JPS5979805A - Distance sensor - Google Patents

Distance sensor

Info

Publication number
JPS5979805A
JPS5979805A JP19155082A JP19155082A JPS5979805A JP S5979805 A JPS5979805 A JP S5979805A JP 19155082 A JP19155082 A JP 19155082A JP 19155082 A JP19155082 A JP 19155082A JP S5979805 A JPS5979805 A JP S5979805A
Authority
JP
Japan
Prior art keywords
light
radius
distance
lens
condensing lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19155082A
Other languages
Japanese (ja)
Inventor
Yoshimasa Fujiwara
祥雅 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19155082A priority Critical patent/JPS5979805A/en
Publication of JPS5979805A publication Critical patent/JPS5979805A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders

Abstract

PURPOSE:To measure distance at a high accuracy by computing distance with a distance computing means based on the radius of a spot light calculated with a means of calculating the radius of spot light from two output signals of a one- dimensional type semiconductor detector. CONSTITUTION:A light emitting element 7 is arranged on the optical axis of a projection/condenser lens 9 and irradiates a parallel spot light on the surface of an object on the opposite side of the lens 9 along the optical axis. A one-dimensional type semiconductor position detector 8 has the element 7 fuxed on one end of a light receiving surface and receives reflected lights from the surface of the object with the light receiving surface facing the lens 9 perpendicular to the optical axis. Based on first and second output signals of the one-dimensional type semiconductor position detector 8, the radius of the spot light is calculated with a means of calculating the radius of spot light and based on the radius value, the computation by the equation I is performed by a means 12 of computing distance. In the formula, L: distance from the center of the projection/condense lens 9 to the object 10, f: focal length of the lens 9; R: the radius of the lens 9; A: distance from the center of the lens 9 to the one-dimensional type semiconductor position detector 8; and r: the radius of spot light.

Description

【発明の詳細な説明】 この発明は距1唯センサに関するものである。[Detailed description of the invention] This invention relates to a single distance sensor.

従来の距離センサは1.瀉1図に示すように、半導体レ
ーザー等の発光素子1と受光素子2とを非富に接近させ
て一体化し、この発光素子1および受光素子2を投光・
集光レンズ3の光軸上に位置させ、発光素子1からの平
行なスポット光を投光・集光レンズ3を通して対象4の
表面に照射し、対象4の表面からの反射光を投光・鳴光
レンズ3を通して受光素子2により受光し、受光素子2
の受光信号Vを受光信号増幅器5で増幅して補正回路6
に加えることにより距離信号を得るようになっている。
The conventional distance sensor is 1. As shown in Figure 1, a light-emitting element 1 such as a semiconductor laser and a light-receiving element 2 are brought close to each other and integrated, and the light-emitting element 1 and light-receiving element 2 are used for emitting and transmitting light.
It is positioned on the optical axis of the condensing lens 3, and the parallel spot light from the light emitting element 1 is irradiated onto the surface of the object 4 through the projection/condensing lens 3, and the reflected light from the surface of the object 4 is projected/condensed. The light is received by the light receiving element 2 through the photonic lens 3, and the light receiving element 2
The received light signal V is amplified by the received light signal amplifier 5 and the correction circuit 6
A distance signal is obtained by adding the

このような距離センサは、対象4からの反射光が受光素
子2上で焦点を結ぶときに受光信号Vが最大となり、対
象4の位置が変化して反射光の焦点が受光素子2の前後
どちらに移動しても、受光素子2の大きさが制限されて
いるため、受光信号Vが低下し、対象4の位置Xと受光
信号Vとは第2図に示すような関係をもって変化するこ
とになる。
In such a distance sensor, the light reception signal V becomes maximum when the reflected light from the object 4 focuses on the light receiving element 2, and as the position of the object 4 changes, the focus of the reflected light changes to either the front or back of the light receiving element 2. Even if the target 4 moves to the position X, the light receiving signal V decreases because the size of the light receiving element 2 is limited, and the position X of the object 4 and the light receiving signal V change as shown in FIG. Become.

上記距離センサによる対象4の距離測定は、投光・集光
レンズ3の中心から一定の距離(測定範囲の一端)の基
準面4′に対して発光素子1から光を照射し、゛基準面
4′からの反射光(実線矢印)を受光素子2で受光し、
発光素子1および受光素子2を投光・集光レンズ3の光
軸上で前後に微動させることによシ受光信号Vが最大と
なる位置(反射光の焦点)を見つけ、発光素子1および
受光素子2をこの位置からいずれか一方向に所定量(1
ΔX:ΔXは測定範囲を示す)だけ移動させて測定原点
(基準面から一定の距離にある点)xoにおける受光信
号V。を得、この受光信号V。を受光信号増幅器5を介
して補正回路6に入力してオフセットゲインを求めてお
き、対象4に発光素子1から光を照射し、その反射光(
破線矢印)を測定原点X。
To measure the distance to the target 4 using the distance sensor, light is irradiated from the light emitting element 1 to a reference plane 4' at a certain distance (one end of the measurement range) from the center of the light projecting/condensing lens 3. The reflected light from 4' (solid arrow) is received by the light receiving element 2,
By slightly moving the light-emitting element 1 and the light-receiving element 2 back and forth on the optical axis of the light emitting/condensing lens 3, the position where the received light signal V is maximized (the focus of the reflected light) is found, and the light-emitting element 1 and the light-receiving element are Move the element 2 a predetermined amount (1
ΔX: The light reception signal V at the measurement origin (a point at a constant distance from the reference plane) xo after moving by ΔX indicates the measurement range. This received light signal V. is input to the correction circuit 6 via the light receiving signal amplifier 5 to obtain the offset gain, the target 4 is irradiated with light from the light emitting element 1, and the reflected light (
(dashed line arrow) is the measurement origin X.

における受光素子2からの受光信号Vを得、この受光信
号V。と受光信号V。との差を求めることにょシ行う。
A light reception signal V is obtained from the light receiving element 2 at . and the light reception signal V. I try to find the difference between the two.

しかし、このような距離センサは、光量の変化によって
対象4までの距離変化を求めているため、対象4の反射
光量が常に一定である必要があり、反射光量が変化した
場合には測定できなかった。
However, since such a distance sensor determines the change in distance to the object 4 based on changes in the amount of light, the amount of reflected light from the object 4 must always be constant, and it cannot be measured if the amount of reflected light changes. Ta.

また、反射光量に影響されるため、測定精度が低かった
In addition, measurement accuracy was low because it was affected by the amount of reflected light.

したがって、この発明の目的は、対象の反射光量が変化
しても精度よく距離測定を行うことができる距離センサ
を提供することである。
Therefore, an object of the present invention is to provide a distance sensor that can accurately measure distance even if the amount of reflected light from an object changes.

この発明の一実施例を第3図ないし第5図に基づいて説
明する。この距離センサは、第3図に示すように、−次
元型半導体装置検出器(51352:浜松テレビ株式会
社製)8の長手方向の一端部に半導体レーザー等の発光
素子7を同じ方向を向けて一体化し、投光・集光レンズ
9の光軸上に発光素子7を配置するとともに一次元型半
導体装置検出器8を受光面が光軸と直光するように配置
し、発光素子7からの平行なスポット光を投光・集光レ
ンズ9を通して対象100表面に照射し、対象10の表
面からの反射光を投光・集光レンズ9を通して一次元型
半導体装置検出器8で受光し、この−次元型半導体装置
検出器8の第1出力信号および第2出力信号を演算回路
11に加えて演算を行うことにより一次元型半導体装置
検出器8の受光面上に照射されるスポット光の径方向の
重心位置を示すスポット重心位置信号を得、距離演算回
路12においてスポット重心位置信号をもとにしてスポ
ット光の半径を求め、さらに幾何学的演算を行って距離
信号を得るようになっている。
An embodiment of the present invention will be described based on FIGS. 3 to 5. As shown in FIG. 3, this distance sensor has a light emitting element 7 such as a semiconductor laser directed in the same direction at one longitudinal end of a -dimensional semiconductor device detector (51352: manufactured by Hamamatsu Television Co., Ltd.) 8. The light emitting element 7 is arranged on the optical axis of the light emitting/condensing lens 9, and the one-dimensional semiconductor device detector 8 is arranged so that the light receiving surface is directly aligned with the optical axis. Parallel spot light is irradiated onto the surface of the object 100 through the projection/condensing lens 9, and the reflected light from the surface of the object 10 is received by the one-dimensional semiconductor device detector 8 through the projection/condensing lens 9. - The diameter of the spot light irradiated onto the light receiving surface of the one-dimensional semiconductor device detector 8 by adding the first output signal and the second output signal of the one-dimensional semiconductor device detector 8 to the arithmetic circuit 11 and performing calculations. A spot barycenter position signal indicating the barycenter position in a direction is obtained, a radius of the spot light is determined based on the spot barycenter position signal in a distance calculation circuit 12, and a distance signal is obtained by further performing geometric calculations. There is.

演算回路11は、具体的には第4図に示すように、−次
元型半導体装置検出器8の第1出力信号および第2出力
信号(電流信号)を演算増幅器OPよ。
Specifically, as shown in FIG. 4, the arithmetic circuit 11 inputs the first output signal and the second output signal (current signal) of the -dimensional semiconductor device detector 8 to an operational amplifier OP.

OF2で電圧変換して出力I工e I2を得、出力I工
m I2をアナログ加算器にで加算して出力I工+I2
を得るとともに、出力■0.I2をアナログ減算器Gで
減算力I工+12を加算信号Pとして取出すとともに、
正取り出している。
Convert the voltage with OF2 to obtain the output I-e I2, and add the output I-e I2 to the analog adder to get the output I-e + I2.
At the same time, the output ■0. I2 is subtracted by an analog subtracter G, and the subtraction power I+12 is extracted as an addition signal P, and
I'm taking it out right.

距離演算回路12は、演算回路11からのスポット重心
位置信号Pをもとにスポット光の半径rを求める。スポ
ット光の重心位置がわかればスポット光の半径はテーブ
ルにより簡単に求めることができる。すなわち、スポッ
ト光の径方向の光強度は例えば第5図に示すようにガウ
ス分布しており、スポット光の半径rに対してスポット
光の重心位置P′は一定の関係にあり、重心位置P′が
わかれば半径rは簡単に求められる。
The distance calculation circuit 12 calculates the radius r of the spot light based on the spot gravity center position signal P from the calculation circuit 11. If the center of gravity of the spot light is known, the radius of the spot light can be easily determined using a table. That is, the light intensity of the spot light in the radial direction has a Gaussian distribution, for example, as shown in FIG. If ' is known, the radius r can be easily determined.

半径rにもとづいて投光・集光レンズ9の中心と対象1
0までの距rs、Lを求める演算はつぎのとおシである
。すなわち、−次元型半導体装置検出器8の置かれた場
所におけるスポット光の半径rと、投光・集光レンズの
半径Rと、投光・集光しンズ9の中心から一次元型半導
体装置検出器8までの距1111Aのデータを与えると
、反射光の投光・集光レンズ9による焦点と投光・集光
レンズ9の中心との距離aは A −r で求まる。したがって、対象10と投光・集光レンズ9
の中心との距離りは、投光・集光レンズ9の焦点距離を
fとすると 、(2+r で与えられる。ここで、C工およびC2は測定系によっ
て与えられる定数である。
The center of the light projecting/condensing lens 9 and the object 1 based on the radius r
The calculation for determining the distance rs and L to 0 is as follows. That is, the radius r of the spot light at the location where the -dimensional type semiconductor device detector 8 is placed, the radius R of the light projecting/condensing lens, and the one-dimensional semiconductor device from the center of the light projecting/condensing lens 9. When data on the distance 1111A to the detector 8 is given, the distance a between the focal point of the reflected light by the projecting/condensing lens 9 and the center of the projecting/condensing lens 9 is determined by A-r. Therefore, the object 10 and the light projecting/condensing lens 9
The distance from the center to the center is given by (2+r), where f is the focal length of the light projecting/condensing lens 9. Here, C and C2 are constants given by the measurement system.

このような距離センサは、対象10からの反射光が一次
元型半導体装置検出器8上で焦点を結ぶときにスポット
光の半径rが最小となり、反射光の焦点が一次元型半導
体装置検出器80前後どちらに移動しても、スポット光
の半径が大きくなる。
In such a distance sensor, when the reflected light from the target 10 is focused on the one-dimensional semiconductor device detector 8, the radius r of the spot light becomes the minimum, and the focus of the reflected light is focused on the one-dimensional semiconductor device detector 8. The radius of the spot light increases regardless of whether it moves around 80 or above.

したがって、上記距離センサによる対象10の距離測定
は、投光・集光レンズ9の中心から基準面10′に対し
て発光素子7から光を照射し、基準面10′からの反射
光(実線矢印)を−次元型半導体装置検出器8で受光し
、発光素子7および一次元型半導体装置検出器8を投光
・集光レンズ9の光〜上で前後に微動させることにより
加算1言号Pが最小となる点(反射光の焦点)を見つけ
、発光素子7および一次元型半導体装置検出器8をこの
点からいずれか一方向に所定量(測定範囲内で反射光が
一次元型半導体装置検出器8上に焦点゛を結ばないよう
にする友め)だけ移動させ、この点における投光・集光
レンズ9の中心から一次元型半導体装置検出器8までの
距MAを求め、対象10に発光素子7から光を照射し、
その反射光(破線矢印)を−次元型半導体装置、検出器
8に照射し、この−次元型半導体装置検出器8の第1出
力信号および第2出力信号を演算処理することによシス
ポット光の重心位置P′を求め、これをもとにスポット
光の半径rを求め、上記した幾何学的な互層演算を行う
と、投光・集光レンズ9の中心から対象10までの距@
Lを求めることができる。
Therefore, to measure the distance to the target 10 using the distance sensor, light is emitted from the light emitting element 7 from the center of the light projecting/condensing lens 9 to the reference surface 10', and the reflected light from the reference surface 10' (solid line arrow ) is received by the -dimensional type semiconductor device detector 8, and by slightly moving the light emitting element 7 and the one-dimensional type semiconductor device detector 8 back and forth above the light of the light emitting/condensing lens 9, one word P is added. Find a point (focal point of reflected light) where The distance MA from the center of the light emitting/condensing lens 9 to the one-dimensional semiconductor device detector 8 at this point is determined by moving the object 10 irradiate light from the light emitting element 7 to
The reflected light (broken line arrow) is irradiated onto the -dimensional semiconductor device and the detector 8, and the first output signal and the second output signal of the -dimensional semiconductor device detector 8 are processed to produce a syspot light. Find the center of gravity position P' of the light source, find the radius r of the spot light based on this, and perform the above-mentioned geometric alternating layer calculation.
L can be found.

このように、この実施例は、幾何学的に距F@Lを求め
ているため、対象100反射率の変化に影響されること
がなく、簡単な構成で非接触で高精度でかつ高速で距離
測定を行うことができる。
In this way, since this example calculates the distance F@L geometrically, it is not affected by changes in the reflectance of the target 100, and is simple, non-contact, highly accurate, and fast. Distance measurements can be made.

以上のように、この発明の距離センサは、投光・集光レ
ンズと、この投光・集光レンズの光軸上に設置されて平
行なスポット光を光軸に沿って前記投光・集光レンズの
向こう側の対象の表面に照射する発光素子と、この発光
素子を受光面の一端に固定し前記受光面が前記光軸と直
交して前記投光・集光レンズと対面し前記対象の表面か
らの反射光を受光する一次元型半導体装置検出器と、こ
の−次元型半導体装置検出器の第1出力信号および第2
出力信号をもとにスポット光の半径を算出するスポット
光半径算出手段と、このスポット光半径算出手段により
算出したスポット光の半径をもとに所定の演算を行う距
離演算手段とを備えているので、対象の反射率の変化に
影響されることなく精度良く距離測定を行うことができ
るという効果がある。
As described above, the distance sensor of the present invention includes a light projecting and condensing lens, and a parallel spot light that is installed on the optical axis of the light projecting and condensing lens and is directed along the optical axis of the light projecting and condensing lens. A light emitting element that irradiates the surface of the object on the other side of the optical lens, and a light emitting element that is fixed to one end of a light receiving surface so that the light receiving surface is orthogonal to the optical axis and faces the light projecting/condensing lens, and a one-dimensional semiconductor device detector that receives reflected light from the surface of the semiconductor device; a first output signal of the one-dimensional semiconductor device detector;
It is equipped with a spot light radius calculation means for calculating the radius of the spotlight based on the output signal, and a distance calculation means for performing a predetermined calculation based on the radius of the spot light calculated by the spot light radius calculation means. Therefore, there is an effect that distance measurement can be performed with high accuracy without being affected by changes in the reflectance of the target.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の距離センサの構成図、第2図はその対象
の位置と受光素子出力との特性図、第3図はこの発明の
一実施例の構成図、第4図はその要部の具体的なブロッ
ク図、第5図はその動作説明図である。 7・・・発光素子、8・・・−次元型半導体装置検出器
、9・・・投光・集光レンズ、10・・・対象、11・
・・演算回路、12・・・距離演算回路
Fig. 1 is a block diagram of a conventional distance sensor, Fig. 2 is a characteristic diagram of the target position and light receiving element output, Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 is its main part. A detailed block diagram of FIG. 5 is an explanatory diagram of its operation. 7... Light emitting element, 8... -dimensional semiconductor device detector, 9... Light projecting/condensing lens, 10... Target, 11.
...Arithmetic circuit, 12...Distance calculation circuit

Claims (1)

【特許請求の範囲】 投光・集光レンズと、この投光・集光レンズの光軸上に
配置されて平行なスポット光を光軸に沿って前記投光・
集光レンズの向こう側の対象の表面に照射する発光素子
と、この発光素子を受光面の一端に固定し”前記受光面
が前記光軸と直交して前記投光・集光レンズと対面し前
記対象の表面からの反射光を受光する一次元型半導体装
置検出器と、この−次元型半導体装置検出器の第1出力
信号および第2出力信号をもとにスーポット光の半径を
算出するスポット光半径算出手段と、このスポット光半
径算出手段によシ算出したスポット光の半径をもとに次
式の演算を行う距離演算手段とを備えた距離センサ。 友だし、L二 投光・集光レンズの中心と対象との距潴 f: 投光・集光レンズの焦点距離 R: 投光・集光レンズの半径 A: 投光・単光レンズの中心から一 次元型半導体装置検出器までの 距離 r: スポット光の半径
[Claims] A light projecting and condensing lens, which is arranged on the optical axis of the light projecting and condensing lens, and parallel spot light is directed along the optical axis of the light projecting and condensing lens.
A light emitting element that irradiates the surface of the object on the other side of the condensing lens, and this light emitting element is fixed to one end of a light receiving surface, so that the light receiving surface is orthogonal to the optical axis and faces the light emitting/condensing lens. a one-dimensional semiconductor device detector that receives reflected light from the surface of the object; and a spot that calculates the radius of the spot light based on a first output signal and a second output signal of the -dimensional semiconductor device detector. A distance sensor comprising a light radius calculation means and a distance calculation means for calculating the following formula based on the radius of the spot light calculated by the spot light radius calculation means. Distance f between the center of the light lens and the object: Focal length R of the light projecting/condensing lens: Radius of the light projecting/condensing lens A: From the center of the light projecting/single light lens to the one-dimensional semiconductor device detector distance r: radius of spot light
JP19155082A 1982-10-29 1982-10-29 Distance sensor Pending JPS5979805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19155082A JPS5979805A (en) 1982-10-29 1982-10-29 Distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19155082A JPS5979805A (en) 1982-10-29 1982-10-29 Distance sensor

Publications (1)

Publication Number Publication Date
JPS5979805A true JPS5979805A (en) 1984-05-09

Family

ID=16276536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19155082A Pending JPS5979805A (en) 1982-10-29 1982-10-29 Distance sensor

Country Status (1)

Country Link
JP (1) JPS5979805A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153419A (en) * 1986-12-18 1988-06-25 Mitsutoyo Corp Non-contact displacement gauge
JP2016529473A (en) * 2013-06-13 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153419A (en) * 1986-12-18 1988-06-25 Mitsutoyo Corp Non-contact displacement gauge
JP2016529473A (en) * 2013-06-13 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Similar Documents

Publication Publication Date Title
JPS5979805A (en) Distance sensor
KR970707424A (en) Calibrable Optical Disatance Sensing System and Method
KR102020038B1 (en) LiDAR sensor module
JPS6125011A (en) Optical distance measuring device
KR970011144B1 (en) Sensor using semiconductor laser
JPH11101872A (en) Laser range finder
JPS6246802B2 (en)
JP2851053B2 (en) Light beam incident angle detection sensor
JP4142596B2 (en) Optical distance sensor
JP3479914B1 (en) Tilt detector
JPH01109284A (en) Distance measuring instrument
JPH04364414A (en) Distance-measuring device
JPH0750656Y2 (en) Photoelectric sensor
JPH0510717A (en) Position and displacement measuring apparatus
JPH01112188A (en) Distance measuring instrument
JPS62156515A (en) Displacement measuring instrument
JPS60194301A (en) Distance detector
JPH0664075B2 (en) Object moving speed measurement method
JPS6281522A (en) Range finder
JPS6095307A (en) Position measuring device
JPH08327334A (en) Gap measuring apparatus
JPS63169509A (en) Inclination measuring instrument
JPH01167608A (en) Distance sensor
JPH08219766A (en) Distance measuring sensor
JPS6271810A (en) Displacement transducer