JPS5973776A - Detection of discharge in applying microwave - Google Patents

Detection of discharge in applying microwave

Info

Publication number
JPS5973776A
JPS5973776A JP18564082A JP18564082A JPS5973776A JP S5973776 A JPS5973776 A JP S5973776A JP 18564082 A JP18564082 A JP 18564082A JP 18564082 A JP18564082 A JP 18564082A JP S5973776 A JPS5973776 A JP S5973776A
Authority
JP
Japan
Prior art keywords
reflected wave
microwave
discharge
intensity
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18564082A
Other languages
Japanese (ja)
Inventor
Kazutoshi Miyata
宮田 和俊
Fumiaki Komatsu
史明 小松
Atsushi Takusagawa
田草川 篤
Takayoshi Masaki
昌木 隆義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Kobe Steel Ltd
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Kobe Steel Ltd
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Kobe Steel Ltd, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP18564082A priority Critical patent/JPS5973776A/en
Publication of JPS5973776A publication Critical patent/JPS5973776A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To certainly detect discharge generation, by measuring the intensity level of the reflected wave of the microwave from a microwave applying part. CONSTITUTION:An incident wave detector 3 and a reflected wave detector 4 provided to a waveguide 2 are connected to power monitor 6 and an incident wave and the intensity of a reflected wave are displayed by a display meter 7. The power monitor 6 is connected to a reflected wave level signal detector 8 and inputs the detection signal due to the reflected wave detector 4. When discharge is generated in a microwave heating furnace and the intensity of the reflected wave exceeds a reference value, the reflected wave level signal detector 8 generates a relay operating signal to a microwave oscillator circuit 1 to operate a magnet control circuit 10 through a high voltage relay 9 and the oscillation of the microwave is stopped until the intensity of the reflected wave reaches the reference value or less.

Description

【発明の詳細な説明】 本発明は、マイクロ波印加時の放電検知方法に藺するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for detecting discharge when microwaves are applied.

高出力のマイクロ波を導波管を用いて伝送し、加熱等の
工業用途に用いる場合、空気中のダスト、加熱物体から
の蒸発物あるいはカーボン等の物質が存在すると、時と
してマイクロ波を吸収し、この結果、急激な発熱現象を
生じ、これが原因となって気体の放電につながる。すな
わち、放電現象は気体の電離作用(=気体のイオン化現
象:プラズマ炎の発生を伴う。)で、これにより放電が
発生するとマイクロ波は、このプラズマ炎により一部反
射されるとともに、一部吸収され、被処理物の加熱がで
きないばかりか、プラズマ炎によって導波管あるいは加
熱器が損傷されることになる。
When high-power microwaves are transmitted using a waveguide and used for industrial purposes such as heating, the presence of substances such as dust in the air, evaporated matter from heated objects, or carbon may sometimes absorb the microwaves. However, as a result, a sudden heat generation phenomenon occurs, which leads to gas discharge. In other words, the discharge phenomenon is an ionization effect of gas (= ionization phenomenon of gas: accompanied by the generation of plasma flame), and when a discharge occurs, part of the microwave is reflected by this plasma flame, and part of it is absorbed. Not only will the object to be processed not be heated, but the waveguide or heater will be damaged by the plasma flame.

また、一旦発生した放電状態は、マイクロ波を遮断する
か、プラズマ炎を冷却しない限り持続する。
Furthermore, once the discharge state has occurred, it will continue unless the microwave is cut off or the plasma flame is cooled.

このため、放電発生を即座に検出し、放電を消滅させる
ことが必要である。
Therefore, it is necessary to immediately detect the occurrence of discharge and extinguish the discharge.

上記のように、放電の発生は気体のイオン化現象すなわ
ちプラズマ炎の発生で、光と音の発生を伴う。このこと
から、従来、放電発生を検知するのにプラズマ炎(光)
を検知する光検知法、あるいは空気がイオン化する際に
発する可聴音を検知する音検知法が採用されている。
As mentioned above, the generation of electric discharge is the ionization phenomenon of gas, that is, the generation of plasma flame, and is accompanied by the generation of light and sound. For this reason, conventionally, plasma flame (light) was used to detect the occurrence of discharge.
Optical detection methods, which detect the ionization of air, and sound detection methods, which detect the audible sounds emitted when air ionizes, are used.

しかしながら、光検知法では、プラズマ炎と同じ光度を
有する他の光源をプラズマ炎と区別することができない
。例えば、焼却灰等の融点の高い物質を溶融すると、溶
融スラグがらの輻射光風が多いため、この輻射光をプラ
ズマ炎からの光(放電光)と区別することは難しい。
However, optical detection methods cannot distinguish the plasma flame from other light sources that have the same luminous intensity as the plasma flame. For example, when a substance with a high melting point such as incineration ash is melted, there is a large amount of radiant light from the molten slag, so it is difficult to distinguish this radiant light from light from a plasma flame (discharge light).

また、音検知法では、例えば導波管あるいは加熱機を外
部からたたいた時等の衝撃音を、放電による雑音と区別
できず、誤検知する等の問題を何していた。
In addition, the sound detection method has had problems such as erroneous detection because it is not possible to distinguish an impact sound, such as when a waveguide or a heater is struck from the outside, from noise caused by electric discharge.

本発明は、上記従来の問題点に鑑みてなされたもので、
マイクロ波印加部からのマイクロ波の反射波の強度レベ
ルを測定することにより、確実に放電の発生を検出する
ことを可能とするマイクロ波印加時の放電検知方法を提
供しようとするものである。
The present invention has been made in view of the above-mentioned conventional problems.
The present invention aims to provide a method for detecting discharge when microwaves are applied, which makes it possible to reliably detect the occurrence of discharge by measuring the intensity level of microwave reflected waves from a microwave application section.

次に、本発明を一実施例である図面にしたがって説明す
る。
Next, the present invention will be explained with reference to the drawings, which are one embodiment.

第1図は、本発明に係る方法を適用したマイクロ波加熱
炉のマイクロ波の反射波レベル変動検知型放電検知のシ
ステムを示している。
FIG. 1 shows a discharge detection system for detecting microwave reflected wave level fluctuations in a microwave heating furnace to which the method according to the present invention is applied.

図において、1はマイクロ波発振器で、導波管2を経て
図示しないマイクロ波加熱炉にマイクロ波を印加してい
る。導波管2には、マイクロ波加熱炉に印加した入射波
を検出する入射波検出器3と、マイクロ波加熱炉より反
射されて戻ってくる反射波を検出する反射波検出器4と
からなる方向性結合器5が設けである。そして、入射波
検出器3、反射波検出器4はパワーモニタ6に接続され
ている。このパワーモニタ6には入射波、反射波の各強
度を表示する表示メーク7が設けである。
In the figure, reference numeral 1 denotes a microwave oscillator, which applies microwaves to a microwave heating furnace (not shown) through a waveguide 2. The waveguide 2 includes an incident wave detector 3 that detects the incident wave applied to the microwave heating furnace, and a reflected wave detector 4 that detects the reflected wave that is reflected back from the microwave heating furnace. A directional coupler 5 is provided. The incident wave detector 3 and the reflected wave detector 4 are connected to a power monitor 6. The power monitor 6 is provided with a display 7 that displays the intensities of the incident wave and the reflected wave.

適切な加熱が実行できるように、入射波の強度に応じて
反射波の強度が最小となるように、マイクさらに、パワ
ーモニタ6は反射波レベル信号検知器8に接続され、上
記反射波検出器4による検出信号が入力され−Cいる。
Further, the power monitor 6 is connected to a reflected wave level signal detector 8, so that the intensity of the reflected wave is minimized according to the intensity of the incident wave so that appropriate heating can be performed. A detection signal from 4 is inputted to -C.

第2図に示すように、マイクロ波加熱炉内に放電が発生
すると反射波の強度が瞬間的に大きくなる。そこで、こ
の強度変イヒの状態を予め調べ、放電発生時における反
射波の強度より小さい範囲で、適宜反射波強度の基準値
を設定しておき、上記反射波レベル信号検知器8におい
゛バワーモニク6より入力される反射波の強度と基準値
とを大小比較させている。そして、反射波レベル信号検
知器8はマイクロ波発振器1に接続され、反射波の強度
が基準値を超えた場合は、マイクロ波発振器1に対して
リレー作動信号を発し、高圧リレー9を介してマグネッ
ト制御回路10を作動させて、反射波の強度が基準値以
下となるまでマイクロ波の発振を停止させる。
As shown in FIG. 2, when electric discharge occurs in the microwave heating furnace, the intensity of the reflected wave increases instantaneously. Therefore, the state of this intensity variation is investigated in advance, and a reference value of the reflected wave intensity is appropriately set within a range smaller than the intensity of the reflected wave at the time of discharge occurrence, and the reflected wave level signal detector 8 The intensity of the reflected wave inputted by the reference value is compared in magnitude with a reference value. The reflected wave level signal detector 8 is connected to the microwave oscillator 1, and when the intensity of the reflected wave exceeds a reference value, it issues a relay activation signal to the microwave oscillator 1 and sends the signal to the microwave oscillator 1 via the high voltage relay 9. The magnet control circuit 10 is activated to stop the oscillation of the microwave until the intensity of the reflected wave becomes equal to or less than a reference value.

ついで、上記構成からなる放電検知器の作動について説
明する。
Next, the operation of the discharge detector having the above configuration will be explained.

第3図、第4図に示すように、反射波検出器4により検
出された反射波電力は、パワーモニタ6にて表示される
一方、反射波レベル信号検知器8において、フィルタに
かけられて、微小なノイズ成分を除去した後、増巾、積
分されて、定電圧電源より発生させた基準値である基準
電圧と大小比較される。
As shown in FIGS. 3 and 4, the reflected wave power detected by the reflected wave detector 4 is displayed on the power monitor 6, while being filtered by the reflected wave level signal detector 8. After removing minute noise components, the signal is amplified, integrated, and compared in magnitude with a reference voltage, which is a reference value generated from a constant voltage power supply.

そして、マイクロ波加熱炉内に放電が発生すると(第4
図中、時間to)、反射波の検出値は急激に増大し、こ
の結果、上記積分した値はやがて基準値(電圧)を超え
(同上、時間t1y)、若干の時間遅れを伴なって比較
回路において反射波の強度が基準値を超えたことが検出
される(同上、時間L2)。同様に若干の時間遅れを伴
なって、反射波レベル信号検知器8によって、マイクロ
波発振器1の高圧リレー9が作動してOFF状態となり
(同上、時間t3)、マイクロ波を発振させる高圧回路
がOFF状惑となる(同上、時間(4)。
Then, when a discharge occurs in the microwave heating furnace (fourth
In the figure, at time to), the detected value of the reflected wave increases rapidly, and as a result, the above integrated value eventually exceeds the reference value (voltage) (same as above, time t1y), and the comparison is made with a slight time delay. It is detected in the circuit that the intensity of the reflected wave exceeds the reference value (same as above, time L2). Similarly, with a slight time delay, the high voltage relay 9 of the microwave oscillator 1 is activated by the reflected wave level signal detector 8 and turned off (time t3, as above), and the high voltage circuit that oscillates the microwave is turned off. The OFF state becomes confusing (Ibid., time (4).

マイクロ波がしゃ断された結果、放電は停止する(同上
、時間【8)。
As a result of the microwave being cut off, the discharge stops (ibid., time [8).

放電消滅に関しては、上記同様若干の時間遅れを伴って
、上記積分した値が基準値より小となり(同上、時間(
6)、比較回路により放電の消滅が検出されると(同上
、時間t’7 )、高圧リレー9が作動してONの状態
となり(同上、時間【8)、高圧回路が再作動しく同上
、時間t9)、マイクロ波の発振が開始される(同上、
時間’10)。
Regarding discharge extinction, as above, with a slight time delay, the above integrated value becomes smaller than the reference value (same as above, time (
6) When the comparator circuit detects the extinction of the discharge (same as above, time t'7), the high voltage relay 9 is activated and turns ON (same as above, time [8), and the high voltage circuit is reactivated. At time t9), microwave oscillation starts (same as above,
Time '10).

以上の説明より明らかなように、本発明によれば、マイ
クロ波印加部に発生する放電を、マイクロ波印加部から
のマイクロ波の反射波の強度レベルを測定することによ
り検出している。このためマイクロ波印加部にて発生す
る放電を確実に検出することができるとともに、放電以
外の原因による輻射光あるいは雑音等を放電と誤つ゛C
検出することもない等の効果を有している。
As is clear from the above description, according to the present invention, the discharge generated in the microwave application section is detected by measuring the intensity level of the microwave reflected wave from the microwave application section. Therefore, it is possible to reliably detect the discharge generated in the microwave application section, and it is also possible to mistake radiated light or noise caused by causes other than discharge as discharge.
It has the advantage of not being detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法を適用したマイクロ波加熱炉
の放電検知器の構成図、第2図は放電発生による反射波
強度の変化を示す説明用グラフ、第3図は放電検知器の
作動を示すブロック図、第4図は第3図の作動のタイム
ヂャートである。 1・・・マイクロ波発振器、5・・・方向性結合器、8
・・・反射波レベル信号検知器。
Fig. 1 is a configuration diagram of a discharge detector for a microwave heating furnace to which the method according to the present invention is applied, Fig. 2 is an explanatory graph showing changes in reflected wave intensity due to discharge generation, and Fig. 3 is a diagram of the discharge detector of a microwave heating furnace. A block diagram showing the operation, FIG. 4 is a timing diagram of the operation of FIG. 3. 1... Microwave oscillator, 5... Directional coupler, 8
...Reflected wave level signal detector.

Claims (1)

【特許請求の範囲】[Claims] (1)マイクロ波印加部からのマイクロ波の反射波を検
出し、この反射波の強度をプラズマによるマイクロ波の
反射状窓より定めた基準値と比較し、反射波の強度が上
記基準値を超えることにより放電発生を検出することを
特徴とするマイクロ波印加時の放電検知方法。
(1) Detect the microwave reflected wave from the microwave application part, compare the intensity of this reflected wave with a reference value determined from the microwave reflection window caused by plasma, and check that the intensity of the reflected wave exceeds the above reference value. A method for detecting discharge when microwaves are applied, characterized by detecting occurrence of discharge by exceeding the threshold.
JP18564082A 1982-10-21 1982-10-21 Detection of discharge in applying microwave Pending JPS5973776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18564082A JPS5973776A (en) 1982-10-21 1982-10-21 Detection of discharge in applying microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18564082A JPS5973776A (en) 1982-10-21 1982-10-21 Detection of discharge in applying microwave

Publications (1)

Publication Number Publication Date
JPS5973776A true JPS5973776A (en) 1984-04-26

Family

ID=16174303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18564082A Pending JPS5973776A (en) 1982-10-21 1982-10-21 Detection of discharge in applying microwave

Country Status (1)

Country Link
JP (1) JPS5973776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279394A (en) * 1985-10-01 1987-04-11 動力炉・核燃料開発事業団 Microwave heating denitrating method and device
JPS62148896A (en) * 1985-12-24 1987-07-02 三機工業株式会社 Method and device for melting radioactive waste
WO1997042512A1 (en) * 1996-05-08 1997-11-13 Mitsubishi Denki Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315859A (en) * 1976-07-28 1978-02-14 Toshiba Corp Measuring method and apparatus for heating apparatus of high frequency

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315859A (en) * 1976-07-28 1978-02-14 Toshiba Corp Measuring method and apparatus for heating apparatus of high frequency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279394A (en) * 1985-10-01 1987-04-11 動力炉・核燃料開発事業団 Microwave heating denitrating method and device
JPS62148896A (en) * 1985-12-24 1987-07-02 三機工業株式会社 Method and device for melting radioactive waste
WO1997042512A1 (en) * 1996-05-08 1997-11-13 Mitsubishi Denki Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method
US5859590A (en) * 1996-05-08 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method

Similar Documents

Publication Publication Date Title
US20070221634A1 (en) Plasma Torch Spectrometer
EP1499164B1 (en) Microwave powered lamp with reliable detection of burned out light bulbs
JPS5973776A (en) Detection of discharge in applying microwave
JPH08167500A (en) Power source for high frequency plasma generating device
JPS6321357B2 (en)
MXPA02003601A (en) Apparatus and method for intercepting leakage of microwave.
Veisz et al. Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients
JPS6359233B2 (en)
KR200164249Y1 (en) Laser processing apparatus
JPH10202378A (en) Laser beam welding method by optical fiber transmission and its welding equipment
JPH06244140A (en) Dry etching device
US4935596A (en) Shutoff detector for unstable plasma or combustion flame
KR19980038005A (en) Power Save Device and Method of Screen Display
JPH06341650A (en) Electric stove
WO2004019298A2 (en) Test source for flame detectors
JP2531468Y2 (en) Fire detection system
JP2672324B2 (en) Laser device
JP3873473B2 (en) Fire detection device
JPH11264327A (en) Misfire detecting method for gas turbine combustor
KR20010050569A (en) Self-protection apparatus and method for microwave lighting system
JPH0136885Y2 (en)
JPS61126988A (en) Detecting device of pulse-like laser light
JPH1065242A (en) Gas laser oscillator
JPH09223597A (en) Microwave plasma generator
AU2005227521B2 (en) Plasma torch spectrometer