JPS5979590A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5979590A
JPS5979590A JP18995782A JP18995782A JPS5979590A JP S5979590 A JPS5979590 A JP S5979590A JP 18995782 A JP18995782 A JP 18995782A JP 18995782 A JP18995782 A JP 18995782A JP S5979590 A JPS5979590 A JP S5979590A
Authority
JP
Japan
Prior art keywords
layer
substrate
protrusion
semiconductor laser
confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18995782A
Other languages
Japanese (ja)
Other versions
JPH0732278B2 (en
Inventor
グレゴリ・ハモンド・オルセン
ト−マス・ジヨセフ・ザメロウスキ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to JP57189957A priority Critical patent/JPH0732278B2/en
Publication of JPS5979590A publication Critical patent/JPS5979590A/en
Publication of JPH0732278B2 publication Critical patent/JPH0732278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は表面に両端間に亘って延びる円い突条部を有
する基板を含む半導体レーザとそのレーザの製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser including a substrate having a circular protrusion on its surface extending between both ends thereof, and a method for manufacturing the laser.

半導体レーザは一般にI−V族化合物から成シ、互いに
反対の導電型の2つの層の間に薄い活性層を有する半導
体材料の基体を含み、すなわち活性層の一方の側にP型
の層があり、他方の側VcN型の層があるが、このよう
なレーザは一般に2つ以上の光学モードで光を発射し、
これがその用途を制限している。米国特許第42.15
319号明細書には安定な単一モードの出力光束を発す
るレーザか開示さtている。このレーザからの出力光束
の制御は層の厚さに傾斜を付けることによって行われて
い名。このレーザは表面に実質的に平行な1対の躊を有
する基板上に閉じ込め層と活性層を被着して製せられ、
その傾斜は各層を液相線たは気相エピタキシャル法で形
成するときその両溝間の領域上の層と溝の上の層との成
長速度の差によって生ずる。
Semiconductor lasers generally consist of a group IV compound and include a substrate of semiconductor material with a thin active layer between two layers of opposite conductivity type, i.e. a P-type layer on one side of the active layer. There is a VcN type layer on the other side, but such lasers generally emit light in two or more optical modes;
This limits its use. U.S. Patent No. 42.15
No. 319 discloses a laser that emits a stable single mode output beam. The output flux from this laser is controlled by grading the layer thickness. The laser is fabricated by depositing a confinement layer and an active layer on a substrate having a pair of halves substantially parallel to the surface;
The inclination is caused by the difference in growth rate between the layer on the region between the grooves and the layer above the groove when each layer is formed by liquidus or vapor phase epitaxial method.

しかしこのような1対の平行溝を有するインジウム燐基
板上に液相または気相エピタキシャル法を用−で各層を
被着すると、平坦な基板部分よ多溝の方が速く埋められ
、て連続的な平滑面になってしまうため平坦な平面が得
ら九る。このInPの生長の習性はInPとその関係合
金よ9成るレーザに対する」1記米国特許の構体の利用
度を制限するだめ、InPとその関係合金から成るレー
ザて上記米国特許のレーザの傾斜した層構造を示すもの
が望ましい。
However, when each layer is deposited using a liquid phase or vapor phase epitaxial method on an indium phosphorous substrate having a pair of parallel grooves, the multi-grooves are filled more quickly than the flat substrate, and the grooves are filled continuously. This results in a smooth surface, making it impossible to obtain a flat surface. This growth habit of InP limits the utility of the structure of the US patent 1 for lasers consisting of InP and related alloys, and the sloped layer of the laser of the US patent 9 for lasers consisting of InP and related alloys. It is preferable to show the structure.

表面に突条を有する基板上にレーザを形成すると、被着
した各層の表面が彎曲して所要の厚さの傾斜か得られる
ことを発見した。この発明の半導体レーザは1対の端面
を持つ半導体材料の基体とその両端面間に延びる1本ま
たはそれ以上の突条を持つ基板とを含み、その基板と突
条の表面を活性層か被い、その厚さが横方向(基板表面
の平面内て突条の軸に垂直な方向)に傾斜している。こ
の活性層の上に閉じ込め層がある。
It has been discovered that when a laser is formed on a substrate having ridges on its surface, the surface of each deposited layer is curved to obtain a slope of the required thickness. The semiconductor laser of the present invention includes a base made of a semiconductor material having a pair of end faces, and a substrate having one or more protrusions extending between the end faces, and the surfaces of the substrate and the protrusions are covered with an active layer. Its thickness is inclined in the lateral direction (in the plane of the substrate surface, perpendicular to the axis of the protrusion). Above this active layer is a confinement layer.

このレーザを形成する方法は、基板の一部に耐食捌料の
層を被着する段階と、その基板の表面の露出部をエンチ
ングする段階と、耐食材料を除去して基板面Vc/すを
残す一攻階と、その表面をさらにエツチングしてここに
突条を形成する段階と、この基板の表面と突条の」二に
順次活性層と閉じ込め層を被着する段階とを含んでいる
The method for forming this laser includes the steps of depositing a layer of anti-corrosion material on a part of the substrate, etching the exposed portion of the surface of the substrate, and removing the anti-corrosion material to form the substrate surface Vc/substrate. The process includes a step of leaving a single layer, a step of further etching the surface to form a protrusion, and a step of sequentially depositing an active layer and a confinement layer on the surface of the substrate and the protrusion. .

第1図の半導体レーザ30は少くとも一方が出力レーサ
ービームの波長て半透光性を持つ平行両端面34と、こ
の両端面34間に延びる1対の側面36を有する半導体
基体322含み、その半導体基体32ハ1対の対向主面
40.42を持つ基板38を含んでいる。
The semiconductor laser 30 of FIG. 1 includes a semiconductor substrate 322 having parallel end faces 34, at least one of which is semi-transparent at the wavelength of the output laser beam, and a pair of side faces 36 extending between the end faces 34. Semiconductor body 32 includes a substrate 38 having a pair of opposing major surfaces 40,42.

主面40は表面48に基体320両端面34間に延ひる
円い突条46を持つ緩衝層44て被われている。この緩
衝層44の突条46と表面48は横方向VC厚さが傾斜
した活性層50で被わhでいる。また活性層50は閉じ
込め層52で被わわ、その閉じ込め層52は上被層54
で被わhている。この上被層54は緩衝層44の突条4
6の上に溝58の形の開口部か延ひた電気的絶縁層56
で被われている。この電気的絶縁層56と上被層54の
表面の溝58 VC当る部分が第1の導電層6oで被わ
i9、基板38の第2の主面42が第2の導電層62て
被われている。この第1および第2の導電層60.62
はそhぞノ1基体32に電気接触を形成している。
The main surface 40 is covered with a buffer layer 44 having a circular protrusion 46 extending between the opposite end surfaces 34 of the base body 320 on its surface 48 . The ridges 46 and surface 48 of this buffer layer 44 are covered with an active layer 50 having a lateral VC thickness gradient. The active layer 50 is also covered by a confinement layer 52, which confinement layer 52 is in turn covered by an overcoat layer 54.
It is covered with This top coat layer 54 is formed by the protrusions 4 of the buffer layer 44.
an electrically insulating layer 56 extending over the opening in the form of a groove 58;
covered with The portion of the surface of the electrically insulating layer 56 and the surface of the overcoating layer 54 that corresponds to the groove 58 VC is covered with the first conductive layer 6o, and the second main surface 42 of the substrate 38 is covered with the second conductive layer 62. ing. This first and second conductive layer 60.62
Electrical contact is made to the first substrate 32.

第2図の半導体レーザ70において第1図の半導体レー
ザ30と共通の素子は同じ引用数字で表わさhている。
Elements in the semiconductor laser 70 of FIG. 2 that are common to the semiconductor laser 30 of FIG. 1 are designated by the same reference numerals h.

この半導体レーザヮ0が半導体レーザ30と異る点は、
基板38に1対の円い突条46かあり、その基板と突条
を緩衝層44が被っていることである。活性層50けさ
らにこの緩衝層44の上にあり、その厚さは両突条46
の間の領域92の±の部分で傾斜している。
The difference between this semiconductor laser ヮ0 and the semiconductor laser 30 is that
There is a pair of circular protrusions 46 on the substrate 38, and the buffer layer 44 covers the substrate and the protrusions. The active layer 50 is located on the buffer layer 44 and has a thickness equal to that of the protrusions 46.
The regions 92 between the two are inclined at the ± portions.

基板38は一般に2元[1−V族化合物捷たは合金から
成り、(100)または(110)結晶面に平行な表面
40を有する。基板はこれらの方位の一方から偉力・に
外れていてもよいが、面(100)または(110)を
用いると2か好ましい。しかし他の基板方位も使用し得
ることを理解すべきである。基板とこれに被着する各層
を選ぶとき、その層の結晶格子が基板と合うこと妙S望
ましい。また基板ばN型INPより成ることが好ましい
Substrate 38 is generally comprised of a binary [1-V compound composition or alloy, and has a surface 40 parallel to the (100) or (110) crystal planes. The substrate may deviate significantly from one of these orientations, but two or more are preferred, using the (100) or (110) planes. However, it should be understood that other substrate orientations may also be used. When choosing a substrate and each layer to be deposited on it, it is desirable that the crystal lattice of the layer matches that of the substrate. Further, it is preferable that the substrate is made of N-type INP.

緩衝層44は一般に基板と同じ材料がら成シ、上に各層
を被着し得る高品質の表面を形成するだめに用いら九る
。この層は一般に厚さ約3〜10μである。基板38に
突条46があるときは、緩衝層を基板38と活性層50
の間に挿入するとともある。
Buffer layer 44 is generally made of the same material as the substrate and is used to provide a high quality surface upon which each layer can be deposited. This layer is generally about 3-10 microns thick. When the substrate 38 has a protrusion 46, the buffer layer is formed between the substrate 38 and the active layer 50.
It says to insert it in between.

第1図および第2図の円い突条46はそれぞれ緩衝層4
4と基板38にある。との突条は例えば幅がその基部で
約5〜20μ、高さか約0.2〜10μである。
The circular protrusions 46 in FIGS. 1 and 2 represent the buffer layer 4, respectively.
4 and the board 38. For example, the protrusion has a width of about 5 to 20 microns at its base and about 0.2 to 10 microns in height.

この高さと幅はその上に被着した各層が所要の曲率を持
つように選ぶ。突条が2本以上あ九ばその間隔と各突条
の高さと幅をその上に被着した各層が所要の曲率を持つ
ように選ぶ。一般に両突条の中心間距離は約10〜10
0μである。
The height and width are chosen so that each layer deposited thereon has the desired curvature. The spacing between two or more protrusions and the height and width of each protrusion are selected so that each layer deposited thereon has the required curvature. Generally, the distance between the centers of both protrusions is about 10 to 10
It is 0μ.

突条は第3図に示す順序で形成することができる。第3
図(a)で、基板102に緩衝層104を被着した後、
その緩衝層104の表面106の一部に標章の写真食刻
法によ多酸化シリコン等の耐食材料のマスク層108を
被着し、さらにその表面106を0.1〜1.0係の臭
素メタノール溶液のような異方性エツチング液でエツチ
ングし、W衝層104 cr) H山部をエツチングし
てその表面112に第3図(b)のようなメサ110を
形成する。然る後マスク層108を除去して第3図(c
)のようなメサ110と表面112を残す。この/す1
10と表面112をさらに同じまたは異るエツチング液
でエツチングし、第3図(d)に示すように緩衝層10
4の表面122 K円−突条120を形成する。この突
条120と表面122の上に順次活性層、閉じ込め層ふ
−よび上被層を被着する。突条を基板自身に形成した後
各層を順次被着しても同様にう捷く行くことは明らかで
ある。
The protrusions can be formed in the order shown in FIG. Third
In Figure (a), after depositing the buffer layer 104 on the substrate 102,
A mask layer 108 of a corrosion-resistant material such as polysilicon is deposited on a part of the surface 106 of the buffer layer 104 by a mark photoetching method. Etching is performed using an anisotropic etching solution such as a bromine methanol solution to etch the W barrier layer 104 cr) and the H peak portion to form a mesa 110 as shown in FIG. 3(b) on the surface 112 thereof. After that, the mask layer 108 is removed and the structure shown in FIG.
) leaving a mesa 110 and a surface 112. This/S1
10 and the surface 112 are further etched with the same or different etching solution to form the buffer layer 10 as shown in FIG. 3(d).
4 surface 122 K-circle-projection 120 is formed. An active layer, a confinement layer, and an overcoat layer are sequentially deposited over the ridges 120 and surface 122. It is clear that forming the ridges on the substrate itself and then applying each layer sequentially will also fail.

第1図の基板38上の各エピタキシャル層は、米国特許
第3753801号明細書開示の液相エピタキシャル法
を用いて被着することも、また米国特許第411673
3号明細書開示の気相エピタキシャル法を用いて被着す
ることもできる。こ力らの方法を用いると各層の局部成
長速度かそ九が生成する表面の局部曲率と共に変シ、正
の局部曲率が増すほど局部生長速度が上昇するため、厚
さの傾斜した層を被着することができる。
Each epitaxial layer on substrate 38 of FIG. 1 may be deposited using the liquid phase epitaxial method disclosed in U.S. Pat. No. 3,753,801, or U.S. Pat.
It can also be deposited using the vapor phase epitaxial method disclosed in No. 3. When using the method of Kojiro et al., the local growth rate of each layer changes with the local curvature of the generated surface, and the local growth rate increases as the positive local curvature increases, so it is possible to deposit layers with a gradient in thickness. can do.

活性層の厚さは一般に約0.05〜2.2μ、好ましく
は約0.1〜0.5μである。この層はドーピングしな
いか僅かVCP型またuN型にドーピングさ力、例工ば
ジャーナル・オブーエレクトロ二ック・マテリアル(J
cstγnal  of−Electronic Ma
terial )1980年第9巻第977頁のオルセ
ンt’01sen:)の論文に開示さ力、たように、緩
衝層とほぼ格子か一致し、所要波長の出力光束が得らh
るように各元素の相対濃度を選んだInGaAsPまた
はInGaAsから構成し得る。
The thickness of the active layer is generally about 0.05 to 2.2 microns, preferably about 0.1 to 0.5 microns. This layer may be undoped or slightly doped to VCP or uN type, for example, in the Journal of Electronic Materials (J
cstγnal of-Electronic Ma
terial) 1980 Vol. 9, p. 977, Olsen t'01sen:) As shown, the lattice almost coincides with the buffer layer, and the output luminous flux of the required wavelength can be obtained.
It may be constructed of InGaAsP or InGaAs, with the relative concentrations of each element chosen so that the

閉じ込め層52は一般KP型InP力・ら成シ、厚さ約
0.5〜3μである。上被層54はレーザ30に対する
電気接触の品質を向上するために使用することがあり、
その厚さは通常約0.2〜0.5μで、閉じ込め層52
と同じ導電型のInGaAsP ”x、たはInGaA
sから成る。
The confinement layer 52 is generally made of KP type InP and has a thickness of about 0.5 to 3 microns. Overcoat layer 54 may be used to improve the quality of electrical contact to laser 30;
Its thickness is typically about 0.2-0.5μ, and the confinement layer 52
InGaAsP”x, or InGaA of the same conductivity type as
Consists of s.

この発明の装置は他の■−■族合金合金合せ盗用いて製
することもできることを理解されたい。
It should be understood that the device of the present invention can also be fabricated using other group II alloy combinations.

電気絶縁層56は酸素または水蒸気中におけるシランの
ようなシリコン含有ガスの熱分解により上被層38土に
被着さhた2酸化ンリコンがら成ることが好寸しい。溝
58は標準の写真食刻法を用い、電気絶縁層561C上
被層54に達する丑で形成し、突条46が1本のときは
その突条の土に設けることが好ましい。捷た突条か2本
のときはその間の領域上に溝58を設ける。
The electrically insulating layer 56 preferably comprises silicon dioxide deposited on the overcoat layer 38 by pyrolysis of a silicon-containing gas such as silane in oxygen or water vapor. The groove 58 is preferably formed using a standard photolithography method to reach the electrically insulating layer 561C and the overcoat layer 54, and when there is only one ridge 46, it is preferably provided in the soil of that ridge. When there are two twisted protrusions, a groove 58 is provided in the area between them.

導電層60はチタン、白金および金から成ることが好捷
しく、順次蒸着によって被着さハる。この導電層は突条
46が1本の装置ではその突条の上の閉じ込め層の部分
を被えは充分なことは当業者には自明である。
Conductive layer 60 is preferably comprised of titanium, platinum and gold and is deposited by sequential vapor deposition. It will be obvious to those skilled in the art that in a device having only one protrusion 46, this conductive layer is sufficient to cover the portion of the confinement layer above the protrusion 46.

また閉じ込め層56上にとtと反対の導電型で一部に同
じ導電型の領域を持つ阻止層を被着することによって電
気絶縁層56をなくすることもてきる。
It is also possible to eliminate the electrically insulating layer 56 by depositing on the confinement layer 56 a blocking layer having a conductivity type opposite to that of t and a region having a region of the same conductivity type.

この後でその阻止層の全表面に導電層6oを被着すり、
ばよい。レーザ30[バイアス電圧を印加すると、阻止
層と閉じ込め層の間のPN接合が閉じ込め層52の同じ
導電型に変換された領域を除いて逆バイアスされる。
After this, a conductive layer 6o is applied to the entire surface of the blocking layer,
Bye. Applying a bias voltage to the laser 30 reverse biases the PN junction between the blocking layer and the confinement layer except for the regions of the confinement layer 52 that are converted to the same conductivity type.

基板38の第2の主表面42上の導電層62は錫と金の
真空蒸着と焼結によって形成し得る。
Conductive layer 62 on second major surface 42 of substrate 38 may be formed by vacuum deposition and sintering of tin and gold.

レーザ30の端面34は通常レーザ波長の約%の厚さの
酸化アルミニウム等の層で被覆さ力、る。この層は米国
特許第4178564号明細書に記載さhている。こh
に対向する端面34はレーザ波長を反射する鏡面が被着
さhるか、とhは米国特許第3901047号および第
4092659号の各明細書に記載されている。
The end face 34 of the laser 30 is typically coated with a layer such as aluminum oxide having a thickness of about % of the laser wavelength. This layer is described in US Pat. No. 4,178,564. Hey
The end face 34 facing the laser beam is coated with a mirror surface that reflects the laser wavelength, as described in U.S. Pat. Nos. 3,901,047 and 4,092,659.

第4図はこの発明の原理によシ構成さh、所要の傾斜を
持つレーザ150の断面の顕微鏡像を表わす模型的拡大
図て突条154[−持つInPの緩衝層て被わり、たI
nPの基板152を有する。緩衝層の表面は厚さ約30
01mのInGaAsP活性層156テ被わ力、この活
性層はInPの閉じ込め層158て被わh、その閉じ込
め層はInGaAsPの上被層160て被われている。
FIG. 4 is a schematic enlarged view showing a microscopic image of a cross-section of a laser 150 constructed according to the principles of the present invention and having a desired slope, with a protrusion 154 [-] overlaid by a buffer layer of InP, and
It has an nP substrate 152. The surface of the buffer layer is approximately 30 mm thick
The active layer 156 of InGaAsP is covered with a confinement layer 158 of InP, and the confinement layer is covered with an overlayer 160 of InGaAsP.

各層は当業者に公知の着色法によシ識別することができ
るが、基板152と緩衝層は同じ材料でてきていて同様
に着色されるだめその境界線は判ら々い。緩衝層の突条
154は基板表面が(110)方向力・ら僅かに偏して
いるため非対称になっている。
Each layer can be identified by coloring methods known to those skilled in the art, but because the substrate 152 and the buffer layer are made of the same material and are similarly colored, their boundaries are difficult to discern. The protrusions 154 of the buffer layer are asymmetrical because the substrate surface is slightly deviated from the (110) direction force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの斜視図、第2図はこ
の発明の半導体レーザの第2の実施例の断面図、第3図
はこの発明の方法の各段階を示す断面図、第4図はこの
発明の半導体レーザの断面を示す拡大図である。 32・・・基体、34・・・端面、38・・・基板、4
0.42・・・対向主面、46・・突条部、50・・・
活性層、52・・−閉じ込め層、54・上被層、60・
・・第1の導電層、62・・・第2の導電層。 特許比FA人 アールンーエー コーポレーンヨン代 
理 人  清  水   哲 ほか2名第3図 竿4図 りゃ 54
FIG. 1 is a perspective view of a semiconductor laser of the present invention, FIG. 2 is a sectional view of a second embodiment of the semiconductor laser of the invention, FIG. 3 is a sectional view showing each step of the method of the invention, and FIG. The figure is an enlarged view showing a cross section of the semiconductor laser of the present invention. 32... Base body, 34... End surface, 38... Substrate, 4
0.42...Opposing main surface, 46...Protrusion portion, 50...
Active layer, 52... - Confinement layer, 54. Overcoat layer, 60.
...first conductive layer, 62...second conductive layer. Patent ratio FA person Arun A Corporate Lane Yongyo
Rihito Tetsu Shimizu and 2 others Figure 3 Rod 4 Figure 54

Claims (2)

【特許請求の範囲】[Claims] (1)  少なくとも一方か半透光性の2つの端面、対
向主面を有する基板およびその一方の主面上を2つの端
面間に延びる突条部を有する半導体基体と、上記基板を
被い、その厚さが上記突条部を被う部分から横方向に傾
斜している活性層と、この活性層を被う閉じ込め層と、
この閉じ込め層の」−射突条部の上にある部分を被う第
1の導電層と、上記基板の第2の主面の一部を被う第2
の導電層とを含み、」1記基板が一方の導電型を、上記
閉じ込め層と上被層が反対の導電型を有し、上記活性層
の屈折率が上記基板および閉じ込め層の屈折率よシ高い
ことを特徴とする半導体レーザ。
(1) a semiconductor substrate having at least one semi-transparent two end surfaces, a substrate having opposing main surfaces, and a protrusion extending between the two end surfaces on one of the main surfaces, and covering the substrate; an active layer whose thickness slopes laterally from a portion covering the protrusion; and a confinement layer covering the active layer;
A first conductive layer covering a portion of the confinement layer above the ejection strip, and a second conductive layer covering a portion of the second main surface of the substrate.
1. the substrate has one conductivity type, the confinement layer and the overcoat layer have opposite conductivity types, and the active layer has a refractive index that is lower than the refractive index of the substrate and the confinement layer. Semiconductor laser characterized by high irradiance.
(2)上記基板の上記突条部に実質的に平行でこれから
離れた第2の突条部を上記基板に有し、上記活性層の厚
さか上記基板の両突条部間の領域の上の部分から傾斜し
ていることを特徴とする特許請求の範囲(1)記載の半
導体レーザ。
(2) the substrate has a second protrusion substantially parallel to and spaced apart from the protrusion of the substrate, the thickness of the active layer being equal to or above the area between both protrusions of the substrate; A semiconductor laser according to claim 1, wherein the semiconductor laser is inclined from a portion.
JP57189957A 1982-10-27 1982-10-27 Semiconductor laser Expired - Lifetime JPH0732278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189957A JPH0732278B2 (en) 1982-10-27 1982-10-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189957A JPH0732278B2 (en) 1982-10-27 1982-10-27 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5979590A true JPS5979590A (en) 1984-05-08
JPH0732278B2 JPH0732278B2 (en) 1995-04-10

Family

ID=16250017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189957A Expired - Lifetime JPH0732278B2 (en) 1982-10-27 1982-10-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0732278B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114887A (en) * 1975-04-01 1976-10-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS5432284A (en) * 1977-08-15 1979-03-09 Ibm Double heteroostructure laser
JPS54152879A (en) * 1978-05-23 1979-12-01 Sharp Corp Structure of semiconductor laser element and its manufacture
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS5661190A (en) * 1979-10-12 1981-05-26 Rca Corp Semiconductor laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114887A (en) * 1975-04-01 1976-10-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS5432284A (en) * 1977-08-15 1979-03-09 Ibm Double heteroostructure laser
JPS54152879A (en) * 1978-05-23 1979-12-01 Sharp Corp Structure of semiconductor laser element and its manufacture
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS5661190A (en) * 1979-10-12 1981-05-26 Rca Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH0732278B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JP2935415B2 (en) Semiconductor structure
US4728628A (en) Method of making ridge waveguide lasers
US4215319A (en) Single filament semiconductor laser
JP2827326B2 (en) Manufacturing method of semiconductor laser
JPS6237904B2 (en)
JPH0745906A (en) Optical semiconductor element and manufacture thereof
JP4111549B2 (en) Method for fabricating a semiconductor device
JPS58114480A (en) Semiconductor laser
US4429395A (en) Semiconductor laser
US4966863A (en) Method for producing a semiconductor laser device
JPS5979590A (en) Semiconductor laser
US6108361A (en) Semiconductor laser and method for producing the same
GB2130007A (en) Semiconductor laser
US5518954A (en) Method for fabricating a semiconductor laser
GB2098385A (en) Positive index lateral waveguide semiconductor laser
US4416011A (en) Semiconductor light emitting device
US20020117680A1 (en) Semiconductor device and method of manufacture of the semiconductor device
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JPS58178583A (en) Semiconductor laser
CA1207423A (en) Semiconductor laser and a method of making same
JP3159914B2 (en) Selectively grown waveguide type optical control element and method of manufacturing the same
JPS6320389B2 (en)
JPH02106085A (en) Semiconductor laser element
GB2129211A (en) Semiconductor laser and a method of making same
JPH06283816A (en) Semiconductor laser of embedded structure and fabrication thereof