JPS5979522A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5979522A
JPS5979522A JP18909782A JP18909782A JPS5979522A JP S5979522 A JPS5979522 A JP S5979522A JP 18909782 A JP18909782 A JP 18909782A JP 18909782 A JP18909782 A JP 18909782A JP S5979522 A JPS5979522 A JP S5979522A
Authority
JP
Japan
Prior art keywords
film
substrate
annealing
implanted
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18909782A
Other languages
Japanese (ja)
Other versions
JPS6327846B2 (en
Inventor
Hiroshi Matsui
宏 松井
Yutaka Yuge
豊 弓削
Tomoaki Ishii
石井 奉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP18909782A priority Critical patent/JPS5979522A/en
Publication of JPS5979522A publication Critical patent/JPS5979522A/en
Publication of JPS6327846B2 publication Critical patent/JPS6327846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To facilitate annealing without outward diffusion by forming SiO2 film having desired thickness on the surface of a semiconductor substrate in advance by heat treatment with specified temperature in N2 gas atmosphere containing O2 of predetermined quantity when annealing the substrate implanted with n<+> type impurity ion. CONSTITUTION:Thick field SiO2 film 2 is formed on circumferencial portion of p type Si substrate 1, and central portion on the surface of the substrate 1 surrounded with said film 2 is provided with gate electrode 5 consisting of polycrystalline Si through gate SiO2 film 4. Then, n type impurity ion such as As and P is implanted into the substrate 1 on both sides of the electrode 5 used as a mask by high concentration to generate an implantation region for source and drain 6. After that, for drive-in diffusion by annealing, the substrate 1 is placed in N2 gas atmosphere containing O2 of 3-100% of volume ratio at first. Next, heat treatment of 100-600 deg.C is made to form SiO2 film 7 of 30-100Angstrom thickness on the entire surface of the substrate 1 and then annealing of 900- 1,100 deg.C for 20-60min is effected.

Description

【発明の詳細な説明】 この発明は、高濃度にイオン注入されたN型不純物領域
を有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having an N-type impurity region implanted with high ion concentration.

従来のSi半導体装置は高濃度N型不純物をイオン注入
したSi領域を電気的活性化およびイオン注入時に発生
した結晶欠陥を回復させるためのN2 g囲気中高温ア
ニールを行う場合、外向拡散防止のために、前もって比
較的厚い低温CVD膜(たとえば400℃での8102
を約1000X)を形成してから、前記N2高温アニー
ルを行うことが不可欠であった。
Conventional Si semiconductor devices perform high-temperature annealing in a N2g atmosphere to electrically activate a Si region into which high-concentration N-type impurities have been ion-implanted and to recover crystal defects generated during ion implantation, in order to prevent outward diffusion. 8102 at 400°C in advance.
It was essential to perform the N2 high-temperature annealing after forming the substrate (approximately 1000X).

ここで、外向拡散とは、熱処理工程中に高濃度に注入さ
れた領域から外部に不純物が飛び出し、拡散領域の不純
物濃度が変化すること、すなわち、設計値からずれるこ
とである。
Here, outward diffusion means that impurities jump out from a region implanted at a high concentration during a heat treatment step, and the impurity concentration in the diffusion region changes, that is, it deviates from the designed value.

上記N2雰囲気アニールの必要性は02雰囲気て行なう
と、転位ループ、転位網などの2次欠陥が発生し、接合
特性の劣化が起ることは周知のことである。
The reason for the need for annealing in the N2 atmosphere is that it is well known that secondary defects such as dislocation loops and dislocation networks occur when annealing is performed in the N2 atmosphere, resulting in deterioration of bonding characteristics.

このように、従来の方法の欠点として、外向拡散を防ぐ
ために、N2アニール工程前に厚い低温CV I)膜を
形成する工程が必要であった。このため、処理工程時間
が増加する。
Thus, a drawback of the conventional method is that it requires a step of forming a thick low-temperature CV I) film before the N2 annealing step to prevent outward diffusion. Therefore, the processing time increases.

この発明は、上記従来の欠点を解決するためになされた
もので、高濃度イオン注入したN型不純物のN7アニー
ルを簡単に外方拡散なしに行うことができ、高濃度イオ
ン注入全使用するV’−LS Iの製造方法に利用でき
る半導体装置の製造方法を提供することを目的とする。
This invention was made to solve the above-mentioned conventional drawbacks, and it is possible to easily perform N7 annealing of N-type impurity implanted with high concentration ions without out-diffusion, and it is possible to easily perform N7 annealing of N-type impurity implanted with high concentration ions, and to eliminate the need for high concentration ion implantation. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can be used in a method for manufacturing a LSI.

以下、この発明の半導体装置の製造方法の実施例につい
て図面に基づき説明する。第1図(a)ないし第1図(
e)はその一実施例を説明するための工程説明図である
。この第1図(a)〜第1図(e)の実施例はS1ゲー
)lviO8型半導体集積回路を例にして示したもので
ある。
Embodiments of the method for manufacturing a semiconductor device of the present invention will be described below with reference to the drawings. Figure 1(a) to Figure 1(
e) is a process explanatory diagram for explaining one example thereof. The embodiments shown in FIGS. 1(a) to 1(e) are shown using an S1/lviO8 type semiconductor integrated circuit as an example.

才ず、第1図(a)に示すように、P型基板10半導体
基板にLOcoS (LOCal 0xid4aton
 ofSilicon)用Si3N、膜3のパターンヲ
形成し、それを酸化マスクにしてフィールドS io2
g 2 k形成する。
As shown in FIG. 1(a), LOcoS (LOCal 0oxid4aton
Form a pattern of Si3N film 3 for (ofSilicon), and use it as an oxidation mask to form field S io2
Form g 2 k.

次に、第1図α〕)に示すように、5isN+膜3を除
去し、ゲート5in2膜4、Po ly S i膜5を
P型基板1上に順次形成する。
Next, as shown in FIG. 1 α]), the 5isN+ film 3 is removed, and a gate 5in2 film 4 and a PolySi film 5 are sequentially formed on the P-type substrate 1.

次に、第1図(C)に示すように、前記Po1ySi膜
5をマスクにしてイオン注入法でN型不純物(As。
Next, as shown in FIG. 1C, an N-type impurity (As) is implanted by ion implantation using the Po1ySi film 5 as a mask.

P) A(H5X 10” 〜2 X 10”cm−2
,40KeVで注入し、ソース・ドレイン6’を形成す
る。
P) A (H5X 10" ~ 2 X 10"cm-2
, 40 KeV to form source/drain 6'.

次に、イオン注入したN型不純物全電気的活性化および
結晶回復のためにN2中高温(900〜1100°Cl
2O〜60分)アニールを行う必要があるが、As、P
ON型不純物の外向拡散を防止するためのS i 02
膜7を第1図(d)に示すように、熱酸化膜で形成する
方法に特徴がある。
Next, the ion-implanted N-type impurity was implanted at a high temperature (900-1100°C) in N2 for total electrical activation and crystal recovery.
Although it is necessary to perform annealing (20 to 60 minutes), As, P
S i 02 to prevent outward diffusion of ON-type impurities
As shown in FIG. 1(d), the method of forming the film 7 with a thermal oxide film is distinctive.

これについて、第2図を用いて詳細に説明する。This will be explained in detail using FIG. 2.

第2図(a)は炉芯管の概略図であり第2図中)はぞの
温度プロファイルを示す。
FIG. 2(a) is a schematic diagram of the furnace core tube, and shows the temperature profile of the hole in FIG.

この第2図(a)、第2図[有])において、100は
炉、200はヒータを示す。ヒータ200は炉100の
外周面の中央部に長さくd)で配設されており、この中
央部でこの炉100内の濃度が高く、T2になっている
。炉100に挿入する場合、第2図(b)に示すように
炉口利近の温度T + ’C(TIY’i結晶回復が起
り如才る温度で約600℃)以下の低温領域((a)領
域で通常100〜600℃の範囲)にP型基板1がある
とき炉奥のガス導入口((C)部)より02荏囲気ガス
を流し、薄い5i02膜7を表面に熱成長させて形成す
る。
In this FIG. 2(a), FIG. 2 [present]), 100 indicates a furnace, and 200 indicates a heater. The heater 200 is disposed at the center of the outer circumferential surface of the furnace 100 with a length d), and the concentration in the furnace 100 is high at this center, reaching T2. When inserted into the furnace 100, as shown in FIG. 2(b), a low temperature region ((( a) When the P-type substrate 1 is in the temperature range (normally in the range of 100 to 600°C), 0202 gas is flowed from the gas inlet at the back of the furnace (part (C)) to thermally grow a thin 5i02 film 7 on the surface. form.

と、3%の場合約30人、100%の場合約100A 
I) S i02膜がイオン注入法で注入されたAs、
PのN型不純物上に形成される。
And, if it is 3%, it will be about 30 people, and if it is 100%, it will be about 100A.
I) Si02 film is implanted with As by ion implantation method,
It is formed on the N-type impurity of P.

第2図(a)に示す(a)領域にSlウエーノ・が存在
する時間として、通常の拡散炉の処理方法の炉口放置が
約10〜20分、(a)領域全挿入される速度が約5〜
10分の合計15〜30分となる。
As shown in Figure 2 (a), the time that Sl waeno exists in the area (a) is approximately 10 to 20 minutes when left at the furnace mouth in a normal diffusion furnace treatment method, and the speed at which the entire area (a) is inserted is approximately 10 to 20 minutes. Approximately 5~
The total time will be 15-30 minutes (10 minutes).

以上、説明した4%02濃度の場合と従来の方法のN2
アニール前に低温3 i 02を100 OA、形成し
た場合の外向拡散の比較実験した結果を第4図および第
5図に示す。第4図は1×10I6crn″、 4QK
evのAs′fr:P (100)Si 、ρo=20
Ωαにイオン注入した試料を各温度の拡散炉で中央部に
30分間入れた後のシート抵抗の結果を示したものであ
る。
The N2 concentration case of 4% 02 concentration explained above and the conventional method
FIGS. 4 and 5 show the results of a comparative experiment on outward diffusion when low temperature 3i02 was formed at 100 OA before annealing. Figure 4 is 1×10I6crn'', 4QK
As'fr of ev:P (100)Si, ρo=20
This figure shows the results of the sheet resistance after a sample into which ions were implanted into Ωα was placed in the center for 30 minutes in a diffusion furnace at various temperatures.

処理方法は前述した通りである。The processing method is as described above.

外向拡散が起らないCVD S i 02100f k
前もってN2アニール前に形成してお〈従来方法と比べ
て、この発明の方法の02/N2容量比3〜100%の
雰囲気の炉口低温領域で薄い熱酸化膜を形成した試料の
シート抵抗は同じであり、前述した範囲でも外向拡散が
防止可能であることが判る。
CVD without outward diffusion S i 02100f k
It was formed in advance before N2 annealing. (Compared to the conventional method, the sheet resistance of the sample in which a thin thermal oxide film was formed in the low-temperature region at the furnace mouth in an atmosphere with an 02/N2 capacity ratio of 3 to 100% in the method of this invention was The results are the same, and it can be seen that outward diffusion can be prevented even within the above range.

この第4図は5102膜を形成することなく 1000
’CNt中、30分処理して外向拡散が起った場合のρ
8を示す。この場合は40〜10o  10とAsが減
少するので、ρ8が高くなる。たとえば、パック・スキ
ャツタリング法で分析した結果では、外向拡散の起こら
ない1000°Cの場合(ρ5−18°乙)と比べて、
50 ろの場合は、約40%のAs75E外に出ている
ことが判った。
This figure 4 shows 1000 without forming 5102 film.
'ρ when outward diffusion occurs after 30 minutes of treatment during CNt
8 is shown. In this case, since As decreases to 40 to 10 o 10, ρ8 becomes high. For example, the results of analysis using the pack scattering method show that compared to the case of 1000°C (ρ5-18°) where outward diffusion does not occur,
In the case of 50%, it was found that about 40% of As75E was released.

また、第59図はイオン注入法で注入するN型不純物と
してPの場合であるが、第4図のAsの場合と同様であ
ることが判った。
Further, although FIG. 59 shows the case where P is used as the N-type impurity implanted by the ion implantation method, it was found that the case is similar to the case of As shown in FIG. 4.

このようにして、第1図(d)で示したように、薄い5
102 膜を炉口低温領域で形成し、連結的に炉中央部
でN2アニールを行って電気的に安定なソース・ドレイ
ン領域6を形成する。
In this way, as shown in FIG. 1(d), a thin 5
102 film is formed in the low temperature region at the mouth of the furnace, and N2 annealing is sequentially performed in the center of the furnace to form electrically stable source/drain regions 6.

この場合、第4図、第5図より10006C30分のア
ニールを行えば、Asの場合で18°/D、Pの場合で
9Ω/。と、一般的に2〜3 tt MO8集積回路で
の°拡散層抵抗使用範囲30°/ 以下より低い口 抵抗が安定して得られる。
In this case, as shown in FIGS. 4 and 5, if annealing is performed for 10006C30 minutes, the result will be 18°/D in the case of As and 9Ω/in the case of P. In general, a resistance lower than 30°/diffusion layer resistance usage range in a 2 to 3 tt MO8 integrated circuit can be stably obtained.

以降は、通當の方法にしたがって第1図(e)に示すよ
うに、PSG膜8を形成し、コンタクト領域9をあけA
/=配線10を形成する。
Thereafter, as shown in FIG. 1(e), a PSG film 8 is formed according to a conventional method, and a contact region 9 is opened.
/=wiring 10 is formed.

以上、この発明の第1実施例f、siゲートMO8集集
口回路製造方法を例にして説明したが、この方法ばPか
Asi高濃度イオン注入し、N2アニールを行うSi基
板集積回路全般(バイポーラ、メタルゲ−1−MO8な
ど)に適用できるのは当然である。
The above description has been made using the first embodiment f of the present invention, a method for manufacturing a Si gate MO8 integrated circuit, as an example. However, this method is applicable to general Si substrate integrated circuits in which high concentration P or Si ions are implanted and N2 annealing is performed Naturally, it can be applied to bipolar, metal game-1-MO8, etc.).

以上、説明したように、上記第1の実施例でにS i 
02膜7が熱成長5102であり、従来技術に比べ、非
常に薄い酸化膜で実施可能であり、N2アニールを行う
前に外向拡散を防止するための低温CVD膜を形成しな
くても、ソース・ドレイン領域からのAs、’pの外向
拡散を防ぐことが可能であるので、工程の大幅簡略がで
きる利点がある。
As explained above, in the first embodiment, S i
02 film 7 is thermally grown 5102, and can be performed with a much thinner oxide film than conventional techniques, and can be grown as a source without forming a low-temperature CVD film to prevent outward diffusion before N2 annealing. - Since it is possible to prevent outward diffusion of As and 'p from the drain region, there is an advantage that the process can be greatly simplified.

また、低温CVD装置よりクリーンな状態の石英炉芯管
内で形成1−た8i02膜を使用できるので、リーク電
流や信頼性の面で安定化する利点もある。
Furthermore, since the 1-8i02 film formed in the quartz furnace core tube can be used in a cleaner state than in the low-temperature CVD equipment, there is also the advantage of stabilization in terms of leakage current and reliability.

なお、第1の実施例では、第2図(a)における(a)
領域だけ02雰囲気にし、(1))領域はN2雰囲気に
するためにガス導入口((C)部)から入るガスのシー
ケンス切換えで行う方法であったが、第3図(炉心管の
概略図)に示すように炉芯管の形状が炉奥部のガス導入
口からN2ガスを導入し、T、温度以下の(a)領域か
ら02ガスの導入口101を有する構造をもつ石英炉芯
管(炉100として示す)を使用すれば、ガスのシーケ
ンス切換えなしに(a)領域で薄いS + 02膜7全
形成し、炉100の中央部において完全N2雰囲気内で
アニールすることが可能であり、第1の実施例と同様な
利点を有する。
In addition, in the first embodiment, (a) in FIG. 2(a)
The method was to change the sequence of gas entering from the gas inlet (section (C)) in order to create a 02 atmosphere in the region (1) and a N2 atmosphere in the (1) region, but the ), the shape of the furnace core tube is such that N2 gas is introduced from the gas inlet at the back of the furnace, and 02 gas is introduced from the region (a) below the temperature T, with an inlet 101. (shown as a furnace 100), it is possible to completely form the thin S+02 film 7 in the region (a) without changing the gas sequence and anneal it in a complete N2 atmosphere in the center of the furnace 100. , has the same advantages as the first embodiment.

以上のように、この発明の半導体装置の製造方法によれ
ば、半導体基板上に高濃度のN型不純物をイオン注入法
により注入した後にN2と02 との混合カスの雰囲気
中で薄(SiO2膜を形成してアニールするようにした
ので、高濃度イオン注入したN型不純物の隔アニールを
簡単に外向拡散なしに行うことができる利点がある。こ
れにともない、イオン注入を使用するV−LSIの製造
方法に利用することができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a thin (SiO2 film) is implanted in an atmosphere of a mixture of N2 and 02 after a high concentration of N-type impurity is implanted onto a semiconductor substrate by ion implantation. This has the advantage that the N-type impurity implanted at a high concentration can be easily annealed without outward diffusion. It can be used in manufacturing methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(e)tfiそれぞれこの発
明の半導体装置の製造方法の一実施例を説明するための
工程説明図、第2図(a)は同上半導体装置の製造方法
を説明するための炉芯管の概略図、第2図(1))は第
2図(a)の炉芯管の温度プロフィルを示す図、第3図
はこの発明の半導体装置の製造方法の他の実施例に適用
される炉心管の概略を示す図、第4図は同上半導体装置
の製造方法におけるイオン注入法で注入されるN型不純
物としてAsi用いた場合のS +02膜の有無による
N2アニール温度とシート抵抗の関係を示す図、第5図
は同上半導体装置の製造方法におけるイオン注入法で注
入されるN型不純物としてPk用いた場合の5in2膜
の有無に     ゛よるアニール温度とシート抵抗の
間係を示す図である。 1・・・P型基板、2・・・フィールドS + 02膜
、3゛。 Si、、N4膜、4・・・ゲート5102膜、5・・・
polySi膜、6・・・ソースドレイン、7・・・l
) 102 N、8・・・])S G膜、9・・コンタ
クト領域、】0・・At配線。 第2図 □ 「 ; □ 第3図     1 = 手続補正書 昭和5δ年)1)月;、1」 特許庁長官若杉オロ夫 殿 1、事件の表示 昭和、7年 特 許  願第189097  号2、発
明の名称 半導体装置の製造方法 3、補正をする者 事件との関係     特 許 出願人(029)沖′
1tI気工業株式会社 4、代理人 5、補正命令の171付  昭和  年  月  IE
I  (自発)6、補正の対象 明細う!1の発明の詳細な説明の41’jd7、補正の
内容 別紙の通り 7、 補正の内容 1)明細署4頁19行「濃度」を「温度」と訂正する。 2)同5頁15行1以上、説明し/こ」を「以上説明し
た」と訂正する。 3)同6頁3行r CVD 5102100 A Jを
r CVD5iO□を100OAJと訂正する。 4)同6頁9行「第4図は」を「第4図には」と訂正す
る。 5)同6頁11行「ρ8を示す。」を「ρ、も示す。」
と訂正する。 6)同6頁16行「判った。」を「判った。尚、図中○
印は低温CV D S 10271i:1000 A形
成した場合、Δ印は炉口で02/N、、4%で5i02
を形成した場合を示す、」とW」正する。 7)同9頁3行「したので」を「したもので」と訂正す
る。
FIG. 1(a) to FIG. 1(e) are process explanatory diagrams for explaining one embodiment of the method for manufacturing a semiconductor device of the present invention, respectively, and FIG. A schematic diagram of the furnace core tube for explanation, FIG. 2(1)) is a diagram showing the temperature profile of the furnace core tube of FIG. 2(a), and FIG. FIG. 4 is a diagram schematically showing a reactor core tube applied to the above embodiment, and FIG. 4 shows N2 annealing with and without an S+02 film when Asi is used as the N-type impurity implanted by the ion implantation method in the semiconductor device manufacturing method described above. Figure 5 shows the relationship between temperature and sheet resistance. Figure 5 shows the relationship between annealing temperature and sheet resistance depending on the presence or absence of a 5in2 film when Pk is used as an N-type impurity implanted by the ion implantation method in the manufacturing method of the same semiconductor device. FIG. 1...P-type substrate, 2...Field S+02 film, 3゛. Si, N4 film, 4... Gate 5102 film, 5...
polySi film, 6...source/drain, 7...l
) 102 N, 8...]) S G film, 9... Contact region, ]0... At wiring. Figure 2 □ `` ; □ Figure 3 1 = Procedural amendment 1958) 1) Month;, 1'' Director General of the Patent Office Wakasugi Oro 1, Indication of the case Showa, 7, Patent Application No. 189097 2, Name of the invention: Method for manufacturing semiconductor devices 3. Relationship with the amended case Patent Applicant (029) Oki'
1tI-Kogyo Co., Ltd. 4, Agent 5, Amendment Order No. 171 dated 1920/1999 IE
I (Voluntary) 6. Details subject to amendment! 41'jd7 of Detailed Explanation of the Invention of No. 1, Contents of Amendment As shown in Attachment 7, Contents of Amendment 1) "Concentration" on page 4, line 19 of the specification is corrected to "temperature." 2) On page 5, line 15, 1 or more, please correct "explain/ko" to "explained above." 3) Correct page 6, line 3 r CVD 5102100 A J to r CVD5iO□ to 100OAJ. 4) On page 6, line 9, "Figure 4 is" is corrected to "Figure 4 is". 5) On page 6, line 11, “indicates ρ8.” was changed to “also indicates ρ.”
I am corrected. 6) On page 6, line 16, change “I got it.” to “I got it.”
The mark indicates low temperature CV D S 10271i: 1000 A, and the Δ mark indicates 02/N at the furnace mouth, and 5i02 at 4%.
It shows the case where ``W'' is corrected. 7) On page 9, line 3, ``Shita no de'' is corrected to ``Shita mo de''.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板表面に高濃度のN型不純物領域をイオ
ン注入法により注入して形成する工程と、酸素ガスと窒
素ガスの混合雰囲気中で前記N型不純物領域の表面に薄
(Si02膜全形成する工程と、このS + 02膜の
形成後前記半導体基板をアニールする工程とを含む半導
体装置の製造方法。
(1) Step of forming a highly concentrated N-type impurity region on the surface of the semiconductor substrate by ion implantation, and forming a thin (Si02 film entirely) on the surface of the N-type impurity region in a mixed atmosphere of oxygen gas and nitrogen gas. A method for manufacturing a semiconductor device, comprising a step of forming the S + 02 film, and annealing the semiconductor substrate after forming the S + 02 film.
(2)前記酸素ガスが窒素ガスに対して3〜100%の
容積比であることを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the oxygen gas has a volume ratio of 3 to 100% to nitrogen gas.
(3)前記5i02膜全形成する温度が100〜600
℃であることを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。
(3) The temperature at which the entire 5i02 film is formed is 100 to 600.
2. The method of manufacturing a semiconductor device according to claim 1, wherein the temperature is .degree.
(4) S i 02膜は30〜100Xの厚さである
こと全特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 1, wherein the SiO2 film has a thickness of 30 to 100X.
JP18909782A 1982-10-29 1982-10-29 Manufacture of semiconductor device Granted JPS5979522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18909782A JPS5979522A (en) 1982-10-29 1982-10-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18909782A JPS5979522A (en) 1982-10-29 1982-10-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5979522A true JPS5979522A (en) 1984-05-08
JPS6327846B2 JPS6327846B2 (en) 1988-06-06

Family

ID=16235291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18909782A Granted JPS5979522A (en) 1982-10-29 1982-10-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5979522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249319A (en) * 1984-05-24 1985-12-10 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS62188374A (en) * 1986-02-14 1987-08-17 Fuji Electric Co Ltd Manufacture of insulated-gate field-effect transistor
JPS63114121A (en) * 1986-07-07 1988-05-19 Nec Corp Manufacture of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105034A (en) * 1990-08-24 1992-04-07 Matsushita Electric Ind Co Ltd Piezo type pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927524A (en) * 1982-08-07 1984-02-14 Mitsubishi Electric Corp Fabrication of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927524A (en) * 1982-08-07 1984-02-14 Mitsubishi Electric Corp Fabrication of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249319A (en) * 1984-05-24 1985-12-10 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS62188374A (en) * 1986-02-14 1987-08-17 Fuji Electric Co Ltd Manufacture of insulated-gate field-effect transistor
JPS63114121A (en) * 1986-07-07 1988-05-19 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS6327846B2 (en) 1988-06-06

Similar Documents

Publication Publication Date Title
EP1361614B1 (en) Semiconductor device manufacturing method
US5602045A (en) Method for making a semiconductor device
US20060024978A1 (en) Inclusion of nitrogen at the silicon dioxide-silicon carbide interface for passivation of interface defects
JPH08102448A (en) Manufacture of semiconductor substrate
JPS5979522A (en) Manufacture of semiconductor device
JPH1167760A (en) Method for manufacturing semiconductor device
JPH0689870A (en) Manufacture of semiconductor element
JP2001110807A (en) Method for forming thin insulation film
KR960014959B1 (en) Ion implanting method
JPS60198814A (en) Manufacture of semiconductor device
JPH03265172A (en) Manufacture of semiconductor device
JP2001250945A (en) Semiconductor device and its manufacturing method
JPS5927524A (en) Fabrication of semiconductor device
JPH06224380A (en) Manufacture of semiconductor device
JPH05206453A (en) Semiconductor device and fabrication thereof
JPH0227770A (en) Manufacture of semiconductor device
JPS6263475A (en) Semiconductor device
JPH0689869A (en) Manufacture of semiconductor element
JPS6149428A (en) Manufacture of semiconductor device
JPH1197374A (en) Manufacture of semiconductor integrated circuit
JPS59108354A (en) Manufacture of semiconductor device
JPH01147830A (en) Manufacture of semiconductor device
JPH04354328A (en) Production of semiconductor device
JPH04150019A (en) Manufacture of semiconductor device
JPH0451515A (en) Manufacture of semiconductor device