JPS5979564A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5979564A
JPS5979564A JP18901582A JP18901582A JPS5979564A JP S5979564 A JPS5979564 A JP S5979564A JP 18901582 A JP18901582 A JP 18901582A JP 18901582 A JP18901582 A JP 18901582A JP S5979564 A JPS5979564 A JP S5979564A
Authority
JP
Japan
Prior art keywords
type
layer
well
buried
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18901582A
Other languages
Japanese (ja)
Inventor
Akira Muramatsu
彰 村松
Hideki Yasuoka
秀記 安岡
Norio Anzai
安済 範夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18901582A priority Critical patent/JPS5979564A/en
Publication of JPS5979564A publication Critical patent/JPS5979564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Abstract

PURPOSE:To form elements in a small size, and moreover to prevent a semiconductor integrated circuit device from a reduction of terminal voltage when a bi-polar transistor and a C-MOS FET are to be made to coexist in an n type epitaxial layer on a p type substrate buried with n<+> type layers by a method wherein formation of the buried layer directly under a p-well is avoided. CONSTITUTION:An n<-> type epitaxial layer 2 on a p<-> type Si substrate 1 buried with n<+> type layers 3a, 3b is isolated by a p type layer 4, and a p<-> well 5 is formed avoiding the layer 3a. Field oxide films 8 are formed selectively, and an n<+> type collector lead out layer 9 and a p type base 10 are provided by diffusion in order in the n<-> type layer 2 on the layer 3b at first, and poly-Si gates 12 are formed on the n<-> type layer 2 on the layer 3a in succession interposing gate oxide films 11 between them. After then, p<+> type layers 13, n<+> type layers 16 and an n<+> type emitter 17 are provided applying properly SiO2 masks 14, 15 to complete a C-MOS FET and a bi-polar transistor. According to this construction, even when the epitaxial layer 2 is formed thin, the reduction of withstand voltage according to arising to the p-well 5 from the buried layer 3a can be avoided, and the device can be formed in a fine size.

Description

【発明の詳細な説明】 本発明は半2.q体年債回路装置(以下、ICと称ずろ
)、特に絶縁ゲート電界効果トランジスタをイjするT
Cに関ずイ)。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on semi-2. q-type circuit devices (hereinafter referred to as ICs), especially insulated gate field effect transistors.
Regarding C).

例えば、一つの半導体基体にバイポーラトランジスタと
相補型絶縁ゲ−1・l/)、’異物。弔トランジスタ(
以下、C−M OS F E Tと称−4−o)を共存
させたバイポーラへTO3IC(J以下T3i−CMO
8JCと称す。)として、第1図に示すような構造が知
られている。すなわち、このBi−6MO8ICは、高
比抵抗のp型Si(シリコン)基板1上に高1.ls 
<I:!r:抗のn型Si層2をパ[ビクキシャル成長
させ、か−)、そのl)型基板1とn型層20間に高渭
゛(度のn+型埋込1j’i 3を部分的に設け、11
型層2を酸化;1.(やpn接合を利用したアイソレー
ジ9ン部4により曲数の島領域に分離するとともにn覗
層の一部にp型拡散ウェル領域5を形成し、一つの島領
域のp型ウェル5表面にnチャネルMO8FET&、ウ
ェルの形成されないn N層の表面の一部にpチャネル
M OS F E Tをそれぞれ形成し、そして他の島
領域のn型層表面にnpn  l・ラン92、りを形成
した構造を有している。
For example, a bipolar transistor and a complementary insulating gate (1.l/) on a single semiconductor substrate, 'foreign matter. Funeral transistor (
TO3IC (hereinafter referred to as C-MOS FET and -4-o) coexisting with TO3IC (hereinafter referred to as T3i-CMO
It is called 8JC. ), a structure as shown in FIG. 1 is known. That is, this Bi-6MO8IC is mounted on a p-type Si (silicon) substrate 1 with a high resistivity of 1. ls
<I:! r: The anti-n-type Si layer 2 is grown paralytically (or -), and the n+-type embedding 1j'i 3 is partially grown between the n-type substrate 1 and the n-type layer 20. 11
Oxidize mold layer 2;1. (A p-type diffusion well region 5 is formed in a part of the n-hole layer, and a p-type diffusion well region 5 is formed on the surface of the p-type well 5 of one island region.) An n-channel MO8FET and a p-channel MOSFET were formed on a part of the surface of the nN layer where no well was formed, and an npn l-run 92 and ri were formed on the surface of the n-type layer in the other island region. It has a structure.

同図において、n+型埋込層3はnpn)・ランジスタ
のコレクタ抵抗を低減するためにパイボーラ隼子の直下
に形成されるものであるが、同時にM OS 素子の下
にも埋め込んでCM OS F E Tのラッチアップ
防止を194っていζン。才なわら、n+型埋込層3に
よりP MOS F’E Tの■げ型層、n−型層およ
びpウェルより構成された寄生トランジスタの動作を防
止1〜ている。
In the same figure, the n+ type buried layer 3 is formed directly under the piebola Hayabusa in order to reduce the collector resistance of the npn) transistor, but it is also buried under the MOS element at the same time to reduce the collector resistance of the npn) transistor. ET latch-up prevention with 194mm. In addition, the n+ type buried layer 3 prevents the operation of the parasitic transistor constituted by the exposed layer of the PMOS F'ET, the n- type layer, and the p well.

とこ7)で、かかる4’f!¥造のBi−CMO8IC
においで、エピタキシャルn型層2が十分に厚い場合は
特に間j7F1はないが、バイポーラ素子を微細化して
高速化、高集積化するためにIA型層2の厚さを271
 m程度に薄くした場合にn+型埋込層3のエピタキシ
ャル層、1r11−にp型ウェル5への「わき上り」拡
散が問題となる。すなわち、nチャネルMO、’、; 
F E ’!’の形成されるp型ウェル5はMOSFE
Tのしきい電圧■thを規定するために低濃度で充分に
時間をかげてp型拡散処理を行なう必要があり、このと
きn+型埋込層3がp型ウェル直下に拡散してソース・
ドレインn+型領域6とn+型埋込層3との距離が短か
くなりその結果ドレイン耐圧が小さくなることになった
At 7), it takes 4'f! Bi-CMO8IC for ¥
In the case where the epitaxial n-type layer 2 is sufficiently thick, there is no particular gap between j7F1, but in order to miniaturize the bipolar element and increase its speed and integration, the thickness of the IA-type layer 2 may be increased to 271 cm.
When the thickness is reduced to about m, "upward" diffusion of the epitaxial layer of the n+ type buried layer 3, 1r11-, into the p type well 5 becomes a problem. That is, n-channel MO,′,;
FE'! 'The p-type well 5 formed is a MOSFE
In order to define the threshold voltage (■th) of T, it is necessary to perform p-type diffusion treatment at a low concentration and with sufficient time.At this time, the n+ type buried layer 3 is diffused directly under the p-type well, and the source
The distance between the drain n+ type region 6 and the n+ type buried layer 3 is shortened, resulting in a decrease in drain breakdown voltage.

本発明は上記した問題を解決するためになされたもので
あり、その目的とするところは、エピタキシャル層を薄
くして素子を微細化できしかも耐圧低下を少なくした1
3i−CMO3IC乃至CMO8ICの提供にある。
The present invention was made in order to solve the above-mentioned problems, and its purpose is to make the epitaxial layer thinner, to miniaturize the device, and to reduce the drop in breakdown voltage.
3i-CMO3IC to CMO8IC are provided.

以下実施例にそって本発明な詳述する。The present invention will be described in detail below with reference to Examples.

第2図は本発明の一実施例を示す13i−CMO3IC
の断面図である。
FIG. 2 shows a 13i-CMO3IC showing an embodiment of the present invention.
FIG.

このI’3i−CMO8ICは、I〕−型S五基板1の
一主面にエピタキシャル成長さぜたn型Si層2を有し
、p−型基板1とn型層2との間に部分的にn+型埋込
層3a、3bが設けられている1、11型SI層2の一
部にはp型ウェル領域5が形成されている。そして、こ
のn p、9 S r層2はp型拡11(層4及び厚い
フィールド酸化)摸8によるアイソレーション部により
いくつかの島領域に分離されている1、p i4!jウ
ェル5衣而にはソース・ドレインn+型領域16と絶縁
ゲート12とによるnチャネルMO8FETが設けられ
、同じ島領域のn型1912表面にはソース・ドレイン
p+型憤域13と絶縁ゲート12とによるpチャネルM
 OS F E Tとがそれぞれ設けられている。そし
て、他の島領域の1〕型層表面にはベースp型層10.
コレクタ!1型層9及びエミツタ11+型層17からな
るnpn トランジスタが設けられている。本発明のB
i−CMO8ICは、第2図から明らかなように、p−
型基板1とn型層20間に設けられたn+型埋込層3a
、:う1〕は■)チャネルMO8FETの直下とnpn
l・シンジスタの直下に存在しているが、nチャネルM
 OS F E Tのある[)型ウェル直下には存在し
ていない。
This I'3i-CMO8 IC has an n-type Si layer 2 epitaxially grown on one main surface of an I]-type S5 substrate 1, and a portion is formed between the p-type substrate 1 and the n-type layer 2. A p-type well region 5 is formed in a part of the 1 and 11-type SI layer 2 in which the n+-type buried layers 3a and 3b are provided. This n p,9 S r layer 2 is separated into several island regions by an isolation section by a p-type expansion 11 (layer 4 and thick field oxidation) 8 1, p i4! An n-channel MO8FET with a source/drain n+ type region 16 and an insulated gate 12 is provided in the j-well 5, and a source/drain p+ type region 13 and an insulated gate 12 are provided on the surface of the n-type 1912 in the same island region. p-channel M by
OS FET are provided respectively. A base p-type layer 10.
collector! An npn transistor consisting of a type 1 layer 9 and an emitter 11+ type layer 17 is provided. B of the present invention
As is clear from FIG. 2, i-CMO8IC has p-
n+ type buried layer 3a provided between type substrate 1 and n type layer 20
, : U1] is ■) Directly below the channel MO8FET and npn
It exists directly under the l-synister, but the n-channel M
It does not exist directly under the [ ) type well with OS FET.

次に、本発明によるIli −CMOS I Cの製造
プロセスの11コ施例は下記の工程(1) −(81に
従って行われ、第3図乃Lal’y 10図が対応する
Next, 11 embodiments of the manufacturing process of Ili-CMOS IC according to the present invention are carried out according to the following steps (1)-(81), and FIGS. 3 to 10 correspond.

(1)高山抵抗p−型Si基板1の表面に11  型埋
込ハ”i 3 a 、  3 bをマスクsb拡散によ
り形成する(第3図)。このとぎウェル位置Kn+型埋
込層がかからないパターンなI△ぷ。
(1) Form 11-type buried layers I3a, 3b on the surface of the high-resistance p-type Si substrate 1 by mask sb diffusion (Fig. 3).At this well position, the Kn+-type buried layer is not covered. Pattern I△pu.

(2)イ9しト純物儂度n−型Si層2を2〜411r
rL厚い一エピタキシャル成長させる。n−型Si層の
一部に接合アイソレーションrt+s 4をB拡散によ
り形成す7−)(第4図)。
(2) A pure n-type Si layer 2 of 2 to 411r
Grow a thick epitaxial layer. Junction isolation rt+s 4 is formed in a part of the n-type Si layer by B diffusion 7-) (FIG. 4).

(3)p−型ウェル5ンつくろためのBイオン打込み拡
散を行なう(第5図)。
(3) Perform B ion implantation and diffusion to create 5 p-type wells (Fig. 5).

(4)  ナイトライド(SI3N4)マスク7による
L 0CO8(低温選択酸化技術)により厚いフィール
ドrI9化膜8を形成する(第6図)。
(4) A thick field rI9 film 8 is formed by L0CO8 (low temperature selective oxidation technology) using a nitride (SI3N4) mask 7 (FIG. 6).

(5)バイポーラ部のコンタク・コンタクト11+型層
(CN)9形成のためのP (’Jン)デボ拡散、つづ
いてベースp型層(J3 R,) 1.6形成のための
B(ボロン)デボ拡散を行なう(第7図)。
(5) P ('Jn) debo diffusion for forming the contact contact 11+ type layer (CN) 9 of the bipolar part, followed by B (boron) diffusion for forming the base p type layer (J3 R,) 1.6. ) Perform debo diffusion (Figure 7).

(6)フィールド部以外の表面酸化膜な除去した後、熱
酸化により薄いゲート酸化j11、′!11な形成し、
そ、の」二にSiをデポジットし、ホトエッチしてMO
S側にポリSiゲート12を形成すl)(第8図)。
(6) After removing the surface oxide film other than the field area, a thin gate oxide j11,'! is formed by thermal oxidation. 11 formed,
Deposit Si on the second side, photo-etch it and MO
A poly-Si gate 12 is formed on the S side (FIG. 8).

(力 低温酸化+II′、\14等を形成し、ポリSi
ゲートをマスクにB(ボロン)をイオン打込ろ・、拡散
してpチャネルMO8FETのソース・ドレイン■〕+
型層13を形成する(第9図)。
(Formation: Low temperature oxidation + II', \14, etc. are formed, and
Using the gate as a mask, implant B (boron) ions and diffuse into the source and drain of the p-channel MO8FET.
A mold layer 13 is formed (FIG. 9).

(8)第10図に示すように新たな低N+’!+酸化I
I(’:によるマスク15を形成し、他のポリSiゲー
トをマスクにAs (ヒ素)をイオン打込み拡ffk 
1.、、ウェル表面に11チャネルM OS F E 
’rのソース・ドレイン11+型層16を形成すると同
時にバ・rポーラ部にエミツタ11°型層17を形成す
る。
(8) New low N+' as shown in Figure 10! +oxidation I
A mask 15 is formed by I(':), and As (arsenic) is ion-implanted and expanded using the other poly-Si gate as a mask.ffk
1. ,,11 channel MOS F E on the well surface
At the same time as the 'r source/drain 11+ type layer 16 is formed, the emitter 11° type layer 17 is formed in the bar/r polar portion.

この後、PSG(リン・シリケートガラス) +14)
After this, PSG (phosphorus silicate glass) +14)
.

18の形成、コンタクトホトエッチ、A−e(アルミニ
ウム)蒸着、そしてホトエッチによるA、0電(・鱈1
9の形式を経て第2図に示すごときBi−CMO8IC
を完成する。
18 formation, contact photoetching, A-e (aluminum) vapor deposition, and photoetching A, 0electron (・cod 1
9 format and Bi-CMO8IC as shown in Figure 2.
complete.

第11図はエピタキシャルn型層とp型ウェル領域にか
けて0MO8FETのみ(バイポーラ素子を形成しない
場合)を有するICにおいて本発明を適用した場合の実
施例を示す。この場合もpウェル5の直下にはn+型埋
込層は形成されない。
FIG. 11 shows an embodiment in which the present invention is applied to an IC having only 0MO8FET (in the case where no bipolar element is formed) across the epitaxial n-type layer and the p-type well region. In this case as well, no n+ type buried layer is formed directly under the p-well 5.

以上、実施例で述べた本発明によれば、少なくともnチ
ャネルMO8FETのあるp型ウェルの直下にn+型埋
込層を存在させないことにより、n+型埋込層のエピタ
キシャル層への1わき上り」がないため、第2図に示し
たエピタキシャルn型/?!2の厚さくd)が例えばわ
ずかに274 m又はそれ以下に薄い場合おいても、n
 型トレイン層とp型ウェルとの間のPN接合からp型
つェル内部に向かって空乏層は充分のびるため、n+1
fHIJドレイン耐圧を低下させることがない。例えば
、従来のnチャネルMO8FETの下に1げ型埋込層が
ある構造では耐圧を15V出そうとする場合、ウェル深
さは4μm必要であり、このウェルな拡散により形成1
′る際にn+型埋込層は35μm程1【Vも「わき−ヒ
リ」、シたがって、エピタキシャル層の厚さは8μmを
必要としたが、本発明によればn+型埋込層の1わき七
り分」約3,571m分だけエピタキシャル層を薄くす
ることができる。すなわち、エピタキシャル層の厚さd
k2〜4μmf4度としても十分なドレイン耐圧か得ら
れる。なおpヂャネルMO8FETおよびnpn)ラン
ジスタにおいてはn+型埋込層の[=わき上91は殆ん
ど問題にならない。
According to the present invention described in the embodiments, at least by not having an n+ type buried layer directly under the p type well where the n channel MO8FET is located, the n+ type buried layer rises up to the epitaxial layer. Since there is no epitaxial n-type/? ! Even if the thickness d) of 2 is thinner, for example only 274 m or less, n
Since the depletion layer extends sufficiently from the PN junction between the type train layer and the p-type well toward the inside of the p-type well, n+1
There is no reduction in fHIJ drain breakdown voltage. For example, in a conventional n-channel MO8FET with a structure in which there is a buried layer under it, if you want to output a withstand voltage of 15V, the well depth needs to be 4 μm.
The thickness of the n+ type buried layer was approximately 35 μm when the n+ type buried layer was used. The epitaxial layer can be thinned by approximately 3,571 m by 1 width. That is, the thickness d of the epitaxial layer
Sufficient drain breakdown voltage can be obtained even if k2 to 4 μm f4 degrees. Note that in a p-channel MO8FET and an npn) transistor, the side 91 of the n+ type buried layer hardly poses a problem.

このように薄いエピタキシャル層な使用できる結果、拡
散や酸化によって、形成するアイソレーション部の(7
へ方向の余裕を小さくすることができる。千ノブ面17
tを小さく(高集積化)できるとともニfkllえばS
iゲート3 /i m長の高速化I’3i−CM OS
 I Cを実現できることになった。
As a result of being able to use such a thin epitaxial layer, the isolation region (7
The margin in the direction can be reduced. Sennobu side 17
If t can be made smaller (higher integration), S
i Gate 3 /i m length acceleration I'3i-CM OS
It became possible to realize IC.

本発明は前記実施例に限定されない。例えば(図示され
ブIい) lli−CMO8I Cにおいて、バイポー
ラnpn)ランジスタ直下にのみn+型埋込層な形成し
、nチャネルMO3FET及びpチャネルM □S F
 E Tの下には+1+型埋込層を・形成しない44’
l”造をどる場合にも本発明の前記効果が得られイ)。
The invention is not limited to the above embodiments. For example, in lli-CMO8IC (not shown), an n+ type buried layer is formed only directly under the bipolar npn) transistor, and n-channel MO3FET and p-channel M □S F
+1+ type buried layer is not formed under E T44'
The above-mentioned effects of the present invention can be obtained even when the structure is changed to 1".

ただこの場合、0MO8FETのラソチアッノ゛が間層
1どなる。
However, in this case, the lasso chino of the 0MO8FET becomes the interlayer 1.

本発明はT3i −CMOS I C及びラッチアップ
防市のためにn−I 型埋込層を部分的に有する6MO
3ICの全てに適用できるものである。
The present invention is a 6MO with partial n-I type buried layer for T3i-CMOS IC and latch-up prevention.
This is applicable to all 3 ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

るI′51図はrli −CMOS I Cの一例を模
式図的に示した断面図である。 第2図は本発明による13i−CMO8ICの一実施例
を示す断面図である。 第3図〜第10図は本発明による丁1i−CMO8IC
をその製造プロセスで示す工程断面図である。 第11図は本発明にょろ13i −CMOS I Cの
他の一実施例を示す断面図である。 1  ・p〜型Si基板、2− n型Si層、3a。 3b・・・0+を埋込層、4・・−1イル−ジョン1)
型層、5・・・p  −5ウエル、6・・n1型ソース
・ドレイン、7・・・ナイトライド膜、8・フィールド
酸化膜、9・・・n+型コレクタ、10・・・p型ベー
ス、11・・・ゲート自安化月シ\、12・・・ポリS
iゲート、13・・・p″°型ノース・ドレイン、14
.15・・・マスク、16・・・p+型7−ス・ドレイ
ン、17・・・n+型エミッタ、18− P S Gd
l’!、19 ・A、−(3電(敵。 第  7  図 第  9  図 第10図
Figure I'51 is a sectional view schematically showing an example of rli-CMOS IC. FIG. 2 is a sectional view showing an embodiment of a 13i-CMO8 IC according to the present invention. FIG. 3 to FIG. 10 show the D1i-CMO8IC according to the present invention.
FIG. 3 is a process sectional view showing the manufacturing process. FIG. 11 is a sectional view showing another embodiment of the Nyoro 13i-CMOS IC of the present invention. 1. P-type Si substrate, 2- N-type Si layer, 3a. 3b...0+ is embedded layer, 4...-1 illusion 1)
type layer, 5... p-5 well, 6... n1 type source/drain, 7... nitride film, 8... field oxide film, 9... n+ type collector, 10... p type base , 11...Gate Jianka Tsukishi\, 12...PolyS
i-gate, 13...p''° type north drain, 14
.. 15...Mask, 16...p+ type 7-s drain, 17...n+ type emitter, 18-P S Gd
l'! , 19 ・A, - (3 electricity (enemy. Figure 7 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] ■ 第1導電匹ν半導体基板の一主面上に第2導電型半
り!フ1体層を有し、第1導電型基板と第2導電型層と
の間に部分的に第2導電型高濃度埋込層が設けられ、第
2導電型十2!゛2体層の一部に第1導電型ウエル領1
成が形成され、このウェル領域表面とウェルの形成され
ない半導体層の一部の表面にチャネル力電型の異なるM
OSFETが相補的に設けられるどどもにウェルの形成
されない半導体1vうの他の−↑1](にバイポーラト
ランジスタが設けられた半樽体隼債回Il!、)装置に
おいて、−ヒ記第2導電型高4′(度埋込層は少なくと
も第1導電型ウエル領域直下には形成されていないこと
を特徴どする半NJ体集積回ii:51’、 i]′□
′J′。
■ The first conductive type ν The second conductive type is placed on one main surface of the semiconductor substrate! A second conductivity type high-concentration buried layer is partially provided between the first conductivity type substrate and the second conductivity type layer, and the second conductivity type 12!゛First conductivity type well region 1 in a part of the two-body layer
M is formed on the surface of this well region and on the surface of a part of the semiconductor layer where no well is formed, and has a different channel power type.
In a device in which OSFETs are provided complementary to each other and no well is formed in the semiconductor 1v other than the other -↑1] (a half-barrel body in which a bipolar transistor is provided!), Conductivity type height 4' (half NJ integrated circuit ii: 51', i]'□ characterized in that the buried layer is not formed directly under the first conductivity type well region)
'J'.
JP18901582A 1982-10-29 1982-10-29 Semiconductor integrated circuit device Pending JPS5979564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18901582A JPS5979564A (en) 1982-10-29 1982-10-29 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18901582A JPS5979564A (en) 1982-10-29 1982-10-29 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5979564A true JPS5979564A (en) 1984-05-08

Family

ID=16233869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18901582A Pending JPS5979564A (en) 1982-10-29 1982-10-29 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5979564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255049A (en) * 1985-05-02 1986-11-12 テキサス インスツルメンツ インコ−ポレイテツド Integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255049A (en) * 1985-05-02 1986-11-12 テキサス インスツルメンツ インコ−ポレイテツド Integrated circuit

Similar Documents

Publication Publication Date Title
EP0139019B1 (en) Semiconductor device and method of manufacture thereof
JPH0481337B2 (en)
JPS63304657A (en) Manufacture of semiconductor device
JPH0691201B2 (en) Method for manufacturing CMOS semiconductor device
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH10214907A (en) Semiconductor device and its manufacture
JPH04239760A (en) Manufacture of semiconductor device
JP2997377B2 (en) Semiconductor device and manufacturing method thereof
EP0091256B1 (en) Cmos device
JPS58501848A (en) High-density CMOS device with conductively interconnected wells and method of manufacturing the same
US7736961B2 (en) High voltage depletion FET employing a channel stopping implant
JPS59208851A (en) Semiconductor device and manufacture thereof
JP2949745B2 (en) Method of manufacturing vertical MOS field effect transistor
JPS5979564A (en) Semiconductor integrated circuit device
JP2575876B2 (en) Semiconductor device
JP2573319B2 (en) Method for manufacturing semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JP2002170890A (en) Semiconductor device
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JPS6244862B2 (en)
JP2953061B2 (en) High breakdown voltage MOS transistor and method of manufacturing the same
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH07101717B2 (en) Method for manufacturing semiconductor device
JPS61214457A (en) Semiconductor device and manufacture thereof