JPS61213611A - Polishing method for crystal - Google Patents

Polishing method for crystal

Info

Publication number
JPS61213611A
JPS61213611A JP60053481A JP5348185A JPS61213611A JP S61213611 A JPS61213611 A JP S61213611A JP 60053481 A JP60053481 A JP 60053481A JP 5348185 A JP5348185 A JP 5348185A JP S61213611 A JPS61213611 A JP S61213611A
Authority
JP
Japan
Prior art keywords
crystal
polishing
light
plane
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60053481A
Other languages
Japanese (ja)
Inventor
Taketoshi Hibiya
孟俊 日比谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60053481A priority Critical patent/JPS61213611A/en
Publication of JPS61213611A publication Critical patent/JPS61213611A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To make possible the polishing of a crystal while measuring exactly the thickness thereof by making incident light to the crystal from the polished surface thereof, taking the reflected light from a reflection film again out of the polished surface and measuring the rotating angle of the plane of polarization with respect to the plane of polarization of the incident light. CONSTITUTION:The crystal 3 of the thick liquid phase epitaxial garnet film is adhered by using an adhesive agent 5 onto a polishing jig 7 as the reflection film 6 and the surface of the crystal 3 is polished, by which the adjustment of the crystal 3 is executed. Laser light 11 which is made to the linearly polar ized light by passing through a polarizing plate 21 is made incident at proper times to the crystal 3 from the polished surface thereof during the polishing and is passed through the crystal 3, the non-magnetic garnet substrate 4 and the adhesive agent 5 so as to be reflected on the surface of the chromium reflec tion film 6. The reflected light is again passed through the agent 5, the substrate 4 and the crystal 3 and is then taken out as exit light 12. The rotating angle of the plane of polarization of such exit light 12 with respect to the plane of polarization of the incident light is read with an analyzer 22 and the polishing is executed while the film thickness of the crystal 3 is monitored.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶研磨方法に関し、特に結晶の厚さを監視
しつつ研磨を行う結晶研磨方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal polishing method, and more particularly to a crystal polishing method in which polishing is performed while monitoring the thickness of a crystal.

〔従来技術とその問題点〕[Prior art and its problems]

非磁性ガーネット基板上に液相エピタキシャル法により
育成した磁性ガーネット液相エピタキシャル(LPE)
膜は、磁気光学素子用の材料として重要である。例えば
特願昭55−93449号あるいは特願昭55−126
239号明細書に開示されているように、非磁性ガーネ
ット単結晶基板上に液相エピタキシャル成長させたガー
ネットLPE厚膜結晶をファラデー回転子の材料として
用いることは、イツトリウム・鉄・ガーネットバルク単
結晶をファラデー回転子の材料として用いる場合と比べ
て、コスト的に大きなメリットがある。
Magnetic garnet liquid phase epitaxial (LPE) grown by liquid phase epitaxial method on a non-magnetic garnet substrate
Films are important as materials for magneto-optical devices. For example, Japanese Patent Application No. 55-93449 or Japanese Patent Application No. 55-126
As disclosed in the specification of No. 239, the use of a garnet LPE thick film crystal grown by liquid phase epitaxial growth on a non-magnetic garnet single crystal substrate as a material for a Faraday rotator makes it possible to use a yttrium-iron-garnet bulk single crystal. Compared to using it as a material for a Faraday rotator, it has a significant cost advantage.

このようなガーネット厚膜結晶を材料とするファラデー
回転子を例えば光アイソレータに用いる場合、入射光が
ガーネット厚膜を通過する際に、入射偏光面を正確に4
5°回転させるためには、結晶材料のファラデー回転係
数に応じて、結晶の厚さく長さ)を研磨により調整する
必要がある。
When a Faraday rotator made of such a garnet thick film crystal is used, for example, in an optical isolator, when the incident light passes through the garnet thick film, the incident polarization plane is accurately set to 4
In order to rotate the crystal by 5°, it is necessary to adjust the thickness and length of the crystal by polishing, depending on the Faraday rotation coefficient of the crystal material.

この6N−磨に当たって、従来の方法では、研磨に先だ
ち結晶材料のファラデー回転係数を測定しておき、この
ファラデー回転係数に応じてファラデー回転角が45°
になるように研磨目標厚さを決定し、結晶を研磨治具に
接着剤を用いて固定し、目標厚さにまで研磨する。研磨
工程の途中で、結晶の厚さをマイクロメータ等で測定す
ることにより結晶の厚さを調整していた。しかしながら
、この方法では結晶を研磨治具に接着剤を用いて固定し
ているため、接着剤の厚みにより、結晶の厚さの測定に
誤差を、例えば±5μmの誤差を生じていた。このため
結晶の研磨目標厚さを70μmにすると、±7%の結晶
厚さのバラツキが生じることとなる。この場合入射光が
結晶中を70μm通過したときに入射偏光面が45°回
転するとすると、±7%の研磨厚さのバラツキは、ファ
ラデー回転角として±3.15%に対応する。したがっ
てガーネット厚膜結晶を材料とするファラデー回転子を
、光アイソレータに用いる場合、アイソレーションはフ
ァラデー回転面の45°からのずれΔθにより、 アイソレーション=  10  log 5in2θと
して得られるから、±3.15°のファラデー回転角の
バラツキすなわち膜厚の7%のバラツキは、アイソレー
ションを25dBまで劣化させるという問題が生じる。
In this 6N polishing, in the conventional method, the Faraday rotation coefficient of the crystal material is measured before polishing, and the Faraday rotation angle is set to 45° according to this Faraday rotation coefficient.
The target thickness for polishing is determined, the crystal is fixed to a polishing jig using adhesive, and the crystal is polished to the target thickness. During the polishing process, the thickness of the crystal was adjusted by measuring it with a micrometer or the like. However, in this method, since the crystal is fixed to the polishing jig using an adhesive, the thickness of the adhesive causes an error in measuring the thickness of the crystal, for example, an error of ±5 μm. Therefore, if the target thickness of the crystal to be polished is set to 70 μm, a variation in the crystal thickness of ±7% will occur. In this case, if the incident polarization plane is rotated by 45° when the incident light passes through the crystal by 70 μm, the variation in polishing thickness of ±7% corresponds to ±3.15% as a Faraday rotation angle. Therefore, when a Faraday rotator made of garnet thick film crystal is used as an optical isolator, isolation is obtained by the deviation Δθ of the Faraday rotation plane from 45°, as isolation = 10 log 5 in 2θ, so ±3.15 A variation in the Faraday rotation angle of .degree., that is, a variation in film thickness of 7%, causes a problem in that the isolation deteriorates to 25 dB.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のような問題を解消するためファ
ラデー効果を生ずる透明な結晶、例えば酸化物磁性体の
結晶研磨において、結晶の厚さを正確に測定しつつ研磨
する方法を提供することにある。
An object of the present invention is to provide a method of polishing a transparent crystal that causes a Faraday effect, such as an oxide magnetic material, while accurately measuring the thickness of the crystal, in order to solve the above-mentioned problems. It is in.

〔発明の構成〕[Structure of the invention]

本発明は、ファラデー効果を生ずる透明な結晶を研磨す
るに際し、結晶とこの結晶を貼り付ける治具との間に反
射膜を設け、反射膜とは反対側の面である結晶の研磨面
より光を入射させ反射膜からの反射光を再び研磨面より
取り出し、取り出された反射膜の入射光の偏光面に対す
る偏光面回転角を測定することによって結晶の膜厚を監
視しつつ研磨を行うことを特徴としている。
When polishing a transparent crystal that produces a Faraday effect, the present invention provides a reflective film between the crystal and a jig to which the crystal is attached, and allows light to shine through the polished surface of the crystal, which is the surface opposite to the reflective film. The polishing process is performed while monitoring the film thickness of the crystal by making the reflected light from the reflective film incident on the polishing surface and measuring the rotation angle of the polarization plane with respect to the polarization plane of the incident light on the extracted reflective film. It is a feature.

〔実施例〕〔Example〕

実施例1 第1図は、本発明の一実施例を示す図であり、本例では
LPEガーネット厚膜結晶を研磨するものとする。
Example 1 FIG. 1 is a diagram showing an example of the present invention, and in this example, an LPE garnet thick film crystal is polished.

非磁性ガーネット基板4上に育成した磁気光学LPEガ
ーネフ上厚膜厚膜結晶、反射膜6として金属クロームを
蒸着した研磨治具7上に接着剤5を用いて貼り付け、ガ
ーネット厚膜結晶3の表面をダイアモンドペーストで研
磨して厚膜結晶3の調整を行う。研磨工程中に、随時、
厚膜結晶3の研磨表面から、偏光板21を通って直線偏
光となった波長1.30μmのレーザ光11を、結晶面
垂線方向より若干傾けて入射させ、厚膜結晶表面に取り
つけた永久磁石8によって磁化されたガーネット厚膜結
晶、非磁性ガーネット基板4および接着剤5を通過させ
、クローム反射膜6の表面で反射させ、再び接着剤6.
非磁性ガーネット基板4およびガーネット厚膜結晶3を
通過させたのち出射光12として取り出し、この出射光
12の入射光の偏光面に対す偏光面回転角を検光子22
を回転することにより読み取り、材料(ガーネット厚膜
結晶)のファラデー回転角の2倍の角度2θFとして読
み取った。
A magneto-optical LPE Garnef thick film crystal grown on a non-magnetic garnet substrate 4 is attached using an adhesive 5 to a polishing jig 7 on which metallic chromium has been deposited as a reflective film 6. The thick film crystal 3 is adjusted by polishing the surface with diamond paste. At any time during the polishing process,
Laser light 11 with a wavelength of 1.30 μm, which has become linearly polarized light after passing through the polarizing plate 21, is incident from the polished surface of the thick film crystal 3 at a slight angle from the normal to the crystal plane, and a permanent magnet attached to the surface of the thick film crystal 3 is used. 8 through the garnet thick film crystal, the non-magnetic garnet substrate 4 and the adhesive 5, and is reflected by the surface of the chrome reflective film 6, and then the adhesive 6.
After passing through the non-magnetic garnet substrate 4 and the garnet thick film crystal 3, it is extracted as an emitted light 12, and the rotation angle of the polarization plane of the emitted light 12 with respect to the polarization plane of the incident light is measured using an analyzer 22.
The angle 2θF is twice the Faraday rotation angle of the material (garnet thick film crystal).

研磨開始前に2θp=110°であったが、研磨の最中
に適時研磨を中断して、角度20Fを測定することによ
り、2θp=90.1°となった時に研磨作業を停止し
た。これにより、光アイソレータに要求されるファラデ
ー回転角45°に対し±0.05° (±0.1%)の
精度でガーネット厚膜結晶3を研磨することができた。
Although 2θp = 110° before the start of polishing, the polishing operation was stopped when the angle 20F was measured by interrupting the polishing at an appropriate time during the polishing, and the polishing operation was stopped when 2θp = 90.1°. As a result, it was possible to polish the garnet thick film crystal 3 with an accuracy of ±0.05° (±0.1%) for the Faraday rotation angle of 45° required for an optical isolator.

この材料を用いた光アイソレータのアイソレージジンは
40dBであり、膜厚の不具合がアイソレーションの劣
化に寄与(厚さの不具合がアイソレーションの上限を決
定する)することはなかった。
The isolation margin of the optical isolator using this material was 40 dB, and defects in film thickness did not contribute to deterioration of isolation (defects in thickness determine the upper limit of isolation).

実施例2 第2図は、本発明の他の実施例を示す図であり、実施例
1と同様にLPEガーネット厚膜結晶を研磨するものと
する。
Example 2 FIG. 2 is a diagram showing another example of the present invention, in which an LPE garnet thick film crystal is polished in the same manner as in Example 1.

非磁性ガーネット基板(図示せず)上に育成した磁気光
学LPEガーネット厚膜結晶3の基板結晶を予め研磨に
より除去し、基板を除去した面に反射膜13として金を
スパッタ法により被着せしめ、接着剤5を用いて研磨治
具7上に貼り付はカ性ソーダ中に分散したコロイド状シ
リカを研磨剤として厚膜結晶3の厚さ調整のための研磨
を行う。
The substrate crystal of the magneto-optical LPE garnet thick film crystal 3 grown on a non-magnetic garnet substrate (not shown) is removed by polishing in advance, and gold is deposited as a reflective film 13 on the surface from which the substrate has been removed by sputtering. The thick film crystal 3 is attached onto a polishing jig 7 using an adhesive 5 and polished to adjust the thickness of the thick film crystal 3 using colloidal silica dispersed in caustic soda as a polishing agent.

研磨工程中に、随時、厚膜結晶3の表面から、偏光板2
1を通って直線偏光となった波1に0.78μmのレー
ザ光11を、結晶面垂線方向より入射させ、厚膜表面に
取りつけた永久磁石8によって磁化されたガーネット厚
膜3を通過させ金反射膜13の表面で反射させ、再び厚
膜結晶3を通過させたのちハーフミラ−もしくは45°
プリズム9を通して出射光12として取り出し、この出
射光の入射光の偏光面に対する偏光面回転角を検光子2
2を回転することにより読み取り、材料(ガーネット厚
膜結晶)のファラデー回転角の2倍の角度20Fとして
読み取った。
During the polishing process, the polarizing plate 2 is removed from the surface of the thick film crystal 3 at any time.
A laser beam 11 of 0.78 μm is incident on the linearly polarized wave 1 through the garnet thick film 3 magnetized by a permanent magnet 8 attached to the thick film surface. It is reflected by the surface of the reflective film 13, passed through the thick film crystal 3 again, and then reflected by a half mirror or 45°
The output light 12 is extracted through the prism 9, and the rotation angle of the polarization plane of the output light with respect to the polarization plane of the incident light is measured using an analyzer 2.
2 and read as an angle 20F, which is twice the Faraday rotation angle of the material (garnet thick film crystal).

研磨開始前に2θ、=320°であったが、研磨工程中
随時に研磨を中断して20Fを測定することにより、2
θp=88.8°となった時に研摩作業を停止した。こ
れにより、光アイソレータに要求されるファラデー回転
角45°に対し±0゜6° (±1.3%)の精度でガ
ーネット厚膜結晶を研磨することができた。この結晶を
用いた光アイソレータのアイソレーションは36dBで
あり、厚さの不具合が原因となるアイソレーションの劣
化(もし生ずるとすれば39.6dB)は生じなかった
2θ = 320° before the start of polishing, but by interrupting polishing at any time during the polishing process and measuring 20F,
The polishing operation was stopped when θp=88.8°. As a result, it was possible to polish the garnet thick film crystal with an accuracy of ±0°6° (±1.3%) for the Faraday rotation angle of 45° required for an optical isolator. The isolation of the optical isolator using this crystal was 36 dB, and there was no deterioration of the isolation (39.6 dB if it occurred) due to the thickness defect.

以上、本発明の2つの実施例を説明したが、研磨すべき
結晶は、磁性ガーネットのみならず、磁場を印加してフ
ァラデー回転を生ずる透明な材料であればよく、また強
磁性、常磁性体の如何にかかわらず適用することが可能
である。
The two embodiments of the present invention have been described above, but the crystal to be polished is not limited to magnetic garnet, but may be any transparent material that produces Faraday rotation when a magnetic field is applied, or may be a ferromagnetic or paramagnetic material. It can be applied regardless of the

〔発明の効果〕〔Effect of the invention〕

以上、本発明を用いることにより、ファラデー回転子に
供せられる結晶の厚さく長さ)調整の研磨において、接
着剤の厚さが測定精度を劣化させる機械式の膜厚測定を
行いながら研磨するのに比べ、結晶に要求される物理定
数(ファラデー回転角)そのものを測定しながら研磨を
行うことにより、結晶の厚さを精度よ(研摩により調整
することが可能となる。
As described above, by using the present invention, when polishing to adjust the thickness and length of a crystal provided to a Faraday rotator, polishing can be performed while performing mechanical film thickness measurement, where the thickness of the adhesive deteriorates measurement accuracy. In contrast, by polishing while measuring the physical constant (Faraday rotation angle) required for the crystal, it is possible to adjust the thickness of the crystal with precision (by polishing).

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例をそれぞれ示す図
である。 3・・・・・ガーネットLPE厚膜結晶4・・・・・非
磁性ガーネット基板 5・・・・・接着剤 6.13・・反射膜 7・・・・・研磨治具 8・・・・・永久磁石 9・・・・・45°プリズム 11・・・・入射光 12・・・・出射光 21・・・・偏光板 22・・・・検光子
FIGS. 1 and 2 are diagrams showing embodiments of the present invention, respectively. 3... Garnet LPE thick film crystal 4... Non-magnetic garnet substrate 5... Adhesive 6.13... Reflective film 7... Polishing jig 8...・Permanent magnet 9...45° prism 11...Incoming light 12...Outgoing light 21...Polarizing plate 22...Analyzer

Claims (1)

【特許請求の範囲】[Claims] (1)ファラデー効果を生ずる透明な結晶を研磨するに
際し、結晶とこの結晶を貼り付ける治具との間に反射膜
を設け、反射膜とは反対側の面である結晶の研磨面より
光を入射させ反射膜からの反射光を再び研磨面より取り
出し、取り出された反射膜の入射光の偏光面に対する偏
光面回転角を測定することによって結晶の膜厚を監視し
つつ研磨を行うことを特徴とする結晶の研磨方法。
(1) When polishing a transparent crystal that produces a Faraday effect, a reflective film is provided between the crystal and the jig to which the crystal is attached, and light is emitted from the polished surface of the crystal, which is the surface opposite to the reflective film. It is characterized by polishing while monitoring the film thickness of the crystal by taking out the incident light reflected from the reflective film again from the polishing surface and measuring the rotation angle of the polarization plane with respect to the polarization plane of the incident light on the taken out reflective film. A method of polishing crystals.
JP60053481A 1985-03-19 1985-03-19 Polishing method for crystal Pending JPS61213611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053481A JPS61213611A (en) 1985-03-19 1985-03-19 Polishing method for crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053481A JPS61213611A (en) 1985-03-19 1985-03-19 Polishing method for crystal

Publications (1)

Publication Number Publication Date
JPS61213611A true JPS61213611A (en) 1986-09-22

Family

ID=12944033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053481A Pending JPS61213611A (en) 1985-03-19 1985-03-19 Polishing method for crystal

Country Status (1)

Country Link
JP (1) JPS61213611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288650A (en) * 1987-05-19 1988-11-25 Namiki Precision Jewel Co Ltd Grinding method for farady rotor
JP2013195395A (en) * 2012-03-22 2013-09-30 Ricoh Co Ltd Shape measuring method and shape measuring device
CN107160288A (en) * 2016-03-08 2017-09-15 快递股份有限公司 Flat grinding device and erratic star wheel
CN110026885A (en) * 2018-12-27 2019-07-19 杭州众硅电子科技有限公司 A kind of system and method polishing pad life on-line checking

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288650A (en) * 1987-05-19 1988-11-25 Namiki Precision Jewel Co Ltd Grinding method for farady rotor
JP2013195395A (en) * 2012-03-22 2013-09-30 Ricoh Co Ltd Shape measuring method and shape measuring device
CN107160288A (en) * 2016-03-08 2017-09-15 快递股份有限公司 Flat grinding device and erratic star wheel
CN107160288B (en) * 2016-03-08 2020-06-26 快递股份有限公司 Plane grinding device and wandering star wheel
CN110026885A (en) * 2018-12-27 2019-07-19 杭州众硅电子科技有限公司 A kind of system and method polishing pad life on-line checking

Similar Documents

Publication Publication Date Title
US4886332A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
US4952014A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
JPS61213611A (en) Polishing method for crystal
WO1996025683A1 (en) Optical isolator
JPH0137697B2 (en)
JPS63288650A (en) Grinding method for farady rotor
JP2616124B2 (en) How to make a magnetic sensor
JPH06221993A (en) Method and apparatus for measuring extinction ratio of polarizer
JPS5850512A (en) Optical isolator
JP3000030B2 (en) Measuring method of reflection amount of optical fiber component and apparatus therefor
JPS62102131A (en) Testing device for optical fiber
JPH07209620A (en) Faraday rotation element
JPS62149055A (en) Magnetooptic element
JPS61212773A (en) Photosensor
JP2594856B2 (en) Non-reciprocal light element
JPS5977409A (en) Optical isolator
Furutono et al. Wide-view-angle λ/4 plates for diagnosing 193-nm lithography tools
JPS6217670A (en) Method for forming reflective film for inspecting magnetic characteristics of magnetic membrane
RU206U1 (en) Magneto-optical visualizer
JPH0492403A (en) Manufacture of magnetic optical device
JPH07209604A (en) Optical isolator device
JPH0424684B2 (en)
JPH034979Y2 (en)
JPH0634926A (en) Faraday rotor
Chao et al. Ellipsometric measurement of magneto‐optical Kerr rotation at normal incidence