JPH08219766A - Distance measuring sensor - Google Patents

Distance measuring sensor

Info

Publication number
JPH08219766A
JPH08219766A JP2705595A JP2705595A JPH08219766A JP H08219766 A JPH08219766 A JP H08219766A JP 2705595 A JP2705595 A JP 2705595A JP 2705595 A JP2705595 A JP 2705595A JP H08219766 A JPH08219766 A JP H08219766A
Authority
JP
Japan
Prior art keywords
light receiving
light
lens
distance
detected object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2705595A
Other languages
Japanese (ja)
Inventor
Akira Nagaoka
暁 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2705595A priority Critical patent/JPH08219766A/en
Publication of JPH08219766A publication Critical patent/JPH08219766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To make sensing of high accuracy possible even in an asymmetrical light receiving intensity distribution by dividing a light receiving flux by a half-mirror, providing a distance measuring sensor with respective light receiving position detection elements, and arranging one detection element at a position near a light receiving lens in the best focus and the other detection element at another position remote therefrom. CONSTITUTION: A half-mirror 7 is provided during light collection of a light receiving lens 3, a light path is divided, and light receiving element J1 , J2 are provided for luminous fluxes, and the element J1 is set near the lens 3 from a position in the best focus and the other element J2 remote therefrom. In the case where luminous flux intensity incident on the lens 3 is uniform, it is a light receiving spot, and since a distance measuring error is large in the case where a strong part in the luminous flux exists, averaging a result wherein a distance or a displacement amount of the elements J1 , J2 to an object is calculated is used. Even if they are left and right asymmetrical light receiving spots due to the constitution, the error of the distance or the displacement amount is reduced and sensing of high accuracy is made possible, since the light receiving intensity distribution inverted before and after light collection is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三角測距の原理を用い
て被検知物体の変位量を測定できる変位センサーやそれ
を応用したスキャニングセンサー・距離画像センサーに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement sensor capable of measuring the amount of displacement of an object to be detected using the principle of triangulation and a scanning sensor / distance image sensor to which the displacement sensor is applied.

【0002】[0002]

【従来の技術】従来、三角測距を用いて、被検知物体か
ら反射してくる光を投光レンズ近傍の受光レンズより集
光し、受光素子上の受光スポット位置を検知することに
より被検知物体までの距離を計算し、物体の変位量や物
体までの距離、またスキャンさせることによって、ライ
ン状や面状の変位情報・距離情報を得ていた。
2. Description of the Related Art Conventionally, by using triangulation, the light reflected from an object to be detected is condensed by a light receiving lens near the light projecting lens and the light receiving spot position on the light receiving element is detected to detect the light receiving spot. By calculating the distance to the object, the amount of displacement of the object, the distance to the object, and scanning, the line-shaped or planar-shaped displacement information / distance information was obtained.

【0003】[0003]

【発明が解決しようとする課題】被検知物体が紙やセラ
ミックのような拡散反射物体で場所による表面性状に違
いがない場合は投光ビームの当たる位置の違いによる反
射パターンはほとんど変化しないので問題は少ない。し
かしながら、金属面を研削加工したような場合に被検知
物体表面に細かいヘアラインが生じ、細かく見ればその
表面は様々な角度の付いた高反射率の反射面になってい
るため反射パターンは一様ではなく、このため、受光レ
ンズに入光する光束の一部に強度の強い部分が存在する
ことになり、受光素子上の受光スポットは対象形でなく
なり重心位置の移動が生じることになる。(図3) 投光ビームの照射位置が少々ずれて反射パターンが変化
するので実際の凹凸に対して10〜100倍の変位量と
して検出されることになるという問題があった。また、
艶のあるゴムやプラスチック面など正反射成分の大きい
物体の向きによって受光レンズに入射する光束の一部に
強い光が入光することになるので、これも重心位置がず
れるために実際の変位に対して大きな変位量を出力して
しまうという問題があった。
If the object to be detected is a diffuse reflective object such as paper or ceramic and there is no difference in surface texture depending on the location, the reflection pattern due to the difference in the position where the projected beam hits hardly changes. Is few. However, when a metal surface is ground, fine hairlines appear on the surface of the object to be detected, and when viewed in detail, the surface is a highly reflective surface with various angles, so the reflection pattern is uniform. Therefore, a portion of the light beam entering the light receiving lens has a portion having a high intensity, and the light receiving spot on the light receiving element is not symmetrical and the center of gravity moves. (FIG. 3) Since the irradiation position of the projection beam slightly shifts and the reflection pattern changes, there is a problem in that a displacement amount of 10 to 100 times the actual unevenness is detected. Also,
Depending on the orientation of an object with a large specular reflection component such as a glossy rubber or plastic surface, strong light will enter a part of the light beam entering the light-receiving lens. On the other hand, there was a problem that a large amount of displacement was output.

【0004】本発明はこのような問題に鑑みてなされた
ものであり、被検知物体から受光レンズに向かう光束の
一部に強度の強い光束を含む場合の影響を低減する測距
センサーを提供することを目的とする。
The present invention has been made in view of such a problem, and provides a distance measuring sensor that reduces the influence when a part of the light beam traveling from the object to be detected to the light receiving lens contains a light beam of high intensity. The purpose is to

【0005】[0005]

【課題を解決するための手段】請求項1においては、投
光部から被検知物体へ光束を照射し、被検知物体からの
反射光の一部を投光部近傍の受光部により受光し、三角
測距の原理によって被検知物体までの距離を測定や被検
知物体の変位量を測定する測距センサーにおいて、測距
センサーの受光部として、ハーフミラーによって受光光
束を分割し、分割された光束をそれぞれ受光する受光位
置検知素子を備え、一方の受光位置検知素子はベストピ
ント位置に対して受光レンズに近い位置に配設し、他方
の受光位置検知素子はベストピント位置に対して受光レ
ンズから遠い位置に配設したことを特徴とするものであ
る。
According to a first aspect of the present invention, a light flux is emitted from a light projecting unit to a detected object, and a part of reflected light from the detected object is received by a light receiving unit near the light projecting unit. In the distance measuring sensor that measures the distance to the detected object and the displacement of the detected object by the principle of triangulation, the light receiving part of the distance measuring sensor divides the received light beam by a half mirror, and the divided light beam Is equipped with a light receiving position detecting element that receives light respectively, and one light receiving position detecting element is arranged closer to the light receiving lens with respect to the best focus position, and the other light receiving position detecting element is provided with respect to the best focus position from the light receiving lens. It is characterized in that it is arranged at a distant position.

【0006】請求項2においては、両方の受光位置検知
素子において、被検知物体を遠ざかる方向に移動させた
場合に出力が大きくなる側の各々の出力を加算する手段
と、被検知物体を遠ざかる方向に移動させた場合に出力
が小さくなる側の各々の出力を加算する手段と、これら
加算された両加算信号に基づいて測距演算をおこなう測
距演算回路を備えて成ることを特徴とするものである。
According to a second aspect of the present invention, in both of the light receiving position detecting elements, a means for adding the respective outputs on the side where the output is increased when the detected object is moved in a direction away from the detected object, and a direction in which the detected object is moved away. Characterized by comprising means for adding the respective outputs on the side where the output is reduced when moved to the position 1, and a distance measurement calculation circuit for performing the distance measurement calculation on the basis of these added signals. Is.

【0007】[0007]

【作用】請求項1においては、受光レンズによって集光
している光束のベストピント位置に対して所定距離だけ
受光レンズに近い側で受光する受光素子と、ベストピン
ト位置に対して所定距離だけ受光レンズから遠い側で受
光する受光素子の出力を演算するようにしているので、
受光光束の一部に強度の強い部分があって対称形でない
受光強度分布を持っていても相殺され精度の高いセンシ
ングが可能になる。
According to the first aspect of the present invention, the light receiving element receives the light beam condensed by the light receiving lens on the side closer to the light receiving lens by the predetermined distance from the best focus position, and the light receiving element receives the light beam by the predetermined distance from the best focus position. Since the output of the light receiving element that receives light on the side far from the lens is calculated,
Even if a part of the received light beam has a high intensity part and has a non-symmetrical received light intensity distribution, it is canceled out and high-precision sensing becomes possible.

【0008】請求項2においては、両方の受光位置検知
素子の各々の出力を検出し、これら各々の出力を増幅す
る構成に比べて回路が簡単になり、コストダウンが図
れ、しかも、増幅回路が少なくて済むので回路ばらつき
の影響が少なくなる。
According to a second aspect of the present invention, the circuit becomes simpler and the cost can be reduced as compared with the configuration in which the outputs of both the light receiving position detecting elements are detected and the respective outputs are amplified. Since the number is small, the influence of circuit variation is small.

【0009】[0009]

【実施例】以下本発明の実施例を図面に基づいて詳述す
る。図1に実施例を示す。投光部1は発光素子(LDや
LED)と投光レンズ2からなり、光束を照射させる。
投光レンズ2の近傍には受光レンズ3があり、被検知物
体4からの反射光の一部を取り込んで受光素子5に導
く。受光素子5は受光スポットの移動が検知できる受光
位置検知素子(例えばPSD)であり、受光素子5から
得られる2つの電流値の演算により三角測距の原理によ
って物体までの距離を測定する。受光位置検知素子はP
SDでなくとも受光素子を並べたものでもよいものであ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. An example is shown in FIG. The light projecting unit 1 includes a light emitting element (LD or LED) and a light projecting lens 2, and emits a light beam.
A light receiving lens 3 is provided in the vicinity of the light projecting lens 2, and a part of the reflected light from the detected object 4 is captured and guided to the light receiving element 5. The light receiving element 5 is a light receiving position detecting element (for example, PSD) capable of detecting the movement of the light receiving spot, and the distance to an object is measured by the calculation of two current values obtained from the light receiving element 5 according to the principle of triangulation. Light receiving position detection element is P
Instead of the SD, the light receiving elements may be arranged side by side.

【0010】受光位置検知素子(PSD)上での変位量
Δxおよび被検知物体の変位量Δrは次式で表される。 Δxa=I1−I2/I1+12×L/2 L:PSDの長さ Δr=f(Δx) 受光レンズ3による集光中にハーフミラー7を配設して
光路を二分割し、それぞれの光束に対して受光素子
1 ,J 2を配設する。受光素子J1 はベストピント位
置から所定距離だけ受光レンズ3に近い側に配設させ
る。もう一方の受光素子J 2はベストピント位置から所
定距離だけ受光レンズ3に対して遠い側に位置させる。
The displacement amount Δx on the light receiving position detecting element (PSD) and the displacement amount Δr of the detected object are expressed by the following equations. Δxa = I1−I2 / I1 + 12 × L / 2 L: PSD length Δr = f (Δx) The half mirror 7 is arranged during light collection by the light receiving lens 3 to divide the optical path into two parts, and The light receiving elements J 1 and J 2 are arranged as a unit. The light receiving element J 1 is arranged on the side closer to the light receiving lens 3 by a predetermined distance from the best focus position. The other light receiving element J 2 is located on the side farther from the light receiving lens 3 by a predetermined distance from the best focus position.

【0011】受光レンズ3に入射する光束強度が一様な
場合はほぼ対称な受光スポットになるが、被検知物体の
種類や条件によって受光光束の一部に強度の強い部分が
生じている場合には受光スポットにもその影響が現れ
る。図1のハーフミラー7を使用した図では見にくいの
で、等価な説明図を図2に示す。図2に示すように反射
光の一部に強度の強い光束が生じているとき、受光素子
1 には通常得られる略ガウス分布の裾野の付近にも一
個の山が生じる。強度の大きい光束部分が受光光束の周
辺部に存在するような場合に測距誤差が大きくなるの
で、そのような例をとって図示している。
When the intensity of the light beam incident on the light receiving lens 3 is uniform, the light receiving spots are substantially symmetrical. However, when a part of the received light beam has a strong intensity depending on the type and condition of the object to be detected. Has an effect on the light receiving spot. Since it is difficult to see in the diagram using the half mirror 7 in FIG. 1, an equivalent explanatory diagram is shown in FIG. As shown in FIG. 2, when a strong light flux is generated in a part of the reflected light, one peak is also generated in the light receiving element J 1 in the vicinity of the skirt of the generally Gaussian distribution. The distance measurement error becomes large when a light flux portion having a high intensity exists in the peripheral portion of the received light flux, and therefore such an example is illustrated.

【0012】受光素子J1 においては、受光光束中の強
度の強い部分はJ1 の場合とは反対側にくる。受光素子
1 の出力から物体までの距離や物体の変位量を演算し
た結果と受光素子J 2の出力から物体までの距離や物体
の変位量を演算した結果を平均する。光学系が理想的で
ない場合や回路系のばらつきを吸収する場合にはどちら
からも一方の演算結果に重みを付けて平均してもよい。
In the light-receiving element J 1 , the portion of the received light beam having high intensity is on the opposite side to that of J 1 . The result of calculating the distance to the object and the displacement amount of the object from the output of the light receiving element J 1 and the result of calculating the distance to the object and the displacement amount of the object from the output of the light receiving element J 2 are averaged. In the case where the optical system is not ideal or the variation of the circuit system is absorbed, one of the calculation results may be weighted and averaged.

【0013】このように構成したため、左右対称でない
受光スポットになる場合でも、集光前と後で反転する受
光強度分布を演算しているので、重心移動を引き起こす
二次的な強度の山が相殺され、実際の距離や変位量との
誤差が低減できる。図4は他の実施例を示していて、両
方の受光位置検知素子J1 ,J 2において、被検知物体
4を遠ざかる方向に移動させた場合に出力の比率が大き
くなる側の各々の出力i1 ,i1 ′を加算し、また、被
検知物体4を遠ざかる方向に移動させた場合に出力の比
率が小さくなる側の各々の出力i2 ,i2 ′を加算し、
その後、これら加算された両加算信号に基づいて測距演
算をおこなう測距演算回路8を備えたものである。
With this configuration, even if the light receiving spot is not symmetrical, the light receiving intensity distribution that is inverted before and after focusing is calculated, so that the secondary intensity peaks that cause the movement of the center of gravity are offset. Therefore, the error between the actual distance and the amount of displacement can be reduced. FIG. 4 shows another embodiment. In both the light receiving position detecting elements J 1 and J 2 , the output i on the side where the output ratio increases when the detected object 4 is moved in the away direction. 1 and i 1 ′ are added, and the outputs i 2 and i 2 ′ on the side where the output ratio becomes smaller when the detected object 4 is moved away from each other are added,
After that, a distance measurement calculation circuit 8 for performing a distance measurement calculation based on these added signals is provided.

【0014】このような構成によれば、両方の受光位置
検知素子J1 ,J 2の各々の出力i 1 ,i2 ;i1 ′,
2 ′を検出し、これら各々の出力i1 ,i2
1 ′,i 2 ′をアンプを設けて増幅する構成に比べて
回路が簡単になり、コストダウンが図れ、しかも、増幅
回路が少なくて済むので回路ばらつきの影響が少なくな
るものである。
According to this structure, both light receiving positions
Sensing element J1, J2Each output i of 1, I2I1′,
i2′ Is detected and the output i of each of these is detected.1, I2;
i1′, I 2Compared to the configuration that amplifies ′ by installing an amplifier
Amplification of the circuit, cost reduction, and amplification
Since the number of circuits is small, the influence of circuit variation is small.
Things.

【0015】[0015]

【発明の効果】請求項1においては、受光レンズによっ
て集光している光束のベストピント位置に対して所定距
離だけ受光レンズに近い側で受光する受光素子と、ベス
トピント位置に対して所定距離だけ受光レンズから遠い
側で受光する受光素子の出力を演算するようにしている
ので、受光光束の一部に強度の強い部分があって対称形
でない受光強度分布を持っていても相殺され精度の高い
センシングが可能になるという効果がある。
According to the first aspect of the present invention, the light receiving element that receives light on the side closer to the light receiving lens by a predetermined distance from the best focus position of the light beam condensed by the light receiving lens, and the predetermined distance from the best focus position. However, because the output of the light receiving element that receives light on the side far from the light receiving lens is calculated, even if there is a part of the received light beam with a strong intensity and the received light intensity distribution is not symmetrical, it is offset This has the effect of enabling high sensing.

【0016】請求項2においては、両方の受光位置検知
素子において、被検知物体を遠ざかる方向に移動させた
場合に出力の比率が大きくなる側の各々の出力を加算す
る手段と、被検知物体を遠ざかる方向に移動させた場合
に出力の比率が小さくなる側の各々の出力を加算する手
段と、これら加算された両加算信号に基づいて測距演算
をおこなう測距演算回路を備えているから、両方の受光
位置検知素子の各々の出力を検出し、これら各々の出力
を増幅する構成に比べて回路が簡単になり、コストダウ
ンが図れ、しかも、増幅回路が少なくて済むので回路ば
らつきの影響が少なくなるという利点がある。
According to a second aspect of the present invention, in both of the light receiving position detecting elements, the means for adding the respective outputs on the side where the output ratio increases when the detected object is moved away from the detected object, Since it is provided with a means for adding each output on the side where the output ratio becomes smaller when moved in the direction to move away, and a distance measurement calculation circuit for performing distance measurement calculation based on both added signals thus added, Compared to the configuration that detects each output of both light receiving position detection elements and amplifies each output, the circuit becomes simpler, cost can be reduced, and the number of amplifier circuits can be reduced, so the influence of circuit variation It has the advantage of being less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック回路図である。FIG. 1 is a block circuit diagram of an embodiment of the present invention.

【図2】(a)は動作説明図、(b)は受光素子J1
出力波形図、(c)は受光素子J2 の出力波形図であ
る。
2A is an operation explanatory view, FIG. 2B is an output waveform diagram of a light receiving element J 1 , and FIG. 2C is an output waveform diagram of a light receiving element J 2 .

【図3】(a)は白色紙(拡散面)における受光スポッ
ト線像強度分布を得る説明図、(b)はその分布図、
(c)は銅板(研削ヘアライン面)における受光スポッ
ト線像強度分布を得る説明図、(d)はその分布図であ
る。
FIG. 3A is an explanatory diagram for obtaining a light-receiving spot line image intensity distribution on a white paper (diffusion surface), and FIG. 3B is a distribution diagram thereof.
(C) is an explanatory view for obtaining a light-receiving spot line image intensity distribution on a copper plate (grinding hairline surface), and (d) is a distribution diagram thereof.

【図4】他の実施例のブロック回路図である。FIG. 4 is a block circuit diagram of another embodiment.

【符号の説明】[Explanation of symbols]

1 投光部 4 被検知物体 5 受光素子 7 ハーフミラー 1 Emitter 4 Object to be detected 5 Light receiving element 7 Half mirror

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年7月3日[Submission date] July 3, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】受光位置検知素子(PSD)上での変位量
Δxおよび被検知物体の変位量Δrは次式で表される。 Δxa=〔(I1 −I2 )/(I1 +I2 )〕×(L/2) L:PSDの長さ Δr=f(Δx) 受光レンズ3による集光中にハーフミラー7を配設して
光路を二分割し、それぞれの光束に対して受光素子
1 ,J2 を配設する。受光素子J1 はベストピント位
置から所定距離だけ受光レンズ3に近い側に配設させ
る。もう一方の受光素子J2 はベストピント位置から所
定距離だけ受光レンズ3に対して遠い側に位置させる。
The displacement amount Δx on the light receiving position detecting element (PSD) and the displacement amount Δr of the detected object are expressed by the following equations. Δxa = [(I 1 −I 2 ) / (I 1 + I 2 )] × (L / 2) L: PSD length Δr = f (Δx) The half mirror 7 is arranged during light collection by the light receiving lens 3. Then, the optical path is divided into two, and the light receiving elements J 1 and J 2 are arranged for each light flux. The light receiving element J 1 is arranged on the side closer to the light receiving lens 3 by a predetermined distance from the best focus position. The other light receiving element J 2 is located on the side farther from the light receiving lens 3 by a predetermined distance from the best focus position.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投光部から被検知物体へ光束を照射し、
被検知物体からの反射光の一部を投光部近傍の受光部に
より受光し、三角測距の原理によって被検知物体までの
距離を測定や被検知物体の変位量を測定する測距センサ
ーにおいて、測距センサーの受光部として、ハーフミラ
ーによって受光光束を分割し、分割された光束をそれぞ
れ受光する受光位置検知素子を備え、一方の受光位置検
知素子はベストピント位置に対して受光レンズに近い位
置に配設し、他方の受光位置検知素子はベストピント位
置に対して受光レンズから遠い位置に配設したことを特
徴とする測距センサー。
1. A light flux is emitted from a light projecting unit to an object to be detected,
A distance measuring sensor that receives a part of the reflected light from the detected object by the light receiving part near the light emitting part and measures the distance to the detected object and the displacement of the detected object by the principle of triangulation. As a light-receiving part of the distance measuring sensor, it is equipped with a light-receiving position detecting element that splits the light-receiving luminous flux by a half mirror and receives each of the divided luminous fluxes. One light-receiving position detecting element is closer to the light-receiving lens with respect to the best focus position. A distance measuring sensor, which is arranged at a position, and the other light receiving position detecting element is arranged at a position far from the light receiving lens with respect to the best focus position.
【請求項2】 両方の受光位置検知素子において、被検
知物体を遠ざかる方向に移動させた場合に出力の比率が
大きくなる側の各々の出力を加算する手段と、被検知物
体を遠ざかる方向に移動させた場合に出力の比率が小さ
くなる側の各々の出力を加算する手段と、これら加算さ
れた両加算信号に基づいて測距演算をおこなう測距演算
回路を備えて成ることを特徴とする請求項1記載の測距
センサー。
2. In both of the light receiving position detection elements, a means for adding respective outputs on the side where the output ratio increases when the detected object is moved away from the detected object, and the detected object is moved away from the detected object. In this case, it is provided with means for adding respective outputs on the side where the ratio of the outputs is reduced, and a distance measurement calculation circuit for performing distance measurement calculation on the basis of these added signals. The distance measuring sensor according to Item 1.
JP2705595A 1995-02-15 1995-02-15 Distance measuring sensor Pending JPH08219766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2705595A JPH08219766A (en) 1995-02-15 1995-02-15 Distance measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2705595A JPH08219766A (en) 1995-02-15 1995-02-15 Distance measuring sensor

Publications (1)

Publication Number Publication Date
JPH08219766A true JPH08219766A (en) 1996-08-30

Family

ID=12210394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2705595A Pending JPH08219766A (en) 1995-02-15 1995-02-15 Distance measuring sensor

Country Status (1)

Country Link
JP (1) JPH08219766A (en)

Similar Documents

Publication Publication Date Title
JPH0650720A (en) Height measuring method and device
JP2006189389A (en) Optical thickness measuring method and device
JPH11257917A (en) Reflection type optical sensor
JPH11326040A (en) Sensor having wide divergence optical system and detector
JPH08219766A (en) Distance measuring sensor
CN105807571A (en) Focusing and leveling system used for photo-etching machine and focusing and leveling method thereof
JP3945120B2 (en) Ranging sensor and adjustment method thereof
JP2006189390A (en) Optical displacement measuring method and device
JP2816257B2 (en) Non-contact displacement measuring device
JPS6262208A (en) Range-finding apparatuws and method
JPH0729452Y2 (en) Displacement measuring device
JP4611174B2 (en) Image sensor position measuring apparatus and image sensor position measuring method
JPH0715374B2 (en) Shape detection method
JP2544789B2 (en) Optical displacement measuring device
JPH01185410A (en) Optical length measuring method
JPH06109435A (en) Surface displacement meter
JPH04364414A (en) Distance-measuring device
JPH05288544A (en) Displacement measuring device
JPH06102016A (en) Photoelectric height detecting system
JPH06117852A (en) Optical displacement gauge
JPS6095307A (en) Position measuring device
JPH07332967A (en) Distance-measuring device
JPH0642929A (en) Surface displacement sensor
JPH08172119A (en) Height measuring device
JPH07110234A (en) Distance detection

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A02