JPS5977409A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPS5977409A
JPS5977409A JP18743582A JP18743582A JPS5977409A JP S5977409 A JPS5977409 A JP S5977409A JP 18743582 A JP18743582 A JP 18743582A JP 18743582 A JP18743582 A JP 18743582A JP S5977409 A JPS5977409 A JP S5977409A
Authority
JP
Japan
Prior art keywords
crystal
substrate
magnetic garnet
optical isolator
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18743582A
Other languages
Japanese (ja)
Inventor
Shinji Sakano
伸治 坂野
Hiroyoshi Matsumura
宏善 松村
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18743582A priority Critical patent/JPS5977409A/en
Publication of JPS5977409A publication Critical patent/JPS5977409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To eliminate birefringence due to the dynamic strain of crystal and to obtain an isolator having high precision by using a magnetic garnet monocrystal of a Faraday rotator used for an optical isolator released from the growth substrate of this monocrystal by gringing without being strained. CONSTITUTION:In an optical isolator composed of polarizers 1-1, 1-2, Selfoc lenses 2-1, 2-2, Faraday rotators 3-1, 3-2, and magnetic field impressing magnets 5-1, 5-2, a crystal of magnetic garnet (Bi0.95Yb2.1Fe3.8Ga1.1Pb0.03O12) grown on a GGG substrate in a liquid phase and released from the substrate by strain- free grinding is used for the rotator materials 3-1, 3-2, and it is bonded to a transparent substrate 4 to reinforce it. As a result, dynamic strain is removed by the difference in the space of lattice planes of the substrate crystal and the magnetic garnet crystal, birefringence is eliminated, and accordingly, an incident light 10-1 is sufficiently intercepted.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光アイソレータに係p%特にファラデー回転材
料用磁性ガーネット結晶の光学的特性を改善することに
よって得られる高性能光アイソレータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to optical isolators, and in particular to high-performance optical isolators obtained by improving the optical properties of magnetic garnet crystals for Faraday rotation materials.

〔従来技術〕[Prior art]

光アイソレータに用いられるファラデー回転材料として
は磁性ガーネットが、ファラデー効果が大きいため優れ
ている。この磁性ガーネット結晶を得る容易な方法とし
て液相成長法がある。しかし、一般に液相成長法におい
ては、基板となる結晶体の格子定数と、基板の上に成長
させる結晶膜の格子定数との間に差がおるため、膜が厚
くなると格子定数の不一致による力学的な歪から、光学
的な複屈折を生じる。この複屈折が、ファラデー回転に
おける特性を劣化させる。
Magnetic garnet is an excellent Faraday rotation material used in optical isolators because it has a large Faraday effect. A liquid phase growth method is an easy method for obtaining this magnetic garnet crystal. However, in general, in the liquid phase growth method, there is a difference between the lattice constant of the crystalline material that serves as the substrate and the lattice constant of the crystalline film grown on the substrate. The optical distortion causes optical birefringence. This birefringence deteriorates the properties in Faraday rotation.

Biを磁性ガーネットに混入すると、ファラデー回転能
が一桁高くなる。G () G (Gd5GasOtz
)基板上にJ3iを含んだ磁性ガーネット結晶膜を形成
する場合に、基板結晶との格子定数が近くなるように多
種の元素を混入させる。形成された膜の組成は、例えば
B i O,63Tm 2,3 pe3,6Gal、2
Pbo、620+2、又はB i6.9s Yb2.+
 Fea、s G a +、+ Pbo、o3012の
様になる。結晶膜厚は、夫々13μm、5.3μmであ
る。この時の格子定数差は、−o、oio人。
When Bi is mixed into magnetic garnet, the Faraday rotation ability increases by an order of magnitude. G () G (Gd5GasOtz
) When forming a magnetic garnet crystal film containing J3i on a substrate, various elements are mixed so that the lattice constant becomes close to that of the substrate crystal. The composition of the formed film is, for example, B i O, 63Tm 2,3 pe3,6Gal, 2
Pbo, 620+2, or B i6.9s Yb2. +
Fea, s G a +, + Pbo, o3012. The crystal film thicknesses are 13 μm and 5.3 μm, respectively. The lattice constant difference at this time is -o, oio.

−0,044人 である。この2つの材料に直線偏光を
入射した場合の入射光の偏液面に直交する出射光の偏波
成分のパワーを示したのが第1図である。
-0,044 people. FIG. 1 shows the power of the polarization component of the output light perpendicular to the polarization plane of the input light when linearly polarized light is incident on these two materials.

第1図に用いた試料では結晶中に複屈折が存在するため
、光の伝搬について直線偏光が楕円偏光となって、10
0%直交成分にパワーが移らないという欠点があった。
In the sample used in Figure 1, birefringence exists in the crystal, so linearly polarized light becomes elliptically polarized light and 10
There was a drawback that power was not transferred to the 0% orthogonal component.

このため光アイソレータにこのような磁性ガーネット膜
を用いると高精度な特性が得られない。
Therefore, if such a magnetic garnet film is used in an optical isolator, highly accurate characteristics cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、液相成長によフ製作されたファラデー
回転材料用磁性ガーネット結晶中に生じ易い複屈折を除
去しアイソレーション特性を改善した光アイソレータを
提供することにある。
An object of the present invention is to provide an optical isolator with improved isolation characteristics by eliminating birefringence that tends to occur in magnetic garnet crystals for Faraday rotation materials manufactured by liquid phase growth.

〔発明の概要〕[Summary of the invention]

上記目的を達成するだめの本発明の構成は、磁性ガーネ
ット単結晶を成長基板よシ無歪研削によシ離脱せしめる
ことにある。
The structure of the present invention to achieve the above object is to detach a magnetic garnet single crystal from a growth substrate by strain-free grinding.

ファラデー回転材料用結晶M(磁性ガーネット)を基板
ガーネット上に形成する場合に、結晶膜と基板結晶の格
子定数の差から光学的複屈折を生じる。光学的複屈折は
、結晶膜と基板結晶の格子間隔の異なシによる力学的歪
に起因している。このため基板を無歪研削で除去するこ
とによシ複屈折の要因である力学的歪を取れば光学的に
良質な磁性ガーネット結晶を得ることができる。
When a Faraday rotation material crystal M (magnetic garnet) is formed on a substrate garnet, optical birefringence occurs due to the difference in lattice constant between the crystal film and the substrate crystal. Optical birefringence is caused by mechanical strain due to the difference in lattice spacing between the crystal film and the substrate crystal. Therefore, if the mechanical strain that causes birefringence is removed by removing the substrate by strain-free grinding, a magnetic garnet crystal of optically good quality can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図によ#)説明する。 An embodiment of the present invention will be described below with reference to FIG.

第2図には本発明の一実施例としての光アイソレータの
構成が示しである。偏光子(1−1,1−2)、セルフ
オフレンズ(2−1,2−2)とファラデー回転材料(
3−1,3−2)と印加磁界用磁石(5−1,5−2)
によシ構成される。
FIG. 2 shows the configuration of an optical isolator as an embodiment of the present invention. Polarizer (1-1, 1-2), self-off lens (2-1, 2-2) and Faraday rotation material (
3-1, 3-2) and applied magnetic field magnet (5-1, 5-2)
It is composed of various parts.

上記ファラデー回転材料は、液相成長した磁性ガーネッ
ト(B i llLa5 Y bz、+ F ea、s
 Ga+、+ Pbo、oac)+2)から無歪み研磨
によシ基板を除去した結晶で1、補強のため透明な基板
4に接着しである。
The above Faraday rotation material is a liquid-phase grown magnetic garnet (B i llLa5 Y bz, + F ea, s
The crystal 1 is obtained by removing the substrate from Ga+, +Pbo, oac)+2) by strain-free polishing, and is bonded to a transparent substrate 4 for reinforcement.

光源からの光10は、偏光子1−1によシ直線偏光のみ
が伝わる。この直a偏光はセルフオフレンズで平行光線
とされてファラデー回転材料3−1に入射する。入射し
た直線偏光は、ファラデー回転材料3−1.3−2中で
偏波面が45度回転する。そして、セルフオフレンズ2
−2で絞られて後に45度傾けられた偏光子1−2を損
失なく透過する。尚、ファラデー回転材料の厚さは0.
5〜3μmであシ、印加磁界強度は、偏光面が45射す
る光μ、偏光子1−2によ−#)45度偏光面が一↓ 傾いた直線偏光となる。ファフー回転材料3−2゜3−
1によシさらに45度回転して、偏光子1−2に対して
直角方向の直線偏光となる。このため逆方向から入射し
た光11は、偏光子1−2により遮閉され光源に達しな
い。このように、一方向結合素子光アイソレータが機能
する。
Only linearly polarized light 10 from the light source is transmitted through the polarizer 1-1. This directly a-polarized light is converted into parallel light by a self-off lens and enters the Faraday rotation material 3-1. The plane of polarization of the incident linearly polarized light is rotated by 45 degrees in the Faraday rotation material 3-1.3-2. And Self Off Lens 2
The light passes through the polarizer 1-2, which is stopped by -2 and then tilted by 45 degrees, without any loss. Note that the thickness of the Faraday rotation material is 0.
If it is 5 to 3 μm, the intensity of the applied magnetic field is 45 degrees, and the applied magnetic field intensity is 45 degrees. Fafu rotating material 3-2゜3-
1, the light is further rotated by 45 degrees to become linearly polarized light perpendicular to the polarizer 1-2. Therefore, the light 11 incident from the opposite direction is blocked by the polarizer 1-2 and does not reach the light source. In this way, the unidirectional coupling element optical isolator functions.

ファラデー回転材料である磁性ガーネット結晶中に複屈
折が存在すると、前記第1図に示されたように、逆方向
からの入射光が直線偏光ではなく楕円偏光となるため遮
閉度が悪くなる。今回状々が無歪研削して得た磁性ガー
ネットでは非常に良い特性を示した。波長1.15μm
の光に対し、光源からの光の出力と逆方向からの光の出
力の比(消光比)30dBであった。
If birefringence exists in the magnetic garnet crystal, which is a Faraday rotation material, as shown in FIG. 1, the incident light from the opposite direction becomes elliptically polarized light instead of linearly polarized light, resulting in a poor degree of shielding. In this case, the magnetic garnet obtained by strain-free grinding showed very good characteristics. Wavelength 1.15μm
The ratio of the light output from the light source to the light output from the opposite direction (extinction ratio) was 30 dB.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液相成長によシ製作されたファラデー
回転材料用磁性ガーネット結晶中に生じ易い複屈折を、
基板結晶を無歪み研削除去することによシ取り除いて、
それをファラデー回転素子として用いたため光アイソレ
ータ特性が大幅に向上した。複屈折が起きないためファ
ラデー効果で偏波面が回転するとき、100%の直線偏
光の維持がなされた。このことによシ、光アイソレータ
において逆方向からの入射光の光源への帰還が充分に防
止でき30dBの消化を得ることが可能となった。
According to the present invention, birefringence that tends to occur in magnetic garnet crystals for Faraday rotation materials manufactured by liquid phase growth can be reduced.
The substrate crystal is removed by strain-free grinding,
By using it as a Faraday rotation element, the optical isolator characteristics were significantly improved. Since birefringence does not occur, 100% linear polarization was maintained when the plane of polarization was rotated by the Faraday effect. As a result, the optical isolator can sufficiently prevent the incident light from the opposite direction from returning to the light source, making it possible to obtain an extinction of 30 dB.

【図面の簡単な説明】 第1図は、結晶に直線偏光を入射した場合の入射光の偏
波面に直交する出射光の成分パワーを入射光パワーに対
する比で表わした実測値、第2図は、本発明の一実施例
としての光アイソレータの構成図である。 1−1.1−2・・・偏光子、2−1.2−2・・・セ
ルフオフレンズ、3−1.3−2・・・ファラデー回転
材料(磁性ガーネット)、4・・・補強基板、5−1゜
5−2・・・外部磁場印加用磁石、10−1.10−2
・・・光源からの光、11・・・逆方向から光源に入射
する光。 代理人 弁理士 薄田利幸 T  1  図 第 2  図 51
[Brief explanation of the drawings] Figure 1 shows actual measured values of the component power of the output light perpendicular to the polarization plane of the incident light when linearly polarized light is incident on the crystal, expressed as a ratio to the input light power. FIG. 1 is a configuration diagram of an optical isolator as an embodiment of the present invention. 1-1.1-2...Polarizer, 2-1.2-2...Self-off lens, 3-1.3-2...Faraday rotation material (magnetic garnet), 4...Reinforcement Substrate, 5-1゜5-2... Magnet for applying external magnetic field, 10-1.10-2
...Light from the light source, 11...Light entering the light source from the opposite direction. Agent Patent Attorney Toshiyuki Usuda T 1 Figure 2 Figure 51

Claims (1)

【特許請求の範囲】[Claims] 磁性ガーネット単結晶をファラデー回転素子とし、その
前後に45度光学軸が相対した偏光子、および検光子を
配置して構成した光アイソレータにおいて、上記磁性ガ
ーネット単結晶は成長基板よシ無歪研削によシ離脱せし
めてなる構造をもつ光アイソレータ。
In an optical isolator constructed by using a magnetic garnet single crystal as a Faraday rotation element, and arranging a polarizer and an analyzer whose optical axes are opposed to each other at 45 degrees before and after the magnetic garnet single crystal, the magnetic garnet single crystal can be grinded without distortion from the growth substrate. An optical isolator with a structure that allows for easy separation.
JP18743582A 1982-10-27 1982-10-27 Optical isolator Pending JPS5977409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18743582A JPS5977409A (en) 1982-10-27 1982-10-27 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18743582A JPS5977409A (en) 1982-10-27 1982-10-27 Optical isolator

Publications (1)

Publication Number Publication Date
JPS5977409A true JPS5977409A (en) 1984-05-02

Family

ID=16206005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18743582A Pending JPS5977409A (en) 1982-10-27 1982-10-27 Optical isolator

Country Status (1)

Country Link
JP (1) JPS5977409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194222A (en) * 1986-02-20 1987-08-26 Sumitomo Metal Mining Co Ltd Magnetooptic element material
JPS62195619A (en) * 1986-02-12 1987-08-28 Sony Corp Optical isolator
JPS635320A (en) * 1986-06-25 1988-01-11 Hoya Corp Faraday rotator and optical isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195619A (en) * 1986-02-12 1987-08-28 Sony Corp Optical isolator
JPS62194222A (en) * 1986-02-20 1987-08-26 Sumitomo Metal Mining Co Ltd Magnetooptic element material
JPS635320A (en) * 1986-06-25 1988-01-11 Hoya Corp Faraday rotator and optical isolator

Similar Documents

Publication Publication Date Title
US5446813A (en) Optical isolator
JPH11249095A (en) Faraday rotator
WO1996025683A1 (en) Optical isolator
JPS5478153A (en) Light isolator
JPS5977409A (en) Optical isolator
JP2000249997A (en) Faraday rotational angle varying device
JP2786078B2 (en) Faraday rotator and optical isolator
JPS61264301A (en) Turning gear for plane of polarization of linearly polarizedlight and manufacture thereof
JPH0477713A (en) Optical isolator independent of polarization
JPH0246419A (en) Optical isolator
JPS5977408A (en) Optical isolator
JPH02188715A (en) Optical isolator
JP3764825B2 (en) Optical attenuator
JPH033364B2 (en)
JPS5828716A (en) Optical isolator
JPH07104224A (en) Nonreciprocity optical device
JPS5850512A (en) Optical isolator
JPS60107615A (en) Faraday rotating element
JPH0634926A (en) Faraday rotor
JPH0743696Y2 (en) Optical isolator
JP3472524B2 (en) Optical attenuator
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPS61213611A (en) Polishing method for crystal
JPS6481927A (en) Optical device
JPH02201314A (en) Optical isolator