JPS5980186A - Rotor position detecting circuit for motor - Google Patents

Rotor position detecting circuit for motor

Info

Publication number
JPS5980186A
JPS5980186A JP57187939A JP18793982A JPS5980186A JP S5980186 A JPS5980186 A JP S5980186A JP 57187939 A JP57187939 A JP 57187939A JP 18793982 A JP18793982 A JP 18793982A JP S5980186 A JPS5980186 A JP S5980186A
Authority
JP
Japan
Prior art keywords
pulse
phase
circuit
code
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57187939A
Other languages
Japanese (ja)
Inventor
Keiji Sakamoto
坂本 啓二
Yukio Toyosawa
雪雄 豊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP57187939A priority Critical patent/JPS5980186A/en
Priority to PCT/JP1983/000380 priority patent/WO1984001821A1/en
Priority to US06/650,721 priority patent/US4623831A/en
Priority to DE8383903309T priority patent/DE3382126D1/en
Priority to EP83903309A priority patent/EP0154654B1/en
Publication of JPS5980186A publication Critical patent/JPS5980186A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24404Interpolation using high frequency signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/143Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit in pattern-reading type converters, e.g. having both absolute and incremental tracks on one disc or strip
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/26Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with weighted coding, i.e. the weight given to a digit depends on the position of the digit within the block or code word, e.g. there is a given radix and the weights are powers of this radix
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/28Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding
    • H03M1/30Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding incremental
    • H03M1/303Circuits or methods for processing the quadrature signals

Abstract

PURPOSE:To obtain a detecting circuit capable of readily generating a dense position signals exceeding the position code number of a position detector by displaying the rotating position of a rotor by the counted value of the fine rotating pulse from the position detector and a rough position code. CONSTITUTION:A normal rotation pulse PP and a reverse rotation pulse NP are outputted from a four times pulse generator 30 which inputs an A-phase pulse AP and a B-phase pulse BP from a pulse encoder (not shown). A preset data PC and a preset signal PS are outputted from a rise/fall detector 31 which inputs bits C1, C2, C4, C8 of position code IP from the pulse encoder. An up-down counter 32 set by data PD by a signal PS up counts the pulse PP, and down counts the pulse NP. The binary code of the code IP from a gray/binary converter 33 becomes more significant bit of the address of an ROM34 and the counted value of the counter 32 becomes less significant bit, and sintheta, costheta from the ROM34 are outputted through a D/A converter 35.

Description

【発明の詳細な説明】 本発明は、同期モータ等のロータの回転位置を検出する
モータのロータ位置検出回路に関し、特にロータに設け
られた検出器からの位置コード間を補間j〜て密な位置
コードを発生しうるモータのロータ位置検出回路に関す
る。。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor position detection circuit for a motor such as a synchronous motor, which detects the rotational position of a rotor, and particularly to a rotor position detection circuit for detecting the rotational position of a rotor such as a synchronous motor. The present invention relates to a motor rotor position detection circuit capable of generating a position code. .

回転界磁形の同期モータは、電機子を固定子とし、界磁
極を回転子と1〜て構成され、固定子巻線(電機子巻線
)に三相交流を印加することにより回転磁界を発生し、
界磁極を回転磁界で引っばって界磁極を回転磁界と同一
速度で回転せしめるものであるし 係る同期モータ(rz、直流モータに比し、速度制御が
複雑で制御回路の構成が複雑となると考えられていたが
、近年直流モータと同等のトルク発生制御を行なう駆動
方式が開発され、その速1W制御が容易となっている。
A rotating field type synchronous motor consists of an armature as a stator and field poles as a rotor, and generates a rotating magnetic field by applying three-phase alternating current to the stator windings (armature windings). occurs,
The field pole is pulled by a rotating magnetic field to cause the field pole to rotate at the same speed as the rotating magnetic field, and compared to such a synchronous motor (RZ, DC motor), the speed control is complicated and the configuration of the control circuit is considered to be complicated. However, in recent years, a drive system that performs torque generation control equivalent to that of a DC motor has been developed, and its speed control of 1W has become easier.

この駆動方式は、電機子電流と誘導起電圧との位相を同
相に制御すれば(主磁束と電機子電流か直交する様に制
御すれば)、トルク発生制御はIK流モータと同等とな
る。これを実現する((け、界磁極の位置(即ち、主磁
束の位相であり、誘導起電圧E(lの位相と90度ずれ
ている)を検出して、該位置に対応する位相を持つ電流
指令を発生し、この電流指令を同期電動機の電機子巻線
に印加することが必要となる。
In this drive system, if the phases of the armature current and induced electromotive voltage are controlled to be in phase (if the main magnetic flux and armature current are controlled to be orthogonal), torque generation control becomes equivalent to that of an IK-flow motor. To achieve this, detect the position of the field pole (that is, the phase of the main magnetic flux, and the induced electromotive force E (which is 90 degrees out of phase with the phase of l), and have a phase corresponding to the position. It is necessary to generate a current command and apply this current command to the armature windings of the synchronous motor.

一般にこの界磁極の位置を検出するために、界磁極(ロ
ータ)の回転軸にパルスロータを設け、このパルスロー
タからロータの回転位置に対応する位置コードを出力せ
しめてロータの回転位置を検出する構成のものが広く利
用されている。このパルスロータは所定角毎に位置コー
ドが放射状に配列さJ%y’c回転円板と、この位置コ
ードを読取る検出器から構成されているが、その円周−
ヒに配置される位置コードの数は分解能によって限られ
、分解能の高いグレーコード(Gray Code)を
位置コードに用いても、高々数百であるといわれており
、位置の検出の精度が充分でなく、従ってきめ細かな制
御が困難であった。
Generally, in order to detect the position of this field pole, a pulse rotor is provided on the rotating shaft of the field pole (rotor), and the pulse rotor outputs a position code corresponding to the rotor's rotational position to detect the rotor's rotational position. configuration is widely used. This pulse rotor consists of a rotating disk on which position codes are arranged radially at predetermined angles, and a detector that reads these position codes.
The number of position codes that can be placed on a machine is limited by its resolution, and even if a high-resolution Gray code is used as a position code, it is said that there will be only a few hundred at most, and the accuracy of position detection is insufficient. Therefore, fine control was difficult.

従って、本発明の目的は、ロータの回転位置を検出する
検出器の分解能による位置コード数の制限にかかわらず
、検出器の位置コード数金越える密な位置信号を容易に
発生しうるモータのロータ位置検出回路を提供するにあ
る。
Therefore, an object of the present invention is to provide a motor rotor that can easily generate a dense position signal that exceeds the number of position codes of a detector, regardless of the limit on the number of position codes due to the resolution of a detector for detecting the rotational position of the rotor. To provide a position detection circuit.

以下、本発明を図面に従い詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例全体プロツク図である。FIG. 1 is an overall block diagram of one embodiment of the present invention.

図中、1は回転界磁形の同期モ′−タ、2Il′i・く
ルスエンコーダであり、同期電動機1のシャフトに直結
され、各種の位置−信号を発生するものである。
In the figure, reference numeral 1 indicates a rotating field type synchronous motor, and 2Il'i/Curse encoder, which is directly connected to the shaft of the synchronous motor 1 and generates various position signals.

このパルスエンコーダ2については、第2図及ヒ第3図
構成図を用いて詳細に説明する。ノクルスエンコーダ2
は同期電動機1のシャフトに直結される回転軸20にコ
ード板26が設けられてなり、コード板23の位置信号
を読取るだめの発光ダイオード等の発光素子22と、フ
ォトダイオード等の受光素子21とがコード板26をj
dさんで対向して設けられ、更に出力回路24が設けら
れる。
This pulse encoder 2 will be explained in detail using the configuration diagrams of FIG. 2 and FIG. 3. noculus encoder 2
A code plate 26 is provided on a rotating shaft 20 that is directly connected to the shaft of the synchronous motor 1, and a light emitting element 22 such as a light emitting diode for reading the position signal of the code plate 23 and a light receiving element 21 such as a photodiode. is the code plate 26
d are provided facing each other, and an output circuit 24 is further provided.

コード板23は第6図に示す様に人相トラツクa1B相
トラックb、及び4トラツクから成るコードトラックd
が同心円上に形成されており、A相及びB相トラックa
、bには各々π/21どけ位相のずれた回転パルス列(
インクリメンタル)くルス)がコード板回転時に発生す
る様ノ(ターンが形成されている。
As shown in FIG. 6, the code plate 23 includes a physiognomy track a1B phase track b, and a code track d consisting of four tracks.
are formed on concentric circles, and A phase and B phase tracks a
, b are rotating pulse trains (with a phase shift of π/21).
Incremental curves) occur when the cord plate rotates (turns are formed).

一方、コードトラックdは4トラツクからなり。On the other hand, chord track d consists of 4 tracks.

コード板の各回転角対応に各々異なる4ビツトの位置コ
ード(アブソリュートコード)が発生する様に各トラッ
クのパターンが形成されており、位置コードとしてはグ
レイコードが用いられる。3は後述するサイン波発生回
路であり、カウンタをKK L、パルスエンコーダ2か
らの位置コートIPがセットぢ才しるとともFCパルス
エンコーダ2からの人相パルスAP及びB相パルスBP
を計数し、その計数値に応じた5ino値、C’OSθ
値を出力するものである。。
Each track pattern is formed so that a different 4-bit position code (absolute code) is generated corresponding to each rotation angle of the code plate, and a gray code is used as the position code. 3 is a sine wave generation circuit which will be described later, and when the counter is set to KKL and the position code IP from the pulse encoder 2 is set, the human phase pulse AP and the B phase pulse BP from the FC pulse encoder 2 are set.
5ino value according to the counted value, C'OSθ
It outputs a value. .

7υよサイン波発生回路3からの正ノ<ルス列PP或い
は負パルス列NPのパルス速度を電圧に変換するF/V
変換器であり、その出力電圧情同朋モータ1の回転速度
に比例し実速度雷、圧TSAとなる。
7υ F/V that converts the pulse speed of the positive pulse train PP or negative pulse train NP from the sine wave generation circuit 3 into voltage.
It is a converter, and its output voltage is proportional to the rotational speed of the motor 1 and becomes the actual speed and pressure TSA.

8tま図示しない速度指令回路から指令されだ速度指令
電圧VCMDと実速度電圧TSAO差(以後速度誤差と
いう)El(を演算する演舒回路、9は速度誤差ER金
増幅して電機子電流の振幅ISを出力する誤差アンプ、
10a及び10b  は乗算回路で、誤差アンプ9の出
力とサイン波発生回路6の出力cosθ、sinθとを
乗算し2相の電流指令I、 a (=Isssinθ)
 、 I□b (=lsecosθ)をそれぞれ出力す
る。11は2相信号を3相に変換する2相−6相変換回
路で、第4図に示すような回路構成を有している。即ち
、2相−6相変換回路11は2つのオペレーションアン
プOA1 、 OA2 と、ioKΩの抵抗R8〜R4
と、578にΩの抵抗Iも、と、5にΩの抵抗R6を有
している1、さて、各抵抗R。
8t is an operator circuit that calculates the difference (hereinafter referred to as speed error) El between the speed command voltage VCMD commanded from a speed command circuit (not shown) and the actual speed voltage TSAO (hereinafter referred to as speed error), and 9 is an operator circuit that amplifies the speed error ER to obtain the amplitude of the armature current. error amplifier that outputs IS;
10a and 10b are multiplier circuits that multiply the output of the error amplifier 9 and the output cosθ, sinθ of the sine wave generation circuit 6 to obtain two-phase current commands I, a (=Isssinθ).
, I□b (=lsecosθ), respectively. Reference numeral 11 denotes a 2-phase to 6-phase conversion circuit for converting a 2-phase signal into 3-phase signals, and has a circuit configuration as shown in FIG. That is, the 2-phase to 6-phase conversion circuit 11 includes two operational amplifiers OA1 and OA2 and ioKΩ resistors R8 to R4.
1, which has a resistor I of Ω at 578, and a resistor R6 of Ω at 5. Now, each resistor R.

〜R,の値を上記のように決定すると共に図示の如く結
線すると、端子Tu 、 Tv 、 Tw からそtt
それが出力される。そして、これらlu 、 Iv 、
 iw (d−互いに2π15の位相差を有し、しかも
誘導起電圧EOと同相の3相電流指令となっている。
If the value of ~R is determined as above and the wires are connected as shown, from the terminals Tu, Tv, Tw, tt
It will be output. And these lu, Iv,
iw (d-) This is a three-phase current command that has a phase difference of 2π15 from each other and is in phase with the induced electromotive force EO.

12 a ’、 12 b 、 12 cは指令電流I
u 、 Iv 、 1wと実際の相電流の差を求める演
算回路であり、それぞれ各411毎指令電流Iu 、 
Iv 、 Iw  と変流器15a。
12a', 12b, 12c are command currents I
This is an arithmetic circuit that calculates the difference between u, Iv, 1w and the actual phase current, and each 411 command current Iu,
Iv, Iw and current transformer 15a.

151、> 、 15 cで検出された実際の相電流I
au 、 Iav。
Actual phase current I detected at 151, > , 15 c
au, Iav.

Iawの差を演算するものである。i3a、13b。This is to calculate the difference in Iaw. i3a, 13b.

13Cはそれぞれ各相毎に設けられ各相の電流差を増幅
する直流アンプ、14a、14b、14c  はパルス
幅変調兼インバータ回路である。パルス幅変i!J、v
l兼インバータ回路14a、14b、14cの各々は、
第5図に示ずように鋸歯状信号STS′fc発生する鋸
歯状波発生回路5TSG、比較器COMu、COMv。
13C is a DC amplifier provided for each phase and amplifies the current difference between the phases, and 14a, 14b, and 14c are pulse width modulation/inverter circuits. Pulse width changei! J,v
Each of the l-cum-inverter circuits 14a, 14b, and 14c is
As shown in FIG. 5, a sawtooth wave generation circuit 5TSG generates a sawtooth signal STS'fc, and comparators COMu and COMv.

COM w、ツノトゲ−) N0T1〜NOT、l、 
 ドライバ回路工〜I)V、をイ1し、インバータ14
は6個のパワートジンジスタQ1〜Q、とダイオードD
、−D、を有している。これらはパルス幅変調回路14
0を構成し、各比較器COMu、COMv、C0Mwは
それぞれ鋸歯状波信号STSと三相交流信号iu 、 
lv 。
COM w, horn toge) N0T1~NOT, l,
Driver circuit engineer ~ I) I1, V, and inverter 14
is six powered ginger transistors Q1 to Q, and a diode D.
, -D. These are the pulse width modulation circuit 14
0, and each comparator COMu, COMv, C0Mw receives a sawtooth wave signal STS and a three-phase AC signal iu, respectively.
lv.

iwの眼幅を比較しiu、iv、iwが8TSの値より
大きいときには′1″を、小さいとぎにはゞ′0″を出
力する。従って、今、iuについて着目すると比較器C
OMuから第6図に示すパルス幅変調されブこ電流指令
iucが出力される。即ち、iu、iv、iwの振幅に
応じてパルス幅変調さ11だ三相の霜;流指令iuc 
、 ivc 、、 iwcが出力される。ついで、ノッ
トゲートN0T1〜NOT、、ドライバ回路D■1〜I
JV6ばこれら電流指令iuc 、 ivc 、 iw
c を駆動信号sQ+〜SQ、に変換し、インバータ1
41を構成する各パワートランジスタQ、〜Q6tオン
/オフ制御する1、尚、142は直流給電用の整流回路
である。15a、1jb’、15c  は相電流を検出
する変流器である。
The interpupillary distance of iw is compared, and when iu, iv, and iw are larger than the value of 8TS, '1' is output, and when they are smaller, '0' is output. Therefore, if we focus on iu now, the comparator C
A pulse width modulated air current command iuc shown in FIG. 6 is output from OMu. That is, the pulse width is modulated according to the amplitudes of iu, iv, and iw.
, ivc,, iwc are output. Next, NOT gate N0T1~NOT,, driver circuit D■1~I
For JV6, these current commands iuc, ivc, iw
c into drive signals sQ+~SQ, and inverter 1
1 controls on/off of each power transistor Q, to Q6t constituting 41, and 142 is a rectifier circuit for DC power supply. 15a, 1jb', and 15c are current transformers for detecting phase currents.

次に第1図の回路の動作を説明する。Next, the operation of the circuit shown in FIG. 1 will be explained.

電源がオンさrすると、サイン波発生回路3にはパルス
エンコーダ2の位置コードIPが入力され、これに応じ
てCOSθ値、5inQ値に変洟さfl、 、C,O1
9゜sinθに応じた電圧が出力されることになる。そ
して、以後、同期モータ1に速度指令VCMDが与えら
れて三相交流が供給され、同期モータ1が回転すると回
転方向に応じて人相パルスAP及びB相パルスB 、P
 力パルスエンコーダ2かう発生、t、、カウンタがこ
れを計数し、位置コードIPとともに回転子の位置θに
応じた正弦波S団θ、余弦波cosθが出力される。
When the power is turned on, the position code IP of the pulse encoder 2 is input to the sine wave generation circuit 3, and the COSθ value is changed to the 5inQ value fl, , C, O1 accordingly.
A voltage corresponding to 9° sin θ is output. Thereafter, the speed command VCMD is given to the synchronous motor 1, three-phase AC is supplied, and when the synchronous motor 1 rotates, a human phase pulse AP and a B phase pulse B, P are generated depending on the rotation direction.
When the force pulse encoder 2 generates t, a counter counts this and outputs a sine wave S group θ and a cosine wave cos θ according to the rotor position θ along with the position code IP.

一方、同期モータ1には、所望の回転速度V−cで回転
せしめるぺく、演算回路8の加算端子に所定のアナログ
値を有する速度指令電圧VCMDが入力される。同期モ
ータ1は実速度Va((Vc)で回転しているから、F
/V変換器7より実速度Vaに比例した実速度電圧T8
Aが出力され、この実速度電圧T S A iは演算回
路8の減算端子に入力される。従って、演算回路8は指
令速度Vcと実速度VaO差である速度誤差1を演算し
、 これを誤差アンプ9に入力する。誤差アンプ9は次
式に示す比例積分演算を行なう。
On the other hand, to rotate the synchronous motor 1 at a desired rotational speed Vc, a speed command voltage VCMD having a predetermined analog value is input to an addition terminal of an arithmetic circuit 8. Since the synchronous motor 1 is rotating at the actual speed Va ((Vc), F
Actual speed voltage T8 proportional to actual speed Va from /V converter 7
A is output, and this actual speed voltage T S A i is input to the subtraction terminal of the arithmetic circuit 8 . Therefore, the calculation circuit 8 calculates a speed error 1 which is the difference between the command speed Vc and the actual speed VaO, and inputs this into the error amplifier 9. The error amplifier 9 performs proportional-integral calculation as shown in the following equation.

尚、(2)式の演算結果Isは電機子電流の振幅に和尚
する。即ち、負荷が変動し、あるいは速度指令が変化す
ると速度誤差ER(=Vc=Va)が犬きくなり、これ
に応じて電機子市川振幅Isも大きくなる。Isが大き
くなればより大きなトルりが発生し、このトルクにより
電動機の実速度が指令速度にもたらされる。
Note that the calculation result Is of equation (2) corresponds to the amplitude of the armature current. That is, when the load fluctuates or the speed command changes, the speed error ER (=Vc=Va) increases, and the armature Ichikawa amplitude Is also increases accordingly. As Is increases, greater torque is generated, and this torque brings the actual speed of the motor to the commanded speed.

一方、同期モータ1の界磁極の位置θを示す2相の正弦
波cosθ、余弦波sinθが前述の如くサイン波発生
回路3から出力されているから乗算回路10a、10b
は、 I、a = Is * sinθ 、  11b = 
Is @cosθの演算を行ない2相の電流指令11a
 、 11bを出力する。ついで2相−3相変換回路1
1は(1)式に示す演算を行ない3相の直流指令Iu、
Iv、Iwをそれぞれ出力する。尚、これらIu、Iv
、I〜■は同期電動機1の誘導起電圧EOと同相の6相
電流指令とICっている。
On the other hand, since the two-phase sine wave cos θ and cosine wave sin θ indicating the position θ of the field pole of the synchronous motor 1 are output from the sine wave generating circuit 3 as described above, the multiplier circuits 10a and 10b
I, a = Is * sin θ, 11b =
Is @ cos θ is calculated and the two-phase current command 11a is
, 11b is output. Next, 2-phase to 3-phase conversion circuit 1
1 performs the calculation shown in equation (1) to obtain the three-phase DC command Iu,
Output Iv and Iw, respectively. Furthermore, these Iu, Iv
, I to ■ are six-phase current commands in phase with the induced electromotive force EO of the synchronous motor 1 and IC.

しかる後、3相電流指令Iu、Iv、Iwは演算回路1
2a、12b、12Cにて実1県の相電流Iau 、 
Iav 。
After that, the three-phase current commands Iu, Iv, and Iw are sent to the arithmetic circuit 1.
At 2a, 12b, 12C, the phase current Iau of one prefecture,
Iav.

Iawと差分がとられ、ついでその差分である三相交流
信号iu、iv、iwは増幅されてパルス幅変調兼イン
バータ回路1da、14b、llcの比較器COMU。
A difference is taken from Iaw, and the three-phase alternating current signals iu, iv, iw, which are the differences, are then amplified and sent to the comparators COMU of the pulse width modulation and inverter circuits 1da, 14b, and llc.

COMV 、 COMW K Ell 加すtlル。各
比較器COMU 。
COMV, COMWKell addtlle. Each comparator COMU.

COMV 、 COMWはそれぞれ鋸歯状波信号STS
と三相交流信号iu、iv、iwの撮幅を比較し、パル
ス幅変調された三相の電流指令iuc 、 ivc 、
 iwcを出力し、ノントゲートN0T1〜N O’r
 、及びドライバDV、〜1〕■6を介してインバータ
駆動信号SQ+〜sQeを出力ずろ。これらインバータ
駆動信号sQi〜S(ムけそJしぞれインバータ141
を、構成する各パ1ツートランジスタQ、〜Q、のベー
スに人力され、こノシラ各ハワートランジスタQ、〜Q
otオン7/オフf!tll tl(l l、、同期電
動機1に三相電流を供給する。
COMV and COMW are sawtooth wave signals STS, respectively.
The widths of the three-phase AC signals iu, iv, iw are compared, and the pulse width modulated three-phase current commands iuc, ivc,
Output iwc, non-gate N0T1~N O'r
, and driver DV, ~1] (1) Outputs inverter drive signals SQ+ to sQe through 6. These inverter drive signals sQi to S (each inverter 141
is manually applied to the base of each P1-to-transistor Q, ~Q, that constitutes, and each Howard transistor Q, ~Q
ot on 7/off f! tll tl(l l,, supplies three-phase current to the synchronous motor 1.

以後、同様な制イ卸が行われて最終的に同期電動機1は
指令速)史で回転することになる。
Thereafter, similar control is performed and the synchronous motor 1 finally rotates at the commanded speed.

次に、本発明によるロータ位置検出回路を含むサイン波
発生回路の構成及び動作について説明する。
Next, the configuration and operation of a sine wave generation circuit including a rotor position detection circuit according to the present invention will be explained.

第7図は本発明の一実施例ブロック図であり、図中、3
0は4倍パルス発生回路であり、人相、B相回転パルス
AP、BPから、正回転なら4倍の数の正回転パルスP
Pを、逆回転なら4倍の数の逆回転パルスNPを発生す
るもの、31は立上り/立下り検出回路であり、位置コ
ードIP各ビット01〜C8の立上り/立下りを検出し
て、後述するカウンタのプリセットデータPD、ブリセ
、ト信号PSを出力するもの、321dアツプダウンカ
ウンタであり、立上り/立下り検出回路51のプリセッ
ト信号PSによりプリセットデータPDがセットされ、
正回転パルスPPをアップカウントし、又は逆回転パル
スNPをダウンカウントするもの、33はグレイ/バイ
ナリ−変換回路であり。
FIG. 7 is a block diagram of one embodiment of the present invention, in which 3
0 is a quadruple pulse generation circuit, which generates four times the number of forward rotation pulses P for forward rotation from the human phase and B phase rotation pulses AP and BP.
31 is a rising/falling detection circuit which detects the rising/falling of each bit 01 to C8 of the position code IP, and generates four times the number of reverse rotation pulses NP in the case of reverse rotation. This is a 321d up-down counter that outputs preset data PD, brisset, and start signals PS of the counter, and the preset data PD is set by the preset signal PS of the rising/falling detection circuit 51.
33 is a gray/binary conversion circuit that counts up the forward rotation pulse PP or down counts the reverse rotation pulse NP.

位置コードIP(ビットC1〜C8)のグI/イコード
をバイナリ−コードに変換するもの、64はリードオン
リーメモリ(ROM)であり、各アドレスにサイン波、
コサイン波の各デジタル値別!1θ値。
64 is a read-only memory (ROM) that converts the position code IP (bits C1 to C8) into a binary code, and a sine wave,
Each digital value of cosine wave! 1θ value.

cose値を記憶し、グレイ/バイナリ−変換回路33
のバイナリ−位置コードをアドレスの上位桁とし、カウ
ンタ32のカウント値をアドレスの下位桁としで、対応
するsinθ値、 cosθ値が読出されるもの、65
はデジタルアナログ(D A )変換器であり、ROM
、B4からの5ino値、 coso値をアナログ出力
に変1免し、乗算回路10a 、10b (第1図)に
出力するものである。
A gray/binary conversion circuit 33 stores the cose value.
The binary position code of is used as the upper digit of the address, the count value of the counter 32 is used as the lower digit of the address, and the corresponding sin θ value and cos θ value are read out, 65
is a digital-to-analog (DA) converter, and the ROM
, B4, the 5ino value and the coso value are converted into analog outputs and output to the multiplication circuits 10a and 10b (Fig. 1).

前述の4倍パルス発生回路30は、人相パルスA Pに
対しN O’I’回路N1、フリップフロップ回路F’
F’1.li’F’2が設けられ、B相パルスBP  
に対しNOT回路N2、フリップフロップ回路F F 
3 、 F F 4/バ設けらfしている。更に各フリ
ップフロップ回路F F 1〜F F 4の出力から正
回転パルスPP又は逆回転パルスを作成するゲート群回
路GCとが設けられている。)■8図の波形図によりこ
れを説明すると、モータが正回転しているものとすると
、B相パルスBPはA相パルスAPK対(290°遅れ
だ関係で発生し、逆にモータが逆回転していると、人相
パルスAPはB 相パルスBPに対シー 900遅れた
関係で発生する。従って、第8図の正回転の場合の波形
図に示す様シこ、フリップフロップ回路FF1相パルス
APと同相又は逆相の出力が発生される。
The above-mentioned quadruple pulse generation circuit 30 has a N O'I' circuit N1 and a flip-flop circuit F' for the human phase pulse A P.
F'1. li'F'2 is provided, and the B-phase pulse BP
For NOT circuit N2, flip-flop circuit F
3, FF4/bar is provided. Furthermore, a gate group circuit GC is provided which creates a forward rotation pulse PP or a reverse rotation pulse from the output of each flip-flop circuit FF 1 to FF 4 . ) ■ To explain this using the waveform diagram in Figure 8, assuming that the motor is rotating in the forward direction, the B-phase pulse BP is generated with a 290° delay from the A-phase pulse APK, and conversely, when the motor is rotating in the reverse direction, , the human-phase pulse AP is generated with a delay of 900 sec from the B-phase pulse BP. Therefore, as shown in the waveform diagram for forward rotation in Figure 8, the flip-flop circuit FF1-phase pulse An output that is in phase or out of phase with the AP is generated.

この出力A 1. A Iは、フリップフロップ回路F
’ F 2で1クロック分遅延させ各々出力A2.A2
となる。
This output A1. A I is a flip-flop circuit F
' Delay by one clock with F2 and output A2. A2
becomes.

B相パルスBPに対しても同様であり、フリップフロッ
プ回路FFs、FF4により出力B1 、B1 、B2
 。
The same applies to the B-phase pulse BP, and the flip-flop circuits FFs and FF4 output B1, B1, B2.
.

B2が発生する。これらの8つの出力AI 、AI 。B2 occurs. These eight outputs AI, AI.

A2 、A2 、B1 、B1 、B2 、B2はゲー
ト群回路G、 Cに人力され、正回転パルスPP又は逆
回転パルスNPが作成される。即ち、正回転パルスPP
は、(A1・A2・81)、(A101へ1・132 
) 、 (A1・A2豐81)、(Al・131・B2
)  の条件で作成きれるから、この条件を取る4つの
アンドゲートが設けられ、更((このアンドゲートの出
力の論理和をとるオアゲートが設けられ、オアゲートの
出力が第8図の正回転パルスPPとなり、人相又はB相
パルスAP、Bl’の4倍のパルスとなる。逆にモータ
が逆回転の場合には、第8図の人相パルスによる出力A
1〜A2.B相パルスによる出力81〜B2の位相関係
は逆にな件で作成され、この条件を取る4つのアンドゲ
ートが設けられ、更にこのアンドゲートの出力の論理和
をとるオアゲートが設けら11、オアゲートの出力が逆
回転パルスNPとなり、人相、B相パルスAP、BPの
4倍のパルスとなる。従って、ゲート群回路GCからは
正回転の場合iCvよ正回転パルスPPのみが出力し、
逆回転の場合には逆回転パルスNPのみが出力すること
Vこなる。
A2, A2, B1, B1, B2, and B2 are manually input to the gate group circuits G and C to create a forward rotation pulse PP or a reverse rotation pulse NP. That is, the forward rotation pulse PP
is (A1・A2・81), (1・132 to A101
), (A1・A2 豐81), (Al・131・B2
), so four AND gates that take this condition are provided, and an OR gate that takes the logical sum of the outputs of the AND gates is provided, and the output of the OR gate is the forward rotation pulse PP shown in Figure 8. Therefore, the pulse is 4 times the human phase or B phase pulse AP, Bl'.On the other hand, when the motor is rotating in the reverse direction, the output A due to the human phase pulse in Fig. 8 is
1-A2. The phase relationship between the outputs 81 and B2 due to the B-phase pulse is created in the opposite manner, and four AND gates that take this condition are provided, and an OR gate that takes the logical sum of the outputs of these AND gates is provided. The output becomes the reverse rotation pulse NP, which is four times the human phase and B phase pulses AP and BP. Therefore, in the case of forward rotation, only the forward rotation pulse PP is output from the gate group circuit GC,
In the case of reverse rotation, only the reverse rotation pulse NP is output.

次に前述の立上り/立下り検出回路61は、位+it=
+−ドI Pの各ピッ) cl 、C2,C4,CB 
IC対し、NOT回路N5.N4.N5.N6.前段フ
リップフロップ回路1i’F5 、 FF7 、 FF
9 、 FF11.後段フリッグフ07ブ回路FF6.
FF8.FF1o 、FF12 カ各々設けられている
61位置コードIPの各ピッ) C1、C2。
Next, the rise/fall detection circuit 61 described above calculates the position +it=
+-do I P each pitch) cl, C2, C4, CB
For IC, NOT circuit N5. N4. N5. N6. Front stage flip-flop circuit 1i'F5, FF7, FF
9, FF11. Post-stage flip flop 07 circuit FF6.
FF8. Each pin of 61 position codes IP provided in FF1o and FF12) C1, C2.

C4,C3iC対し、各々4つの出力Cs1.C肩、C
B2゜C82,C41、C4+ 、C42,C42,C
21、C21,C22゜C22、C11、(11、CI
 2 、CI2  が出力さオする1、この4つの出力
の位21B関係は第8図のA相パルスAPニヨる出力N
1〜A2の関係と同一である。
C4, C3iC each have four outputs Cs1. C shoulder, C
B2゜C82, C41, C4+, C42, C42, C
21, C21, C22° C22, C11, (11, CI
2, CI2 outputs 1, and the relationship between these four outputs is the A-phase pulse AP output N in Figure 8.
This is the same relationship as 1 to A2.

こ11らの16の出力C81〜CI2はゲート群回路G
Dに人力し、プリセ・ソトデータPD、プリーヒツト信
号PSが作成される。先づ、ゲート群回路GDは位置コ
ードIPの変化点(立上り/立下り)を検出する。即ち
、前述の如く4つの出力081〜0828図の出力A1
〜A2と同一の位相関係とf、Cる力1ら。
These 11 and 16 outputs C81 to CI2 are the gate group circuit G.
D is manually operated to create preset/soto data PD and prehit signal PS. First, the gate group circuit GD detects the point of change (rising/falling) of the position code IP. That is, as mentioned above, the output A1 of the four outputs 081 to 0828
~ Same phase relationship as A2 and f, C force 1 et al.

るから、これらの条件をとる4つσ)アンドゲートを設
ければよい。又、各ビットの立上りは、(C81−CB
2) 、 ((11−Cv2) 、 (C21−022
) 、 (C11−012)の条件で検出出来、これら
σ−)条件をとる4つのアンドゲートを設ければ良い。
Therefore, it is sufficient to provide four σ) AND gates that meet these conditions. Also, the rising edge of each bit is (C81-CB
2) , ((11-Cv2) , (C21-022
), (C11-012), and it is sufficient to provide four AND gates that take these σ-) conditions.

この8つのアンドゲートの出力はオアゲートで論理和を
取られ、プリセット信号PSとして出力される。
The outputs of these eight AND gates are logically summed by an OR gate and output as a preset signal PS.

更に、ゲート群回路GD1.は、前:r+1% F) 
16の人ブjCF11〜Cv′2からモータの回転方向
を検出し、正回転なら”oooo”を、逆回転なら”1
111”のブlノセットデータを出力する回路を41”
する3、これに(/iスクレーードの変化を利用する。
Furthermore, gate group circuit GD1. is before: r+1% F)
The direction of rotation of the motor is detected from the 16 human valves jCF11 to Cv'2, and if it is forward rotation, it will indicate "oooo", and if it is reverse rotation, it will indicate "1".
The circuit that outputs the 111" burino set data is 41".
3. Use the /i sclade change for this.

即ち、グレーコードは次表の如く配置される。That is, the gray codes are arranged as shown in the following table.

表 従って、正回転をNllの増加方向、逆回転をNaの減
少方向とすると、0000”から10001″への正回
転の変化1d、現位置コードが”0000”であり、ピ
ッ) CI [、!、=いて立上りが生じた場合である
から、条件(CI32−C42・C22・C12×C1
1・Cl2)により検出出来る。同様に0001”’か
ら”0011”への正回転変化も、現位置コードIPが
“’0001”でありビットC2において立上りが生じ
た場合であるから、条件(C82−C42・C22・C
l2X、C21・C22)により検出出来る。以下同様
にして、16通りの条件が成立し、これにより正回転が
検出出来、正回転方向パルスを出力しつる。従ってこれ
らの条件の各々をとる16ケのアンドゲートを設け、更
にこれらアンドゲートの出力の論理和をとるオアゲート
を設け、オアゲートの出力(正回転方向パルス)でoo
oo’のプリセット1−タPDを発生する回路を設けれ
ば、正回転を検10シ、フ“リセットデータ″oooo
”を出力出来る。逆に逆1(支)転の場合には、”oo
oi″′から“0000”への変化は。
Table Therefore, if forward rotation is the increasing direction of Nll and reverse rotation is the decreasing direction of Na, then the change in forward rotation from 0000" to 10001" is 1d, the current position code is "0000", and the CI [,! , = and a rising edge occurs, so the condition (CI32-C42・C22・C12×C1
1.Cl2). Similarly, the positive rotation change from 0001"' to "0011" is also a case where the current position code IP is "'0001" and a rising edge occurs at bit C2, so the condition (C82-C42・C22・C
12X, C21/C22). Thereafter, 16 conditions are met in the same manner, whereby forward rotation can be detected and a forward rotation direction pulse is output. Therefore, 16 AND gates that take each of these conditions are provided, and an OR gate that takes the logical sum of the outputs of these AND gates is also provided, and the output of the OR gate (forward rotation direction pulse) is used to calculate oo
If a circuit is provided to generate the preset data PD of oo', it will detect the forward rotation and generate the reset data oooo.
” can be output. Conversely, in the case of reverse rotation, “oo
What is the change from oi″′ to “0000”?

現位置コードが”0001″′であり、ビットC1にお
いて立下りが生じた場合であるから、条件(C82・m
l・呂i・Cl2XC11・Cl2)により検出出来、
前述の正回転と同様16通りの条件を設定し、これらに
対応する16コのアンドゲートと、1コのオアゲートと
、プリセットデータFDとして’1111”を発生する
回路を設けfl、 :ql’良い、。
Since the current position code is "0001"' and a falling edge occurs at bit C1, the condition (C82・m
l・roi・Cl2XC11・Cl2),
Similar to the above-mentioned forward rotation, 16 conditions are set, and 16 AND gates corresponding to these conditions, 1 OR gate, and a circuit that generates '1111' as preset data FD are provided, and fl, :ql' is good. ,.

以上はグレーコードの変化を利用]1.でいるカミ、位
置コードがバイナリ−コードの場合には、ノくイナリー
コードの変化を利用して同様に実現I月未る。
The above uses changes in the Gray code]1. If the position code is a binary code, it can be similarly realized using changes in the binary code.

次に第7図構成の動作について説明すると、先づ、モー
タが正回転なら、4倍・シルレス発生回路30から前述
のA相、B相ノくJレスAP、13Pを利用し1.て正
回転パルスPPが発生し、カウンタg2id:これをア
ップカウントす番。一方、位置コードIPは立上り/立
下り検出回路31に入力し、変化点(立、上り/′立下
り)が検出さすし、プリセット信号PSが発生ずるとと
もに、この変化点の発生毎に正Jjil転方向パルスが
出力し、プリセットデータPDとして” o o o 
o ”が発生する。カウンタ32はこの変rヒ点の倹1
()毎にプリセットデータP D ”0000’にプリ
セットされ、以後次の変化点が検出(プリセット信号P
Sが発生)する−まで、正回転パルス1) Pをアップ
カウントする。この泣慴コードTPはグl/ −/’ハ
イノーリー変換回路63でパイヅリーの位置コー1−I
Pに変換され、ROM54のアドレスのに位桁とl−で
1(,0M5aに人力し7、更fカウンタ32のカウン
ト値1dアドレスの下位桁とし−CROM34に人力し
、この組合せによってROM34の対応アドレスのsi
nθ値、 cosθ値が読出さ、′11.る。
Next, the operation of the configuration shown in FIG. 7 will be explained. First, if the motor rotates in the forward direction, 1. Then, a forward rotation pulse PP is generated, and the counter g2id: it is the turn to count up this. On the other hand, the position code IP is input to the rising/falling detection circuit 31, and a changing point (rising, rising/'falling) is detected, a preset signal PS is generated, and a positive Jjil signal is generated every time this changing point occurs. The rotation direction pulse is output and as preset data PD" o o o
o'' occurs. The counter 32 calculates the value of this invariant point.
(), the preset data P D is preset to "0000", and thereafter the next change point is detected (preset signal P
Count up the forward rotation pulse 1) P until S occurs). This crying code TP is converted to the position code 1-I of the piston by the high-nolly conversion circuit 63.
It is converted to P, and the digit and l- of the address of the ROM 54 are manually inputted to 1 (, 0M5a, 7, and the count value of the f counter 32 is 1d. The lower digit of the address is input to the CROM 34, and this combination determines the correspondence of the ROM 34. address si
nθ value and cosθ value are read, '11. Ru.

従って、ROM34に与えられるアドレスは、位14コ
ードI’Pだけの場合の2 倍(nはカウンタ32のビ
ット数)となり、それだけきめ細かなアドレスが発生出
来る。このsinθ値、 cosθ値[DA変換器35
でアナログのsinθ、 cosθに変換され出力され
る。従って、第9図の動作説明図に示す様に、アナログ
のsinθ又はCOSθは、位置コードIPだけの場合
の階段状の出力Nに対し、滑らか7【正弦波状の出力M
となる。モータが逆回転している場合には、4倍パルス
発生回路30から逆回転パルスNPが発生し、立上り/
立下り検出回路31は、7’ IJセット信号PSの発
生毎にプリセットデータPDとして”1111”が発生
する。カウンタ32は、プリセット信号PSの発生毎に
プリセントデータPD“1111 ”がプリセットさス
11、以降次のプリセット信号PSが発生するまで逆回
転パルスNPをダウンカウントする。以降のROM5a
のアト1/スは前述の正回転の場合と同様であるので、
説明は省略する。
Therefore, the address given to the ROM 34 is twice that of the case where only the 14th place code I'P is used (n is the number of bits of the counter 32), and a finer-grained address can be generated accordingly. This sin θ value, cos θ value [DA converter 35
is converted into analog sin θ and cos θ and output. Therefore, as shown in the operation explanatory diagram of FIG. 9, the analog sin θ or COS θ is a smooth 7
becomes. When the motor is rotating in the reverse direction, a reverse rotation pulse NP is generated from the quadruple pulse generation circuit 30, and the rising/
The fall detection circuit 31 generates "1111" as preset data PD every time the 7' IJ set signal PS is generated. The counter 32 counts down the reverse rotation pulse NP until the preset data PD "1111" is preset 11 every time the preset signal PS is generated, and thereafter until the next preset signal PS is generated. Subsequent ROM5a
Since at1/s of is the same as in the case of forward rotation described above,
Explanation will be omitted.

以上説明した様に2本発明によれば、検出器からの細か
な回転パルスを計数するカウンタを設け、検出器からの
荒い位置コードと力1クンタのカウント値によりロータ
の回転位置を表示しているので、位置コードが荒い場合
でも細かなロータ位置を表示出来るという効果を奏し、
特に分解能により実際の位置コードの数が限られている
ことから、この実際の位11tフードの数十倍の位置コ
ードを出力出来る本発明r1、モータの精密制御に極め
て有用′ である。又、従来の検出器を変更することな
く、甲に純回路的に達成出来るので、構成も簡単で制御
°卸も容易となるという効果を奏する。
As explained above, according to the present invention, a counter is provided to count the minute rotational pulses from the detector, and the rotational position of the rotor is displayed based on the rough position code from the detector and the count value of 1 kunta of force. This has the effect of displaying detailed rotor position even if the position code is rough.
In particular, since the number of actual position codes is limited due to resolution, the present invention r1, which can output position codes several tens of times larger than the actual 11t hood, is extremely useful for precision control of motors. In addition, since this can be achieved using a pure circuit without changing the conventional detector, the configuration is simple and the control and wholesale is easy.

尚、本発明を一実施例により説明したが、本発明は上述
の実施例に限定されることなく、本発明の主旨に従い種
々の変形が可能であり、これらを本発明の範囲から排除
するものでは7(tハ。
Although the present invention has been explained using one example, the present invention is not limited to the above-mentioned example, and various modifications can be made in accordance with the gist of the present invention, and these are excluded from the scope of the present invention. Then 7(tha.

【図面の簡単な説明】[Brief explanation of drawings]

@1図に土木発明の一実施例ブロック図、第2図、第3
図は第1図構成のパルスエンコーダの説明図、第4図&
二1第1図構成の二相−三相変換回路の構成図、第5図
、第6図は第1図構成のパルス幅変調・インバータ回路
の説明図、第7図は本発明によるロータ位置検出回路の
詳細ブロック図、第8図は第7図の要部動作説明図、第
9図1d本発明によるサイン波発生の動作説明図である
。 図中、1・・・同期モータ、2・・・パルスエンコーダ
、6・・・サイン波発生回路、!IO・・・4倍ノ(ル
ス発生回路、31・・・変化点検出回路、52・・・カ
ウンタ、34・・・リードオンリーメモリ。 特許出願人 ファナック株式会社 代理人弁理士辻  賞 外2名
@Figure 1 is a block diagram of an embodiment of civil engineering invention, Figures 2 and 3
The figure is an explanatory diagram of the pulse encoder configured in Figure 1, Figure 4 &
21 Figure 1 is a block diagram of the two-phase to three-phase conversion circuit configured as shown in Figure 1. Figures 5 and 6 are explanatory diagrams of the pulse width modulation/inverter circuit configured as Figure 1. Figure 7 is the rotor position according to the present invention. FIG. 8 is a detailed block diagram of the detection circuit, FIG. 8 is an explanatory diagram of the main part operation of FIG. 7, and FIG. 9 is an explanatory diagram of the operation of sine wave generation according to the present invention. In the figure, 1...Synchronous motor, 2...Pulse encoder, 6...Sine wave generation circuit,! IO...4 times the pulse generation circuit, 31... Changing point detection circuit, 52... Counter, 34... Read only memory. Patent applicant Tsuji, patent attorney representing FANUC Co., Ltd. 2 people not awarded

Claims (2)

【特許請求の範囲】[Claims] (1)  モータのロータの回転位置に対応する位置信
号を出力するモータのロータ位置検出回路において、該
ロータの回転軸に設けられ、該ロータの回転位1泣に対
応する位置コードを発生するとともに該ロータの所定回
転毎に回転パルスを発生する検出器と、該回転パルスを
計数するカウンタとを有12、該位置コード間該カウン
タの値に基き該ロータσ)回転位置を表示することを特
徴とするモータのロータ位置検出回路。
(1) In a rotor position detection circuit of a motor that outputs a position signal corresponding to the rotational position of the rotor of the motor, the circuit is provided on the rotational shaft of the rotor and generates a position code corresponding to the rotational position of the rotor. It has a detector that generates a rotational pulse every predetermined rotation of the rotor, and a counter that counts the rotational pulse, and displays the rotational position of the rotor σ) based on the value of the counter between the position codes. A rotor position detection circuit for a motor.
(2)  前記位置コードの変化点を検出する変化点検
出回路を設け、該変化点検出回路の検出出力により該カ
ウンタのプリセットを行うことを特徴とする特許請求の
範囲第(1)項記載のモータのロータ位置検出回路。
(2) A change point detection circuit for detecting a change point of the position code is provided, and the counter is preset by the detection output of the change point detection circuit. Motor rotor position detection circuit.
JP57187939A 1982-10-26 1982-10-26 Rotor position detecting circuit for motor Pending JPS5980186A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57187939A JPS5980186A (en) 1982-10-26 1982-10-26 Rotor position detecting circuit for motor
PCT/JP1983/000380 WO1984001821A1 (en) 1982-10-26 1983-10-26 Device for detecting position of rotor of motor
US06/650,721 US4623831A (en) 1982-10-26 1983-10-26 Rotor position sensing apparatus for motors
DE8383903309T DE3382126D1 (en) 1982-10-26 1983-10-26 LOCATING DEVICE OF A ROTOR OR MOTOR.
EP83903309A EP0154654B1 (en) 1982-10-26 1983-10-26 Device for detecting position of rotor of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187939A JPS5980186A (en) 1982-10-26 1982-10-26 Rotor position detecting circuit for motor

Publications (1)

Publication Number Publication Date
JPS5980186A true JPS5980186A (en) 1984-05-09

Family

ID=16214816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187939A Pending JPS5980186A (en) 1982-10-26 1982-10-26 Rotor position detecting circuit for motor

Country Status (5)

Country Link
US (1) US4623831A (en)
EP (1) EP0154654B1 (en)
JP (1) JPS5980186A (en)
DE (1) DE3382126D1 (en)
WO (1) WO1984001821A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126491A (en) * 1984-07-16 1986-02-05 Fuji Electric Co Ltd Commutatorless motor
JPS6315116A (en) * 1986-07-07 1988-01-22 Fanuc Ltd Detection of rotor position of motor
JPS63128226A (en) * 1986-11-18 1988-05-31 Meidensha Electric Mfg Co Ltd Position detector

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809639A1 (en) * 1988-03-22 1989-10-05 Egm Entwicklung Montage METHOD AND DEVICE FOR INDIRECT MEASURING
DE4039062C1 (en) * 1990-12-07 1992-06-04 Vogt Electronic Ag, 8391 Obernzell, De
EP0502534B1 (en) * 1991-03-06 1997-12-17 Hitachi, Ltd. Encoder
JPH04333904A (en) * 1991-05-09 1992-11-20 Brother Ind Ltd Controller for servo motor
KR100203063B1 (en) * 1992-07-09 1999-06-15 윤종용 Speed detecting apparatus in encoder type motor
JP2819367B2 (en) * 1992-12-18 1998-10-30 日東工器株式会社 Manipulator safe operation system
US5739775A (en) * 1993-07-22 1998-04-14 Bourns, Inc. Digital input and control device
US5880683A (en) * 1993-07-22 1999-03-09 Bourns, Inc. Absolute digital position encoder
US5699058A (en) * 1994-03-17 1997-12-16 Copal Company Limited Absolute encoder generating phase-shifted triangular waveforms to produce multi-bit signals
DE19508834C2 (en) * 1995-03-11 1996-12-19 Heidenhain Gmbh Dr Johannes Position measuring system
JP3294737B2 (en) * 1994-10-13 2002-06-24 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Position measuring device
US5646496A (en) * 1994-11-08 1997-07-08 Dana Corporation Apparatus and method for generating digital position signals for a rotatable shaft
WO1996023198A1 (en) * 1995-01-25 1996-08-01 Bourns, Inc. Absolute digital position encoder
US6037735A (en) * 1999-03-01 2000-03-14 Eastman Kodak Company Slow-speed servomechanism
GB0127491D0 (en) 2001-11-16 2002-01-09 Trw Lucas Varity Electric Angular position sensor
US6944906B2 (en) * 2002-05-15 2005-09-20 Trico Products Corporation Direct drive windshield wiper assembly
US7676880B2 (en) * 2002-05-15 2010-03-16 Trico Products Corporation Direct drive windshield wiper assembly
US7015832B2 (en) * 2004-05-25 2006-03-21 Bei Sensors & Systems Company, Inc. Pulse width modulation based digital incremental encoder
TWI408893B (en) * 2008-12-24 2013-09-11 Ind Tech Res Inst Control method and apparatus for servo motor operation within low speed range
DE102011080729A1 (en) 2011-08-10 2013-02-14 Tesa Se Electrically conductive pressure-sensitive adhesive and pressure-sensitive adhesive tape
DE102011080724A1 (en) 2011-08-10 2013-02-14 Tesa Se Electrically conductive heat-activatable adhesive
CN103308854A (en) * 2012-03-08 2013-09-18 深圳市蓝韵实业有限公司 Method and system for motor motion fault monitoring
CN102868404A (en) * 2012-09-14 2013-01-09 北京交通大学 Analog-to-digital (AD) conversion method based on cosine algorithm and Gray code

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333162A (en) * 1976-09-08 1978-03-28 Nissan Motor Displacement meter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH511423A (en) * 1969-08-05 1971-08-15 Oerlikon Buehrle Ag Device for reading and evaluating a code carrier
US3824587A (en) 1972-10-25 1974-07-16 Laitram Corp Dual mode angle encoder
JPS52124352A (en) * 1976-04-12 1977-10-19 Nippon Chemical Ind Scale reader
US4194184A (en) 1976-04-30 1980-03-18 Rca Corporation Bidirectional digital position encoder
JPS5362354U (en) * 1976-10-28 1978-05-26
US4090116A (en) 1976-12-10 1978-05-16 General Electric Company Closed loop digital control system and method for motor control
JPS54151263U (en) * 1978-04-12 1979-10-20
DE2921103C2 (en) * 1979-05-25 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Incremental rotary encoder
DE2948854A1 (en) * 1979-12-05 1981-06-11 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut INCREMENTAL MEASURING SYSTEM
JPS6031196B2 (en) 1979-12-11 1985-07-20 ファナック株式会社 Variable speed driving device for induction motor
GB2076147B (en) * 1980-05-15 1984-07-11 Ferranti Ltd Position encoder
JPS573582A (en) 1980-06-05 1982-01-09 Toshiba Corp Controller for inverter
JPS5739312A (en) * 1980-08-20 1982-03-04 Fanuc Ltd Pulse encoder device having alarm circuit
JPS5847212A (en) * 1981-09-17 1983-03-18 Fanuc Ltd Rotary encoder
JPS58157384A (en) 1982-03-12 1983-09-19 Fanuc Ltd Drive system for ac motor
GB2121252A (en) * 1982-05-18 1983-12-14 Marconi Co Ltd Apparatus for indicating the position of a member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333162A (en) * 1976-09-08 1978-03-28 Nissan Motor Displacement meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126491A (en) * 1984-07-16 1986-02-05 Fuji Electric Co Ltd Commutatorless motor
JPS6315116A (en) * 1986-07-07 1988-01-22 Fanuc Ltd Detection of rotor position of motor
JPS63128226A (en) * 1986-11-18 1988-05-31 Meidensha Electric Mfg Co Ltd Position detector

Also Published As

Publication number Publication date
EP0154654A4 (en) 1988-08-23
WO1984001821A1 (en) 1984-05-10
EP0154654A1 (en) 1985-09-18
DE3382126D1 (en) 1991-02-21
US4623831A (en) 1986-11-18
EP0154654B1 (en) 1991-01-16

Similar Documents

Publication Publication Date Title
JPS5980186A (en) Rotor position detecting circuit for motor
WO1984002040A1 (en) Method of controlling changeover of plurality of motors
TWI637586B (en) Method and system of controlling three-phase bldc motor
EP0089208B1 (en) A.c. motor drive apparatus
CN103414425B (en) A kind of torque direction of brshless DC motor and the detection method of amplitude
Pulle et al. Applied control of electrical drives
JP5673009B2 (en) Inverter control device and power conversion system
WO1984003572A1 (en) Servo driving unit
JPH11337373A (en) Rotation sensor, abnormality diagnostic method thereof, and motor control system employing it
JP5904038B2 (en) Angle information transmission method and angle information transmission system
CN110336495A (en) A kind of two-way low-voltage alternating-current servo-driver control system and method
US5200682A (en) Motor current phase delay compensating method and apparatus thereof
JP6973992B2 (en) Rotation detection device, motor device and rotation detection method
US6274992B1 (en) Braking method for a single-phase motor
JPH02159993A (en) Reference current waveform generator of synchronous ac servo-motor driving apparatus
JPS6169386A (en) Commutatorless motor drive device
JP2019088036A (en) Current detector and controller of rotary electric machine
JPS5899288A (en) Controlling method for synchronous motor
JP2002071731A (en) Circuit for detecting relative potential to ground of inverter control amplifier tester
JPS6225893A (en) Controller for synchronous motor
JPS62160089A (en) Vector controller for induction motor
JPS59116049A (en) Speed detection system of electric motor
JPS59106895A (en) Control system for synchronous motor
JPS5915266Y2 (en) Induction motor slip frequency control device
Herwald Control Design and analysis of an advanced induction motor electric vehicle drive