life, and completed the present invention.

본 발명의 목적은 리튬-황 이차전지의 문제점인 Sx 2 -의 확산 현상을 효과적으로 방지하는 에너지용량 및 수명을 보장한 고분자 막, 특히 리튬-황 이차전지용 전극의 경제적인 제조방법을 제공하는데 있다.An object of the present invention is to provide an economical method of manufacturing a polymer membrane, particularly a lithium-sulfur secondary battery electrode, which ensures an energy capacity and a service life that effectively prevent the diffusion phenomenon of S x 2 - which is a problem of a lithium- .

상기 목적을 달성하기 위하여, 본 발명은 (a) iCVD 반응기에 황 공중합체가 코팅된 기판을 올려 놓고 고정시키는 단계; 및 (b) 단량체와 개시제를 iCVD 반응기에 투입하여 상기 황 공중합체가 코팅된 기판 상에서 단량체의 중합을 통해 고분자를 증착시키는 단계를 포함하는 개시제를 사용하는 화학기상증착 반응기(iCVD)를 이용한 고분자 막의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device, comprising: (a) placing and fixing a substrate coated with a sulfur copolymer on an iCVD reactor; And (b) depositing a monomer and an initiator in an iCVD reactor to deposit the polymer through polymerization of the monomers on the substrate coated with the sulfur co-polymer. And a manufacturing method thereof.

또한, 본 발명은 폴리(S-r-디이소프로페닐 벤젠)에 pDEGDA가 1nm~10㎛의 두께로 코팅되어 있고, 100회의 사이클 이후 저장용량이 900~1500mAh/g인 것을 특징으로 하는 리튬-황 이차전지용 전극을 제공한다.The present invention also provides a method for producing a lithium secondary battery, which is characterized in that pDEGDA is coated to a thickness of 1 nm to 10 탆 in poly (S- r -diisopropenylbenzene) and storage capacity is 900 to 1500 mAh / g after 100 cycles. Thereby providing an electrode for a sulfur secondary battery.

본 발명에 따른 iCVD를 이용하여 고분자가 코팅된 리튬-황 이차전지용 전극은 Sx 2 -의 확산 현상을 효과적으로 방지함과 동시에 에너지용량 및 수명을 보장할 수 있으며, 경제적인 효과가 있다.The polymer-coated electrode for a lithium-sulfur secondary battery using iCVD according to the present invention can effectively prevent the diffusion phenomenon of S x 2 - , can ensure the energy capacity and the life, and is economically effective.

도 1은 본 발명의 일 실시예에 따른 poly(S-r-DIB) 전극에 iCVD를 이용하여 고분자를 코팅하는 공정을 개괄적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 pDEGDA 고분자가 코팅된 웨이퍼(wafer)의 물 접촉각(water contact angle)을 도시한 단면도이다.
도 3은 본 발명의 일 실시예에 따른 DEGDA 단량체와 pDEGDA고분자의 FT-IR 그래프이다.
도 4는 본 발명의 일 실시예에 따른 iCVD 공정을 통해 다양한 고분자를 SDIB 표면에 코팅한 후 측정한 물 접촉각을 도시한 도면이다(p4VP: poly 4-vinyl pyridine; pDEGDA: poly diethyleneglycoldiacrylate; pV4D4: poly 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane; pPFDMA: poly 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10 heptadecafluorodecyl methacrylate)
도 5는 본 발명의 일 실시예에 따른 SDIB 필름 위에 pMAA 고분자를 iCVD 공정을 통해 코팅을 실시하기 전/후에 측정한 물 접촉각을 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 SDIB 필름 위에 pDMAEMA 고분자를 iCVD 공정을 통해 코팅을 실시하기 전/후, 물에 세척한 후 물 접촉각을 측정한 결과을 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 iCVD를 이용한 pEGDMA 코팅 후 테이프 테스트(tape test)로 고분자 박막과 SDIB 필름 간의 접착력을 확인한 도면이다.
도 8은 본 발명의 일 실시예에 따른 iCVD를 이용한 pDVB 코팅 후 테이프 테스트(tape test)로 고분자 박막과 SDIB 필름 간의 접착력을 확인한 도면이다.
도 9는 본 발명의 일 실시예에 따른 pDEGDA가 코팅된 SDIB 필름과 베어(bare) SDIB 위에 클로로포름 스핀 코팅을 실시하기 전/후에 측정한 물 접촉각을 도시한 도면이다.
도 10은 본 발명의 일 실시예에 따른 베어(bare) SDIB와 pDEGDA가 코팅된 SDIB 위에서의 DOL/DME 용매의 접촉각을 도시한 도면이다.
도 11은 본 발명의 일 실시예에 따른 iCVD 코팅 전극의 성능을 측정한 결과이다.
1 is a schematic view illustrating a process of coating a polymer on a poly (S- r- DIB) electrode using iCVD according to an embodiment of the present invention.
2 is a cross-sectional view showing a water contact angle of a wafer coated with a pDEGDA polymer according to an embodiment of the present invention.
3 is an FT-IR graph of a DEGDA monomer and a pDEGDA polymer according to an embodiment of the present invention.
4 is a view showing the water contact angle measured after coating various polymers on the SDIB surface through an iCVD process according to an embodiment of the present invention (p4VP: poly 4-vinyl pyridine: pDEGDA: poly diethyleneglycoldiacrylate: pV4D4: poly 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane, pPFDMA: poly 3,3,4,4,5,5,6,6,7,7,8,8,9, 9,10,10,10 heptadecafluorodecyl methacrylate)
FIG. 5 is a graph showing the contact angle of water measured before and after the coating of the pMAA polymer on the SDIB film according to an embodiment of the present invention through the iCVD process.
FIG. 6 is a view showing a result of measuring the contact angle of water after washing the pDMAEMA polymer on the SDIB film according to one embodiment of the present invention, before and after coating the polymer with iCVD.
FIG. 7 is a view showing the adhesion between a polymer thin film and an SDIB film by a tape test after pEGDMA coating using iCVD according to an embodiment of the present invention.
8 is a view showing adhesion between a polymer thin film and an SDIB film by a tape test after pDVB coating using iCVD according to an embodiment of the present invention.
FIG. 9 is a graph showing water contact angles measured before and after chloroform spin coating on a pDEGDA-coated SDIB film and a bare SDIB according to an embodiment of the present invention.
10 is a graph showing the contact angle of DOL / DME solvent on bare SDIB and pDEGDA coated SDIB according to an embodiment of the present invention.
11 is a graph illustrating a result of measuring the performance of an iCVD coated electrode according to an embodiment of the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명에서는 개시제를 이용한 기상증착 공정인 iCVD 공정을 이용하여 황 전극 표면에 고분자 막을 균일하게 접착하여 전극을 제조할 경우, 기존 리튬-황 이차전지의 문제점인 Sx 2 -의 확산 현상을 효과적으로 방지하여 에너지용량 및 수명을 보장한 리튬-황 이차전지를 경제적으로 제조할 수 있다는 것을 확인하였다.In the present invention, when an electrode is manufactured by uniformly adhering a polymer membrane to the surface of a sulfur electrode using an iCVD process, which is a vapor deposition process using an initiator, it is possible to effectively prevent diffusion of S x 2 - , which is a problem of existing lithium- Thereby making it possible to economically produce a lithium-sulfur secondary battery with guaranteed energy capacity and lifetime.

따라서, 본 발명은 일 관점에서, (a) iCVD 반응기에 황 공중합체가 코팅된 기판을 올려 놓고 고정시키는 단계; 및 (b) 단량체와 개시제를 iCVD 반응기에 투입하여 상기 황 공중합체가 코팅된 기판 상에서 단량체의 중합을 통해 고분자를 증착시키는 단계를 포함하는 개시제를 사용하는 화학기상증착 반응기(iCVD)를 이용한 고분자 막의 제조방법에 관한 것이다.Accordingly, in one aspect, the present invention provides a method of manufacturing a semiconductor device, comprising: (a) placing and fixing a substrate coated with a sulfur copolymer on an iCVD reactor; And (b) depositing a monomer and an initiator in an iCVD reactor to deposit the polymer through polymerization of the monomers on the substrate coated with the sulfur co-polymer. And a manufacturing method thereof.

본 발명에서 이용되는 개시제를 사용하는 화학기상증착 반응기(iCVD)는 기상의 개시제(initiator)를 라디칼(radical)로 분해하여 단량체의 중합을 일으키는 장치이다. 개시제로는 tert-butyl peroxide(TBPO)와 같은 과산화물(peroxide)이 주로 사용되는데, 이 물질은 110정도의 끓는점을 갖는 휘발성 물질로서, 약 150 전후에서 열분해를 하게 된다. 상기 개시제로 tert-butyl peroxide(TBPO)와 같이 열에 의해 분해되어 라디칼을 형성하는 것 말고도, UV와 같은 빛에 의해서도 분해되어 라디칼을 형성하는 벤조페논(benzophenone) 등을 이용할 수도 있다.A chemical vapor deposition reactor (iCVD) using an initiator used in the present invention is a device for decomposing an initiator of a gas phase into radicals to cause polymerization of a monomer. Peroxides such as tert-butyl peroxide (TBPO) are mainly used as the initiator. This material is a volatile substance having a boiling point of about 110, which causes pyrolysis at about 150 ° C. Benzophenone, which decomposes by heat such as tert-butyl peroxide (TBPO) to form radicals, and decomposes by light such as UV to form radicals, may also be used.

iCVD 공정은 가열된 필라멘트 열원이나 UV 등의 에너지 공급으로 박막의 증착이 일어나기 때문에 기존의 무기박막 증착용 CVD 공정과 크게 다를 것이 없어 보이지만, iCVD 공정은 200℃에서 350℃사이의 낮은 필라멘트 온도에서 공정이 이루어지며, 고분자 박막이 증착되는 기판 표면의 온도가 10~50℃로 낮게 유지될 수 있다. 이런 낮은 표면 온도로 인해, iCVD는 종이나 옷감 같은 기계적 화학적 충격에 약한 여러 기판 위에 고분자 박막을 입히는 데에 유용하게 쓰일 수 있다. 그리고, 50mTorr에서 1000mTorr 사이의 진공상태에서 공정이 이루어지기 때문에 고진공 장비가 필요하지 않으며, 단량체와 개시제의 양은 주입밸브에서 조절된다.The iCVD process does not seem to be much different from the conventional inorganic thin film deposition CVD process because the thin film is deposited by the energy supply of the heated filament heat source or UV. However, the iCVD process is performed at a low filament temperature between 200 ° C. and 350 ° C. And the temperature of the substrate surface on which the polymer thin film is deposited can be kept as low as 10 to 50 ° C. Because of these low surface temperatures, iCVD can be used to coat polymer films on multiple substrates that are susceptible to mechanical and chemical impacts, such as paper or cloth. And since the process is done in vacuum from 50 mTorr to 1000 mTorr, no high vacuum equipment is needed and the amount of monomer and initiator is controlled by the injection valve.

iCVD 기술은 건식공정으로서, 균일하고 우수한 품질의 코팅을 대규모로 수행할 수 있다. 특히 기존의 황 전극에 비해 우수한 성능을 지닌 poly(S-r-DIB) 전극 위에 코팅하였을 때, 코팅된 고분자와 공중합체간의 강한 인력으로 인해 더욱 뛰어난 접착 효과를 보인다.iCVD technology is a dry process, which enables uniform, high quality coatings to be performed on a large scale. Especially, when coated on a poly (S- r- DIB) electrode, which has superior performance compared to the conventional sulfur electrode, it exhibits a more excellent adhesion effect due to strong attraction between the coated polymer and the copolymer.

상기 황 공중합체가 코팅된 기판은 집전체에 황 공중합체, 탄소 도전재, 바인더, 및 용제를 포함하는 합제를 도포시킴으로써 제조할 수 있다.The substrate coated with the sulfur copolymer can be produced by applying a mixture containing a sulfur copolymer, a carbon conductive material, a binder, and a solvent to a current collector.

상기 (a) 단계 이전에 iCVD 반응기의 단량체 통에 단량체를 넣고 30~45로 가열하는 단계 및 iCVD 반응기의 개시제통에 개시제를 넣고 상온으로 유지하는 단계를 추가로 수행할 수 있다.The monomer may be added to the monomer vessel of the iCVD reactor before the step (a) and heated to 30 to 45, and the initiation agent may be added to the initiator vessel of the iCVD reactor and maintained at room temperature.

상기 황 공중합체는 폴리(S-r-디이소프로페닐 벤젠)인 것이 바람직하다.The sulfur copolymer is preferably poly (S- r -diisopropenylbenzene).

상기 공정은 25~45℃의 온도 및 150~350mTorr의 압력에서 10분~12시간 동안 수행될 수 있다. 이때, 온도가 25℃ 미만인 경우 흐릿(foggy)하게 증착될 수 있고, 45℃를 초과할 경우 증착속도가 느려지는 문제가 있으며, 상기 반응기내 챔버의 압력이 150mTorr 미만이거나 350mTorr를 초과할 경우 증착이 이루어지지 않거나 증착속도가 느려지는 문제가 있다. 그리고. 상기 증착시간은 증착 두께와 관련이 있으므로, 증착시간이 10분~12시간을 벗어날 경우 증착두께가 얇거나 두꺼워지게 되는 문제점이 있다.The process may be carried out at a temperature of 25 to 45 DEG C and a pressure of 150 to 350 mTorr for 10 minutes to 12 hours. If the temperature of the chamber is less than 150 mTorr or more than 350 mTorr, the deposition rate may be slowed down when the temperature is less than 25 ° C. When the temperature exceeds 45 ° C, Or the deposition rate is slowed. And. Since the deposition time is related to the deposition thickness, when the deposition time exceeds 10 minutes to 12 hours, there is a problem that the deposition thickness becomes thin or thick.

또한, 본 발명에 있어서, 단량체와 개시제의 투입온도는 각각 20~100℃ 및 20~100℃이고, 상기 기판 및 챔버 내의 필라멘트의 온도는 각각 10~100℃ 및 100~500℃일 수 있다. 상기 범위의 온도에서 적절한 유량을 흘려 증착할 수 있다.In the present invention, the charging temperature of the monomer and the initiator are 20 to 100 ° C and 20 to 100 ° C, respectively, and the temperature of the filament in the substrate and the chamber may be 10 to 100 ° C and 100 to 500 ° C, respectively. It is possible to deposit at a suitable flow rate at the above range of temperature.

본 발명에 있어서, 상기 단량체는 비닐기를 가진 단량체로서, 4-비닐피리딘(4-vinyl pyridine, 4VP), 2,4,6,8-테트라메틸-2,4,6,8-테트라비닐시클로테트라실록산(2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane, V4D4), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실메타크릴레이트(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate, PFDMA), 1,3,5-트리메틸-1,3,5-트리비닐시클로트리실록산, 헥사비닐디실록산, 글리시딜메타크릴레이트, 디비닐벤젠, 디에틸렌글리콜디비닐에테르, 디에틸렌글리콜디아크릴레이트(diethyleneglycoldiacrylate, DEGDA), 에틸렌글리콜디메타크릴레이트, 디메틸아미노에틸메타크릴레이트, 메타크릴산 및 1,3-디에테닐-1,1,3,3-테트라메틸-디실록산, 1H,1H,2H,2H-퍼플루오로데실 아크릴레이트, 퍼플루오로데실 메타크릴레이트, 도데카플루오로헵틸 아크릴레이트, 펜타플루오로페닐 메타크릴레이트, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-펜타데카플루오로노닐 아크릴레이트, 2-메틸-3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-펜타데카플루오로노닐 아크릴레이트, 3,3,4,4,5,5,6,6,7,7,8,8,8-트리데카플루오로옥틸 아크릴레이트, 2-메틸- 3,3,4,4,5,5,6,6,7,7,8,8,8-트리데카플루오로옥틸 아크릴레이트, 3,3,4,4,5,5,6,6,7,7,7-운데카플루오로헵틸 아크릴레이트, 2-메틸- 3,3,4,4,5,5,6,6,7,7,7-운데카플루오로헵틸 아크릴레이트, 3,3,4,4,5,5,6,6,6-노나플루오로헥실 아크릴레이트, 2-메틸-3,3,4,4,5,5,6,6,6-노나플로오로헥실 아크릴레이트, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-노나데카플루오로운데실 아크릴레이트, 2-메틸- 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-노나데카플루오로운데실 아크릴레이트, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헤네이코사플루오로도데실 아크릴레이트, 2-메틸- 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헤네이코사플루오로도데실 아크릴레이트, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-트리코사플루오로트리데실 아크릴레이트, 2-메틸- 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-트리코사플루오로트리데실 아크릴레이트, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-펜타코사플루오로테트라데실 아크릴레이트, 및 2-메틸- 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-펜타코사플루오로테트라데실 아크릴레이트로 구성된 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 4-비닐피리딘(4-vinyl pyridine, 4VP), 2,4,6,8-테트라메틸-2,4,6,8-테트라비닐시클로테트라실록산(2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane, V4D4), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실메타크릴레이트(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate, PFDMA), 디에틸렌글리콜디아크릴레이트(diethyleneglycoldiacrylate, DEGDA), 에틸렌글리콜디메타크릴레이트, 디메틸아미노에틸메타크릴레이트 또는 메타크릴산을 사용하나, 이에 한정되는 것은 아니다.In the present invention, it is preferable that the monomer is a monomer having a vinyl group such as 4-vinyl pyridine (4VP), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetra Siloxane (2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane, V4D4), 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10 , 10-heptadecafluorodecyl methacrylate, PFDMA), 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, hexavinyldisiloxane, glycidyl methacrylate, divinylbenzene, diethylene glycol divinyl Ether, diethyleneglycoldiacrylate (DEGDA), ethylene glycol dimethacrylate, dimethylaminoethyl methacrylate, methacrylic acid and 1,3-diethenyl-1,1,3,3-tetramethyl- 1H, 1H, 2H, 2H-perfluorodecyl acrylate, perfluorodecyl methacrylate, dodecafluoroheptyl acrylate Pentafluorophenyl methacrylate, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-pentadecafluorononyl acrylate, 2- Methyl-3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-pentadecafluorononyl acrylate, 3,3,4,4,5, 5,6,6,7,7,8,8,8-tridecafluorooctyl acrylate, 2-methyl-3,3,4,4,5,5,6,6,7,7,8, 3,3,4,4,5,5,6,6,7,7,7-undecafluoroheptyl acrylate, 2-methyl-3,3,4,5,5,6,6,7,7,7-tetradecafluorooctyl acrylate, 4,4,5,5,6,6,7,7,7-undecafluoroheptyl acrylate, 3,3,4,4,5,5,6,6,6-nonafluorohexyl acrylate , 2-methyl-3,3,4,4,5,5,6,6,6-nonafluorohexyl acrylate, 3,3,4,4,5,5,6,6,7,7, 8,8,9,9,10,10,11,11,11-nonadecafluoroundecyl acrylate, 2-methyl-3,3,4,4,5,5,6,6,7,7 , 8,8,9,9,10,10,11,11,11-nonadecafluoroundecyl acrylate, 3,3,4,4,5,5,6,6,7,7,8, 8,9,9,10,10,11,11,12,12,12-heneicosafluorododecyl acrylate, 2-methyl-3,3 , 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluorododecyl acrylate, 3 , 3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-Tricosafluorotrydyl Acrylate, 2-methyl-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 , 13-tricosafluorotridecyl acrylate, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12 , 13,13,14,14,14-pentacosafluorotetradecyl acrylate, and 2-methyl-3,3,4,4,5,5,6,6,7,7,8,8,9 , 9,10,10,11,11,12,12,13,13,14,14,14-pentacosafluorotetradecyl acrylate, and preferably at least one selected from the group consisting of 4- 4-vinylpyridine (4VP), 2,4,6,8-tetramethyl-2,4,6,8-tetravethyl-tetradecylsilane (2,4,6,8-tetramethyl- 6,8-tetravinyl cyclotetrasiloxane, V4D4), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methane (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluor diethyleneglycoldiacrylate (DEGDA), ethylene glycol dimethacrylate, dimethylaminoethyl methacrylate, or methacrylic acid, but is not limited thereto.

상기 (b) 단계에서 상기 단량체와 상기 개시제의 유량비는 1:1~4:1일 수 있다. 바람직하게는 1:1~3:1일 수 있으며, 상기 유량비 범위 내에서 증착 가능한 효과가 있다.In the step (b), the flow ratio of the monomer to the initiator may be 1: 1 to 4: 1. Preferably 1: 1 to 3: 1, and has an effect of being able to deposit within the above flow rate ratio range.

상기 개시제는 화학식 1 내지 화학식 5중에서 선택되는 퍼옥사이드(peroxide) 계열 화합물을 사용할 수 있으며, 바람직하게는 화학식 4의 tert-부틸퍼옥사이드를 사용할 수 있다. 또한, UV와 같은 빛에 의해서도 분해되어 라디칼을 형성하는 벤조페논(benzophenone) 등도 사용할 수 있지만 이에 국한되는 것은 아니다.The initiator may be a peroxide compound selected from the group consisting of formulas (1) to (5), preferably tert-butyl peroxide of formula (4). In addition, benzophenone, which is decomposed by light such as UV to form radicals, may also be used, but is not limited thereto.

[화학식 1][Chemical Formula 1]

Figure 112016019185599-pat00001
Figure 112016019185599-pat00001

[화학식 2](2)

Figure 112016019185599-pat00002
Figure 112016019185599-pat00002

[화학식 3](3)

Figure 112016019185599-pat00003
Figure 112016019185599-pat00003

[화학식 4][Chemical Formula 4]

Figure 112016019185599-pat00004
Figure 112016019185599-pat00004

[화학식 5][Chemical Formula 5]

Figure 112016019185599-pat00005
Figure 112016019185599-pat00005

상기 고분자의 두께는 1nm~10㎛, 바람직하게는 1nm~1㎛, 더욱 바람직하게는 10~100nm일 수 있다.The thickness of the polymer may be 1 nm to 10 탆, preferably 1 nm to 1 탆, and more preferably 10 to 100 nm.

상기 기판은 폴리아크릴로니트릴(polyacrylonitrile), 폴리디메틸실록산(polydimethylsiloxane), 폴리에테르설폰(polyethersulfone, PES), 폴리설폰(polysulfone, PSF) 및 폴리비닐리덴플루오라이드(poly(vinylidenedifluoride), PVDF)로 구성된 군에서 선택되는 1종일 수 있다.The substrate is made of polyacrylonitrile, polydimethylsiloxane, polyethersulfone (PES), polysulfone (PSF) and polyvinylidene fluoride (PVDF). Lt; / RTI > may be one species selected from the group.

본 발명에 있어서, 상기 고분자 막은 리튬-황 이차전지용 전극으로 바람직하게 사용될 수 있다.In the present invention, the polymer membrane can be preferably used as an electrode for a lithium-sulfur secondary battery.

기존의 황 전극보다 성능이 우수하고 iCVD를 이용한 전극코팅시 효과적인 고분자 흡착이 가능한 poly(S-r-DIB) 전극은 본 발명의 바람직한 일 실시예로서 다음과 같은 방법에 따라 제조할 수 있다. poly(S-r-DIB) 전극에 iCVD 고분자를 코팅하는 도면을 도 1에 나타내었다.A poly (S- r- DIB) electrode which is superior in performance to a conventional sulfur electrode and capable of effectively adsorbing a polymer when an electrode is coated using iCVD can be produced according to the following method as a preferred embodiment of the present invention. Figure 1 shows the coating of the poly (S- r- DIB) electrode with iCVD polymer.

Poly(S-r-DIB)는 황과 디-이소프로페닐 벤젠(di-isopropenyl benzene, DIB)을 함유한 고분자 물질로서, 가열된 액체상의 황에 DIB를 첨가하여 가교반응에 의해 완전히 굳을 때까지 반응시켜 합성한다. poly(S-r-DIB) 전극은 Super P 탄소 도전재 및 PVDF 바인더를 NMP 용매와 함께 볼밀링으로 섞어 슬러리 제조 후, 닥터 블레이딩으로 초기 탄소층을 형성하고, 완전히 마른 후, 그 위에 poly(S-r-DIB), 탄소 도전재 및 PE 바인더를 클로로포름과 함께 섞어서 같은 방법으로 도포하여 제조한다.Poly (S- r -DIB) is a polymeric material containing sulfur and di-isopropenyl benzene (DIB). DIB is added to the sulfur of the heated liquid phase, . The poly (S- r- DIB) electrode was prepared by mixing ball Super-P carbon conductive material and PVDF binder together with NMP solvent by ball milling to form an initial carbon layer by doctor blading, completely dry, Sr-DIB), a carbon conductive material and a PE binder are mixed with chloroform and coated in the same manner.

iCVD를 이용한 전극코팅은 poly(S-r-DIB) 전극을 이용한다. iCVD코팅은 DEGDA 단량체와 개시제로 이용하여 진행할 수 있다. 챔버와 연결되어 있는 단량체 통에 DEGDA 단량체를 20~100℃로 가열하고, 개시제 통의 개시제는 상온으로 유지한다. 기판 위에 S-r-DIB 전극을 올려 놓고 고정시킨 후, 단량체와 개시제를 1:1 비율로 챔버 안에 흐르게 하고, 챔버의 내부 압력을 50~300mTorr로, 기판의 온도는 10~100℃로, 그리고 챔버 내의 필라멘트의 온도를 100~500℃로 유지한다. 코팅된 pDEGDA 고분자의 두께(15~100nm)는 반응시간으로 조절할 수 있다.The electrode coating using iCVD uses a poly (Sr-DIB) electrode. iCVD coatings can be run using DEGDA monomers and initiators. In the monomer vessel connected to the chamber, the DEGDA monomer is heated to 20 to 100 DEG C, and the initiator initiator is maintained at room temperature. The S- r- DIB electrode was placed on the substrate and fixed. The monomer and the initiator were allowed to flow in the chamber at a ratio of 1: 1, the internal pressure of the chamber was 50 to 300 mTorr, the temperature of the substrate was 10 to 100 ° C, The temperature of the filaments in the chamber is maintained at 100 to 500 ° C. The thickness of the coated pDEGDA polymer (15-100 nm) can be controlled by the reaction time.

따라서, 본 발명의 다른 관점에서 폴리(S-r-디이소프로페닐 벤젠)에 pDEGDA가 1nm~10㎛의 두께로 코팅되어 있고, 100회의 사이클 이후 저장용량이 900~1500mAh/g인 것을 특징으로 하는 리튬-황 이차전지용 전극에 관한 것이다.Accordingly, in another aspect of the present invention, there is provided a lithium secondary battery comprising a lithium secondary battery, which is characterized in that poly (Sr-diisopropenylbenzene) is coated with pDEGDA in a thickness of 1 nm to 10 占 퐉 and storage capacity after 100 cycles is 900 to 1500 mAh / - an electrode for a sulfur secondary battery.

iCVD 공정을 통해 pDEGDA 고분자 외에도 다양한 고분자들을 poly(S-r-DIB)위에 코팅할 수 있다.In addition to pDEGDA polymers, various polymers can be coated on poly (S- r- DIB) through the iCVD process.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are for illustrative purposes only and that the scope of the present invention is not limited by these embodiments.

[실시예][Example]

제조예 1: pDEGDA이 증착된 poly(S-r-DIB) 전극의 제조Preparation Example 1: Preparation of poly (S-r-DIB) electrode deposited with pDEGDA

(1) poly(S-r-DIB)의 제조(1) Preparation of poly (S-r-DIB)

Poly(S-r-DIB)는 황 90wt%, 디-이소프로페닐 벤젠(di-isopropenyl benzene, DIB) 10wt%를 함유한 고분자 물질로서, 180℃로 가열된 액체상의 황에 DIB를 첨가하여 가교반응에 의해 완전히 굳을 때까지 반응시켜 합성하였다. poly(S-r-DIB) 전극은 Super P 탄소 도전재 80wt%, PVDF 바인더 20wt%를 NMP 용매와 함께 볼밀링으로 섞어 슬러리 제조 후, 닥터 블레이딩으로 초기 탄소층을 형성하고, 완전히 마른 후, 그 위에 poly(S-r-DIB) 75wt%, 탄소 도전재 20wt%, PE 바인더 5wt%를 클로로포름과 함께 섞어서 같은 방법으로 도포하여 제조하였다.Poly (Sr-DIB) is a polymer material containing 90 wt% sulfur and 10 wt% di-isopropenyl benzene (DIB). DIB is added to the sulfur of the liquid phase heated to 180 ° C, And then reacted until completely solidified. The poly (Sr-DIB) electrode was prepared by mixing 80 wt% of Super P carbon conductive material and 20 wt% of PVDF binder together with NMP solvent by ball milling to form an initial carbon layer by doctor blading, 75 wt% of poly (Sr-DIB), 20 wt% of carbon conductive material, and 5 wt% of PE binder were mixed with chloroform and coated in the same manner.

(2) iCVD를 이용한 전극 코팅(2) Electrode coating using iCVD

iCVD를 이용한 전극코팅은 poly(S-r-DIB) 전극을 이용하여 실험하였다. iCVD코팅은 디에틸렌글리콜디아크릴레이트(diethyleneglycoldiacrylate, DEGDA)를 단량체로, tert-부틸 퍼옥사이드(tert-butyl peroxide, TBPO)를 개시제로 활용하여 진행하였다. 챔버와 연결되어 있는 단량체 통에 DEGDA를 넣고 90℃로 가열하였고, 개시제 통의 TBPO는 상온으로 유지하였다. 기판 위에 S-r-DIB 전극을 올려 놓고 고정시킨 후, 단량체와 개시제를 1:1 비율로 챔버 안에 흐르게 하였고, 챔버의 내부 압력을 60mTorr로, 기판의 온도는 30℃로, 그리고 챔버 내의 필라멘트의 온도를 180℃로 유지하였다. 코팅된 고분자의 두께(15nm, 50nm, 100nm)는 반응시간으로 조절하였다.The electrode coating using iCVD was performed using a poly (S-r-DIB) electrode. iCVD coating was carried out by using diethyleneglycoldiacrylate (DEGDA) as a monomer and tert-butyl peroxide (TBPO) as an initiator. DEGDA was added to the monomer bottle connected to the chamber and heated to 90 DEG C, and TBPO of the initiator bottle was kept at room temperature. After the Sr-DIB electrode was placed on the substrate and fixed, the monomer and initiator were caused to flow in the chamber at a ratio of 1: 1, the inner pressure of the chamber was set to 60 mTorr, the temperature of the substrate was set to 30 ° C, Lt; 0 > C. The thickness of the coated polymer (15 nm, 50 nm, 100 nm) was controlled by the reaction time.

제조예 2: p4VP가 증착된 poly(S-Production Example 2: Preparation of poly (S- rr -DIB) 전극의 제조-DIB) Electrode Fabrication

제조예 1에서 단량체로 4-비닐 피리딘(4-vinyl pyridine)을 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 p4VP가 증착된 poly(S-r-DIB) 전극을 제조하였다.A poly (S- r- DIB) electrode on which p4VP was deposited was prepared in the same manner as in Production Example 1, except that 4-vinyl pyridine was used as a monomer in Production Example 1.

제조예 3: pDEGDA가 증착된 poly(S-Preparation Example 3: Preparation of poly (S- rr -DIB) 전극의 제조-DIB) Electrode Fabrication

제조예 1에서 단량체로 디에틸렌글리콜디아크릴레이트(diethyleneglycoldiacrylate)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 pDEGDA가 증착된 poly(S-r-DIB) 전극을 제조하였다.A poly (S- r- DIB) electrode deposited with pDEGDA was prepared in the same manner as in Preparation Example 1 except that diethyleneglycoldiacrylate was used as a monomer in Preparation Example 1.

제조예 4: pV4D4가 증착된 poly(S-Preparation Example 4: Preparation of poly (S- rr -DIB) 전극의 제조-DIB) Electrode Fabrication

제조예 1에서 단량체로 2,4,6,8-테트라메틸-2,4,6,8-테트라비닐사이클로실록산(2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 pV4D4가 증착된 poly(S-r-DIB) 전극을 제조하였다.In Production Example 1, 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane (2,4,6,8-tetravinyl- ), Poly (S- r- DIB) electrode on which pV4D4 was deposited was prepared.

제조예 5: pPFDMA 가 증착된 poly(S-Production Example 5: Preparation of poly (S- rr -DIB) 전극의 제조-DIB) Electrode Fabrication

제조예 1에서 단량체로 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10 헵타데카플루오로데실 메타크릴레이트(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10 heptadecafluorodecyl methacrylate)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 pPFDMA가 증착된 poly(S-r-DIB) 전극을 제조하였다.In Production Example 1, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9,10,10,10 heptadecafluorodecyl methacrylate (3, 4,4,5,5,6,6,7,7,8,8,9,9,9,10,10,10 heptadecafluorodecyl methacrylate) was used in place of pPFDMA a (r S- -DIB) deposited poly electrode was prepared.

제조예 6: pMAA가 증착된 poly(S-Preparation Example 6: Preparation of poly (S- rr -DIB) 전극의 제조-DIB) Electrode Fabrication

제조예 1에서 단량체로 메타크릴산(methacrylic acid)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 pPFDMA가 증착된 poly(S-r-DIB) 전극을 제조하였다.A poly (S- r- DIB) electrode deposited with pPFDMA was prepared in the same manner as in Preparation Example 1, except that methacrylic acid was used as a monomer in Production Example 1.

제조예 7: pDMAEMA가 증착된 poly(S-Preparation Example 7: Preparation of poly (S- rr -DIB) 전극의 제조-DIB) Electrode Fabrication

제조예 1에서 단량체로 디메틸아미노에틸메타크릴레이트(dimethylaminoethylmethacrylate)를 사용한 것을 제외하고는 제조예 1과 동일하게 실시하여 pDMAEMA가 증착된 poly(S-r-DIB) 전극을 제조하였다.A poly (S- r- DIB) electrode deposited with pDMAEMA was prepared in the same manner as in Preparation Example 1, except that dimethylaminoethylmethacrylate was used as a monomer in Production Example 1.

비교예: bare(베어) poly(S-r-DIB) 전극의 제조Comparative Example: Preparation of bare (poly) (S-r-DIB) electrode

180로 가열된 액체상의 황에 DIB를 첨가하여 가교반응에 의해 완전히 굳을 때까지 반응시켜 황 90wt%, 디-이소프로페닐 벤젠(di-isopropenyl benzene, DIB) 10wt%를 함유한 Poly(S-r-DIB)를 합성하였다. poly(S-r-DIB) 전극은 Super P 탄소 도전재 80wt%, PVDF 바인더 20wt%를 NMP 용매와 함께 볼밀링으로 섞어 슬러리 제조 후, 닥터 블레이딩으로 초기 탄소층을 형성하고, 완전히 마른 후, 그 위에 poly(S-r-DIB) 75wt%, 탄소 도전재 20wt%, PE 바인더 5wt%를 클로로포름과 함께 섞어서 같은 방법으로 도포하여 제조하였다.DIB was added to sulfur in the liquid phase heated to 180 ° C. and reacted until crosslinking reaction was complete to obtain a poly (Sr-DIB) containing 90 wt% of sulfur and 10 wt% of di-isopropenyl benzene ) Were synthesized. The poly (Sr-DIB) electrode was prepared by mixing 80 wt% of Super P carbon conductive material and 20 wt% of PVDF binder together with NMP solvent by ball milling to form an initial carbon layer by doctor blading, 75 wt% of poly (Sr-DIB), 20 wt% of carbon conductive material, and 5 wt% of PE binder were mixed with chloroform and coated in the same manner.

실시예 1: 물 접촉각 측정Example 1: Measurement of water contact angle

제조예 1에서 제조한 pDEGDA 고분자가 코팅된 poly(S-r-DIB) 전극 위에 증류수 한 방울(10㎕) 떨어뜨리고 접촉각 분석기(DSA, KRUSS)로 접촉각을 측정하고 이를 촬영한 사진을 도 2에 나타내었다. 도 2는 본 발명의 일 실시예에 따른 pDEGDA 고분자가 코팅된 웨이퍼(wafer)의 물 접촉각(water contact angle)을 도시한 단면도이다.A drop (10 μl) of distilled water was dropped on the poly (Sr-DIB) electrode coated with the pDEGDA polymer prepared in Preparation Example 1, and the contact angle was measured with a contact angle analyzer (DSA, KRUSS) . 2 is a cross-sectional view showing a water contact angle of a wafer coated with a pDEGDA polymer according to an embodiment of the present invention.

증착된 pDEGDA 리튬-황 이차전지용 전극은 물 접촉각이 약 45도로 친수성(hydrophilic) 성질을 가지고 있다.The electrode for the deposited pDEGDA lithium-sulfur secondary battery has a hydrophilic property with a water contact angle of about 45 degrees.

본 발명의 일 실시예에 따른 DEGDA 단량체와 pDEGDA고분자의 FT-IR 그래프인 도 3에 나타낸 바와 같이, 증착된 pDEGDA 리튬-황 이차전지용 전극은 단량체인 DEGDA와 비교하여 FT-IR 그래프상에서 증착 후에 카보닐기(carbonyl group)는 그대로 남아있는 반면 비닐기(vinly group)는 줄어들었음을 확인할 수 있다.As shown in FIG. 3, which is an FT-IR graph of the DEGDA monomer and the pDEGDA polymer according to an embodiment of the present invention, the deposited electrode for a lithium-sulfur secondary battery of pDEGDA was deposited on a FT- It can be seen that the carbonyl group remained intact while the vinly group decreased.

제조예 2~5에서 iCVD 공정을 통해 제조한 각각의 다양한 고분자를 SDIB 표면에 코팅한 후 측정한 물 접촉각을 도 4에 나타내었다(p4VP: poly 4-vinyl pyridine; pDEGDA: poly diethyleneglycoldiacrylate; pV4D4: poly 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane; pPFDMA: poly 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10 heptadecafluorodecyl methacrylate).The water contact angle measured after coating each SDIM surface with various polymers prepared in iCVD in Production Examples 2 to 5 is shown in Fig. 4 (p4VP: poly 4-vinyl pyridine: pDEGDA: poly diethyleneglycoldiacrylate: pV4D4: poly 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane, pPFDMA: poly 3,3,4,4,5,5,6,6,7,7,8,8,9, 9,10,10,10 heptadecafluorodecyl methacrylate).

도 4로부터 iCVD 공정을 통해 다양한 고분자를 SDIB 표면에 코팅을 실시하여 고분자가 증착된 poly(S-r-DIB) 전극을 제조할 수 있음을 확인하였다.From FIG. 4, it was confirmed that a poly (S- r- DIB) electrode with polymer deposition can be produced by coating various polymers on the SDIB surface through the iCVD process.

iCVD 공정을 통해 pMAA(poly methacrylic acid, 제조예 6) 증착 후 물에 세척한 후 SDIB와 강하게 접착(adhesion)된 부분이 남아 코팅 전과 비교하여 낮은 접촉각을 보였다.After the deposition of pMAA (poly methacrylic acid, Production Example 6) through the iCVD process, the area of the adhesion with SDIB showed a lower contact angle than that before coating.

도 5는 SDIB 필름 위에 pMAA 고분자를 iCVD 공정을 통해 코팅 전/후의 물 접촉각을 도시하였다. 제조예 7에 의한 pDMAEMA(poly dimethylaminoethylmethacrylate)를 코팅한 경우도 마찬가지로 pDMAEMA를 코팅하고 세척(washing)한 후에 비교예보다 낮은 접촉각을 보였다.FIG. 5 shows the water contact angle before and after coating the pMAA polymer on the SDIB film through the iCVD process. When pDMAEMA (poly dimethylaminoethylmethacrylate) coating according to Production Example 7 was coated, the contact angle was lower than that of Comparative Example after coating and washing with pDMAEMA.

도 6은 SDIB 필름 위에 pDMAEMA 고분자(제조예 7)를 iCVD 공정을 통해 코팅 전/후 물에 세척 후 접촉각 측정하여 비교예와 비교하였다.FIG. 6 compares pDMAEMA polymer (Preparation Example 7) on the SDIB film with a comparative example by measuring the contact angle after washing in water before and after coating by iCVD process.

실시예 2: 테이프 테스트(tape test)Example 2: Tape test

테이프 테스트 후 웨이퍼(wafer)에서는 접촉각(contact angle)의 변화가 있으나 SDIB 샘플 상에서는 큰 변화가 없었다.There was a change in the contact angle on the wafer after the tape test but no significant change on the SDIB sample.

iCVD를 이용한 pEGDMA 코팅 후 테이프 테스트로 리튬-황 이차전지용 전극과 SDIB 필름 간의 접착력을 확인하여 도 7에 도시하였다. 도 7에 나타낸 바와 같이, 기판과의 접착력(adhesion)이 좋지 않은 pDVB를 웨이퍼(wafer)와 S-r-DIB 샘플에 코팅하여 테이프 테스트를 실시하였다. 웨이퍼는 접촉각이 크게 변한 반면, SDIB는 약간의 변화만 발생하여 SDIB에서는 고분자가 거의 떨어지지 않는 것을 확인하였다.The adhesion test between the electrode for the lithium-sulfur secondary battery and the SDIB film was confirmed by a tape test after coating with pEGDMA using iCVD and is shown in FIG. As shown in FIG. 7, pDVB having poor adhesion with the substrate was coated on a wafer and an S-r-DIB sample to perform a tape test. The contact angles of the wafers were greatly changed, while the SDIB showed only slight changes, and the SDIB showed almost no polymer degradation.

도 8은 iCVD를 이용한 pDVB 코팅 후 테이프 테스트로 리튬-황 이차전지용 전극과 SDIB 필름 간의 접착력을 확인하였다. 웨이퍼는 접촉각이 크게 변한 반면, SDIB는 약간의 변화만 발생하여 SDIB에서는 고분자가 거의 떨어지지 않는 것을 확인하였다.8 shows the adhesion between the electrode for a lithium-sulfur secondary battery and the SDIB film by a tape test after pDVB coating using iCVD. The contact angles of the wafers were greatly changed, while the SDIB showed only slight changes, and the SDIB showed almost no polymer degradation.

실시예 3: 용매의 접촉각Example 3: Contact angle of solvent

클로로포름(chloroform)을 스핀 코팅(spin coating) 한 후, pDEGDA는 접촉각(contact angle) 비슷하게 유지되는 반면 베어(bare) SDIB는 접촉각이 감소하였다. 도 9는 pDEGDA가 코팅된 SDIB 필름과 베어(bare) SDIB 위에 클로로포름 스핀 코팅 전/후의 접촉각을 측정하여 도시하였다.After spin coating with chloroform, the pDEGDA maintained a similar contact angle, while bare SDIB decreased contact angle. FIG. 9 shows the contact angle before and after chloroform spin coating on pDEGDA-coated SDIB film and bare SDIB.

물 접촉각뿐만 아니라 DOL/DME 접촉각에서도 친용매성(philic) 성질을 나타내었다. 도 10은 베어(bare) SDIB와 pDEGDA가 코팅된 SDIB 위에서의 DOL/DME 용매의 접촉각을 도시한 것이다.Not only the water contact angle but also the hydrophilic property at the DOL / DME contact angle. Figure 10 shows the contact angle of the DOL / DME solvent on bare SDIB and pDEGDA coated SDIB.

실시예 4: 이차전지 셀의 제조 및 전지성능평가Example 4 Preparation of Secondary Battery Cell and Evaluation of Battery Performance

iCVD 방법으로 코팅된 황 전극은 글러브박스 안에서 리튬 음극, 분리막, 전해질과 함께 원형 이차전지 셀로 구성하였다. 리튬 음극은 니켈 조각과 결합하여 원형 셀의 바닥에 고정되었고, 폴리프로필렌 분리막을 그 위에 올린 후, 질산리튬(LiNO3, 0.38M), LiTFSI (0.38M), 디글리콜메틸에테르/디옥솔란(diglycolmethylether/dioxolane, 1:1)로 구성된 전해질 용액 0.01mL를 첨가하고 황 전극을 그 위에 덮어 밀봉하였다.The iCVD-coated sulfur electrode was composed of a circular secondary battery cell with a lithium anode, separator, and electrolyte inside the glove box. The lithium negative electrode was bonded to the bottom of the circular cell in combination with the nickel piece, and a polypropylene separator was placed thereon. Lithium nitrate (LiNO 3 , 0.38M), LiTFSI (0.38M), diglycolmethylether / dioxolane, 1: 1) was added, and a sulfur electrode was sealed thereon.

iCVD 방법으로 코팅된 poly(S-r-DIB) 전극의 전지 성능 평가도 같은 조건에서 실시하여 도 11에 도시하였다. 코팅하지 않은 poly(S-r-DIB) 전극의 경우 100회의 싸이클 이후 910mAh/g의 저장용량을 기록한 반면, 15nm와 50nm의 p(DEGDA)를 iCVD로 코팅한 전극은 951mAh/g 및 1000mAh/g으로 각각 용량이 증가하였다. 100nm 코팅의 경우, 충/방전 과전압이 증가하여, 코팅으로 인한 저장용량 증가가 상쇄된 것으로 판단된다.The performance evaluation of the poly (S-r-DIB) electrode coated with the iCVD method is also shown in FIG. 11 under the same conditions. In the uncoated poly (Sr-DIB) electrode, the storage capacity was 910 mAh / g after 100 cycles, while the electrodes coated with iCVD at 15 nm and 50 nm p (DEGDA) were 951 mAh / g and 1000 mAh / g Capacity increased. In the case of 100 nm coating, it was judged that charge / discharge overvoltage was increased and the storage capacity increase due to coating was canceled.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. Accordingly, the actual scope of the invention will be defined by the claims and their equivalents.

Claims (9)

다음의 단계를 포함하는 개시제를 사용하는 화학기상증착 반응기(iCVD)를 이용한 고분자 막의 제조방법:
(a) iCVD 반응기에 황 공중합체가 코팅된 기판을 올려 놓고 고정시키는 단계; 및
(b) 단량체와 개시제를 iCVD 반응기에 투입하여 상기 황 공중합체가 코팅된 기판 상에서 단량체의 중합을 통해 고분자를 증착시키는 단계,
상기 황 공중합체는 폴리(S-r-디이소프로페닐 벤젠)이고,
상기 단량체는 4-비닐피리딘(4-vinyl pyridine, 4VP), 2,4,6,8-테트라메틸-2,4,6,8-테트라비닐시클로테트라실록산(2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane, V4D4), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실메타크릴레이트(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate, PFDMA), 디에틸렌글리콜디아크릴레이트(diethyleneglycoldiacrylate, DEGDA), 디메틸아미노에틸메타크릴레이트 또는 메타크릴산임.
A process for preparing a polymer membrane using a chemical vapor deposition reactor (iCVD) using an initiator comprising the steps of:
(a) placing and fixing a substrate coated with a sulfur copolymer on an iCVD reactor; And
(b) depositing a monomer and an initiator into an iCVD reactor to deposit a polymer on the substrate coated with the sulfur copolymer through polymerization of the monomer,
The sulfur copolymer is poly (S r -diisopropenylbenzene)
These monomers include 4-vinyl pyridine (4VP), 2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane (2,4,6,8-tetramethyl -2,4,6,8-tetravinyl cyclotetrasiloxane, V4D4), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-hepta Decafluorodecyl methacrylate (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate, PFDMA), diethylene Diethyleneglycoldiacrylate (DEGDA), dimethylaminoethyl methacrylate or methacrylic acid.
삭제delete 제1항에 있어서,
상기 (b) 단계는 25~45℃의 온도 및 150~350mTorr의 압력에서 10분~12시간 동안 수행되는 것을 특징으로 하는 고분자 막의 제조방법.
The method according to claim 1,
Wherein the step (b) is performed at a temperature of 25 to 45 ° C and a pressure of 150 to 350 mTorr for 10 minutes to 12 hours.
제1항에 있어서,
상기 단량체와 개시제의 투입온도는 각각 20~100℃ 및 20~100℃이고, 상기 기판 및 챔버 내의 필라멘트의 온도는 각각 10~100℃ 및 100~500℃인 것을 특징으로 하는 고분자 막의 제조방법.
The method according to claim 1,
Wherein the charging temperature of the monomer and the initiator is 20 to 100 캜 and 20 to 100 캜, respectively, and the temperature of the filament in the substrate and the chamber is 10 to 100 캜 and 100 to 500 캜, respectively.
삭제delete 제1항에 있어서,
상기 (b) 단계에서 상기 단량체와 상기 개시제의 유량비는 1:1~4:1인 것을 특징으로 하는 고분자 막의 제조방법.
The method according to claim 1,
Wherein the flow ratio of the monomer to the initiator in the step (b) is 1: 1 to 4: 1.
제1항에 있어서,
상기 개시제는 화학식 1 내지 화학식 5의 퍼옥사이드(peroxide) 화합물 및 벤조페논(benzophenone) 화합물로 구성된 군에서 하나 이상 선택되는 것을 특징으로 하는 고분자 막의 제조방법:
[화학식 1]
Figure 112016019185599-pat00006

[화학식 2]
Figure 112016019185599-pat00007

[화학식 3]
Figure 112016019185599-pat00008

[화학식 4]
Figure 112016019185599-pat00009

[화학식 5]
Figure 112016019185599-pat00010
.
The method according to claim 1,
Wherein the initiator is at least one selected from the group consisting of a peroxide compound represented by Chemical Formulas 1 to 5 and a benzophenone compound.
[Chemical Formula 1]
Figure 112016019185599-pat00006

(2)
Figure 112016019185599-pat00007

(3)
Figure 112016019185599-pat00008

[Chemical Formula 4]
Figure 112016019185599-pat00009

[Chemical Formula 5]
Figure 112016019185599-pat00010
.
제1항에 있어서,
상기 고분자의 두께는 1nm~10㎛인 것을 특징으로 하는 고분자 막의 제조방법.
The method according to claim 1,
Wherein the polymer has a thickness of 1 nm to 10 占 퐉.
폴리(S-r-디이소프로페닐 벤젠)에 pDEGDA가 1nm~100nm의 두께로 코팅되어 있고, 100회의 사이클 이후 저장용량이 900~1500mAh/g인 것을 특징으로 하는 리튬-황 이차전지용 전극.The electrode for a lithium-sulfur secondary battery, wherein pDEGDA is coated to a thickness of 1 nm to 100 nm on poly (S-r-diisopropenylbenzene) and storage capacity is 900 to 1500 mAh / g after 100 cycles.
KR1020160023381A 2016-02-26 2016-02-26 Method of Preparing Polymer Film Using iCVD KR101763356B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160023381A KR101763356B1 (en) 2016-02-26 2016-02-26 Method of Preparing Polymer Film Using iCVD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160023381A KR101763356B1 (en) 2016-02-26 2016-02-26 Method of Preparing Polymer Film Using iCVD

Publications (1)

Publication Number Publication Date
KR101763356B1 true KR101763356B1 (en) 2017-08-14

Family

ID=60142318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160023381A KR101763356B1 (en) 2016-02-26 2016-02-26 Method of Preparing Polymer Film Using iCVD

Country Status (1)

Country Link
KR (1) KR101763356B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094681B1 (en) * 2018-12-13 2020-04-01 한국과학기술원 DOPING METHOD OF SEMICONDUCTOR STRUCTURE USING iCVD PROCESS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132890A (en) * 2001-10-27 2003-05-09 Samsung Sdi Co Ltd Positive electrode active material for lithium sulfur secondary battery and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132890A (en) * 2001-10-27 2003-05-09 Samsung Sdi Co Ltd Positive electrode active material for lithium sulfur secondary battery and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094681B1 (en) * 2018-12-13 2020-04-01 한국과학기술원 DOPING METHOD OF SEMICONDUCTOR STRUCTURE USING iCVD PROCESS

Similar Documents

Publication Publication Date Title
US10756321B2 (en) Ceramic coating on battery separators
Wei et al. Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries
CN106299244A (en) For the negative pole of lithium metal battery and the lithium metal battery including it
JP2015050188A (en) Composite negative electrode material for lithium ion batteries, and method for manufacturing the same
US8703333B2 (en) Electrode compositions and processes
KR20160043768A (en) Organic/inorganic composite separator, method for manufacturing the same and electrochemical device containing the same
KR20170112202A (en) Surface-coated electrode using polymer layers, preparing method of the same, and secondary battery including the same
Gui et al. A novel silsesquioxanes modified electrospun composite fibrous separator by in-situ crosslinking method for lithium-ion batteries
CA3137868A1 (en) Electrodepositable battery electrode coating compositions having coated active particles
KR101763356B1 (en) Method of Preparing Polymer Film Using iCVD
US11695187B2 (en) Functionalized separator having zwitterionic coating and method of fabricating thereof
CN117038847A (en) Lithium metal negative electrode, preparation method thereof and lithium metal battery
CN114464765A (en) Novel positive electrode structure, preparation method thereof and battery
KR102024898B1 (en) Separator and lithium battery comprising the same
CN113912898B (en) All-organic porous protective film for ultrahigh-rate high-capacity lithium metal negative electrode and preparation method and application thereof
KR101694473B1 (en) A method for manufacturing a separator for a lithium secondary battery and the separator fabricated by the same
KR101584627B1 (en) Battery having adhesive for battery and method for manufacturing the same
CN108539168B (en) Method for improving ageing resistance of lithium battery positive electrode material
US8709659B2 (en) Electrode composition with enhanced performance characteristics
US20230282932A1 (en) Manufacturing method for separator of lithium metal secondary battery and lithium metal secondary battery manufactured by using the same
WO1998053465A1 (en) Thin aprotic electrolyte films, immobilized liquid membrane conductors, and batteries
KR102493400B1 (en) Primer composition, negative electrode and secondary battery comprising the same, and method for manufacturing negative electrode
CA3230443A1 (en) Binder composition and slurry composition for lithium-ion electrical storage devices
KR100688658B1 (en) Cathode current collector primer solution for lithium secondary cell and lithium secondary cell comprising its
CN107275596B (en) Preparation method of lithium titanate negative electrode material and lithium titanate negative electrode material prepared by same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant