JPS5973736A - Vehicle weight measuring method - Google Patents

Vehicle weight measuring method

Info

Publication number
JPS5973736A
JPS5973736A JP18269982A JP18269982A JPS5973736A JP S5973736 A JPS5973736 A JP S5973736A JP 18269982 A JP18269982 A JP 18269982A JP 18269982 A JP18269982 A JP 18269982A JP S5973736 A JPS5973736 A JP S5973736A
Authority
JP
Japan
Prior art keywords
vehicle
axle
axle load
girder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18269982A
Other languages
Japanese (ja)
Other versions
JPH0146014B2 (en
Inventor
Susumu Kanegami
金上 侑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Original Assignee
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA DENGIYOU KK, Kyowa Electronic Instruments Co Ltd filed Critical KYOWA DENGIYOU KK
Priority to JP18269982A priority Critical patent/JPS5973736A/en
Publication of JPS5973736A publication Critical patent/JPS5973736A/en
Publication of JPH0146014B2 publication Critical patent/JPH0146014B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure axle loads accurately, to measure the total weight of a vehicle highly accurately together with the axle loads, and to make it possible to perform automatic totalling and the judgement of the kind of the vehicle, without flattening the upper surface of a measuring girder and the surfaces of roads before and after the girder. CONSTITUTION:The length of a bridge shaped girder is longer than the longest wheel base of a vehicle. On said girder, shearing force detectors 5A-5L are arranged at an equal interval, which is shorter than the shortest wheel base. The outputs of the detectors 5A-5L are inputted to a control circuit 9. When a vehicle 6 passes on the girder 1 from the lect to the right, the detector 5A sends the output corresponding the weight of front wheels (front axle) 7. Then the detectors 5B-5L sequentially output the weights. The front axle outputs and the rear axle outputs are sequentially overlapped in the order of the outputs, and upper envelops are formed. The half period to several periods of the synthesized waves are averaged by a procedure 11. Then axle loads WF and WB of the front axle and the rear axle are obtained by a procedure 12.

Description

【発明の詳細な説明】 本発明は、走行中の車両の軸重を測定して該車両の重量
を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the weight of a moving vehicle by measuring the axle load of the vehicle.

走行中の車両は、各稲はね系により振動し重心の移動が
生じるため、その軸重は、静止時の軸重を中心として変
動する。従来の軸重測定は、軸重測定用の検出板(下膜
に、複数の荷重変換器の上に載荷板が配設されている)
が小さいため、上記変動する軸重値の一時の値しか計測
できず、従って測定結果が不正確となる欠点があった。
A running vehicle vibrates due to each spring system and shifts its center of gravity, so its axle load fluctuates around the axle load when it is stationary. Conventional axle load measurement uses a detection plate for axle load measurement (a loading plate is placed on the lower membrane on top of multiple load transducers).
Since the value is small, only a temporary value of the fluctuating axle load value can be measured, which has the disadvantage that the measurement results are inaccurate.

この軸重値の変動を減少させるためには検出板自体は勿
論のこと、その検出板前後のある長さの路面を厳密に平
坦に仕上げる必要がある。しかしながら、この平坦仕上
げは、技術的にかなり困難であり、経済的にも著しく不
利を伴なう。
In order to reduce this variation in the axle load value, it is necessary to make not only the detection plate itself but also a certain length of the road surface in front of and behind the detection plate strictly flat. However, this flat finishing is technically quite difficult and economically disadvantageous.

ところで、軸重を測定し、車両総重量を測定するには、
1台の車両の各軸の軸重値を総計することとなるが、そ
の場合、同一車両の軸重か他の車両の軸重かを判別する
必要がある。この判別方法としては、目視により行なう
方法と目視によらず、光電管、ループコイル、速度計等
の機器を組み合わせて自動的に判別する方法とがある。
By the way, to measure the axle load and total vehicle weight,
The axle load values of each axle of one vehicle are totaled, but in this case, it is necessary to determine whether the axle load is of the same vehicle or another vehicle. This discrimination method includes a visual method and an automatic discrimination method using a combination of devices such as phototubes, loop coils, speedometers, etc. without visual inspection.

この後者の従来の車両判別装置は、光電管、ループコイ
ル、速度計等の単機能検出器からの検出情報を適宜電気
的に処理して車種を判別するものであるため、装置が複
雑化するという難点があり、また必らずしも正確な車種
判別を行ない得るものではなかった。
The latter type of conventional vehicle identification device is said to be complicated because it electrically processes detection information from single-function detectors such as phototubes, loop coils, and speedometers to determine the vehicle type. This method has its drawbacks, and it is not always possible to accurately identify the vehicle type.

本発明は、上記事情に鑑みなされたもので、その目的と
するところは、測定用桁上面およびその前後の路面を平
坦に仕上げずとも軸重を精度よく測定でき、この軸重を
もとに車両の総重量を高精度に測定し得る車両重量測定
方法を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to be able to accurately measure the axle load without flattening the top surface of the measuring girder and the road surface in front and behind it, and to measure the axle load based on this axle load. An object of the present invention is to provide a vehicle weight measuring method that can measure the total weight of a vehicle with high precision.

更に、本発明の第2の目的は、車両の軸重を測定すると
共に一車両の軸重を自動的に総計して車両総重量を測定
し得る車両重量測定方法を提供することにある。
Furthermore, a second object of the present invention is to provide a vehicle weight measuring method that can measure the axle load of a vehicle and automatically total the axle loads of one vehicle to determine the total vehicle weight.

更にまた、本発明の第3の目的は、被測定車両の車種判
別が可能な車両重量測定方法を提供することにある。
Furthermore, a third object of the present invention is to provide a vehicle weight measuring method that allows the type of vehicle to be measured to be determined.

以下、図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明方法の実施に用いる測定側桁とその配
置状態を示す平面図、第2図は、嬉1図の縦断面図であ
る。同図において、桁1は、路面2と同一高さ面に上面
をそろえて配置されている。
FIG. 1 is a plan view showing measurement stringers used in carrying out the method of the present invention and their arrangement, and FIG. 2 is a longitudinal cross-sectional view of the same. In the figure, the girder 1 is arranged with its upper surface aligned at the same height as the road surface 2.

路上には、保守点検用のピット3が掘削形成され、この
ピッl−3の左右両端には、上記桁1の支点としての支
持具4,4が設けられ、桁1は、この支持具4,4上に
略水平に保持されている。桁1は、本実施例においては
上面が路面2と同一高さに配置される1車線幅の平板部
1aと、この平板部1aの下面側に所定の高さを有し且
つ第1図および第2図における左右方向に平行に伸びた
2つの桟状板部1b、ICとから成り、被測定車両の最
長軸間距離より長い橋梁状を呈している。桟状板部11
) 、 1cの両側面には、せん断力検出用センサ5(
この場合ひずみゲージ)が等間隔の位置に接着等の手段
により添着されている。このせん断力検出用センサ5と
してのひずみゲージは、せん断力を検出し得るよう2枚
1組で形成され上記平板部1aの板部に対しそれぞれ4
5°および135゜ずらせて互いに交差して同一位置に
添着されている。上記等間隔区間は、被測定車両の最短
軸間距離以下に設定されており、第1図に示す如く、隣
接するせん断力検出用センサ5をここでは4つずつ接続
して各検出器5八〜5Lが構成されている。
A pit 3 for maintenance and inspection is excavated on the road, and supports 4, 4 are provided at both left and right ends of this pit 3 as fulcrums for the girder 1. , 4 is held substantially horizontally. In this embodiment, the girder 1 has a flat plate part 1a of one lane width whose upper surface is arranged at the same height as the road surface 2, and a predetermined height on the lower surface side of the flat plate part 1a, and has a It consists of two cross-shaped plate parts 1b and IC extending in parallel in the left-right direction in FIG. 2, and has a bridge-like shape that is longer than the longest distance between the axes of the vehicle to be measured. Cross-shaped plate part 11
), shear force detection sensors 5 (
In this case, strain gauges) are attached at equally spaced positions by adhesive or other means. The strain gauges as the shear force detection sensor 5 are formed in a set of two so as to be able to detect the shear force, and each strain gauge has four strain gauges for each plate portion of the flat plate portion 1a.
They are attached at the same position, shifted by 5° and 135°, and intersect with each other. The above-mentioned equally spaced sections are set to be equal to or less than the shortest distance between the axes of the vehicle to be measured, and as shown in FIG. ~5L is configured.

ここで、検出器5八〜5Lに対応する区間を八〜Lとす
る。
Here, the section corresponding to the detectors 58 to 5L is assumed to be 8 to L.

第3図は、本発明方法の実施例を示す回路の概略構成と
回路内での信号処理の手順を示すブロック図、第4図(
a)は車両が測定用桁上を走行する状態を示す説明図、
同図(b)は、車両が通過した場合の各検出器5八〜5
Lの出力を表わすタイミング図、第5図は、第4図示の
各出力の軸重波形を、前軸および後軸のそれぞれにつき
合成した波形図である。
FIG. 3 is a block diagram showing a schematic configuration of a circuit showing an embodiment of the method of the present invention and a signal processing procedure in the circuit, and FIG.
a) is an explanatory diagram showing a state in which a vehicle runs on a measurement girder;
The same figure (b) shows each detector 58 to 5 when a vehicle passes.
FIG. 5, a timing diagram showing the output of L, is a waveform diagram in which the axle load waveforms of each output shown in FIG. 4 are combined for the front axle and the rear axle, respectively.

先ずこれら第3図〜第5図を参照して軸重値の測定方法
を説明する。
First, a method for measuring an axle load value will be explained with reference to FIGS. 3 to 5.

第3図において、各検出器5八〜5Lからの各出力は、
制御回路9に入力される。今、第4図(a)に示すよう
に、車両6が桁1上を左から右へ通過すると、検出器5
Aが前輪(前軸)7の重量に応じた出力を発し、引1読
き検出器5B 、50・・・  ・。
In FIG. 3, each output from each detector 58 to 5L is
The signal is input to the control circuit 9. Now, as shown in FIG. 4(a), when the vehicle 6 passes over the girder 1 from left to right, the detector 5
A outputs an output according to the weight of the front wheel (front axle) 7, and the output is read by the output detectors 5B, 50, etc.

5 Lがj順次出力する。このときの各検出器の出力波
形は、第4図(b) 1%示すように横軸に時間をとり
、縦軸に電圧をとって表わせばA7〜L7の如くとなる
。また、後輪(後軸)80重量による各検出器の出力波
形は、同様にA8〜r、 s (xIs〜L8は図示せ
ず)の如くとなる。このような波形を呈する前輸出力A
7〜L7と、後軸出力A8〜L8を、その出力される順
序に従って、それぞれ順次重畳して、その頭部包絡線を
合成し、各合成波の半周期乃至数周期、ここでは2週期
(2T)分を手順11で平均して前軸と後軸の各軸重W
 FとW Bを手順12で求める。この頭部包絡線の変
動周期は、被測定車両の車体振動に基づくもので、従っ
て、軸重検出にあたっては、その変動周期の少なくとも
半周期間における出力を平均すれば、良好な測定結果が
得られる。このようにして求められた軸重値は、目視に
より一車両の軸数分を加算し、または−車両であること
の指示信号を光電管あるいは後述の一車両判別手順に従
った信号により制御されて総計され、−車両の総重量が
求められる(手順13 )。
5 L outputs j sequentially. The output waveforms of each detector at this time are expressed as A7 to L7, with time plotted on the horizontal axis and voltage plotted on the vertical axis, as shown in FIG. 4(b) 1%. Similarly, the output waveforms of the respective detectors depending on the weight of the rear wheel (rear axle) 80 are as shown in A8 to r, s (xIs to L8 are not shown). The previous export power A exhibiting such a waveform
7 to L7 and the rear shaft outputs A8 to L8 are sequentially superimposed according to the order in which they are output, and their head envelopes are synthesized. 2T) in step 11 and calculate each axle load W of the front and rear axles.
Find F and W B in step 12. The fluctuation period of this head envelope is based on the body vibration of the vehicle being measured. Therefore, when detecting axle load, good measurement results can be obtained by averaging the output over at least half of the fluctuation period. . The axle load value obtained in this way can be obtained by visually adding the number of axles for one vehicle, or by controlling a signal indicating that the vehicle is a vehicle by a photocell or a signal according to the vehicle identification procedure described below. - The total weight of the vehicle is determined (step 13).

第6図(a)は、2台の車両が測定用桁上を走行する状
態を示す説明図、同図(b)はそれらの車両が通過した
場合の各検出器の出力をデジタル信号として表わしたタ
イミング図を示す。次に、この第6図と第3図とを参照
してそれぞれ得られた軸重出力が同一車両のものである
か否かの判別方法を説明する。制御回路9に入力された
検出器5A〜5Lからの信号は、デジタル処理されて第
6図(blにおけるタイミング図に示す如く出力の有無
のみを表わす波形とされる。先行する車両14の前軸1
5によって区間Aに出力A’ 15が発生し、後軸16
によって出力A]6が発生する。同様に後続の車両17
の前軸18により出力A18が、後軸19によって出力
A19が発生する。他の区間B−Lについても同様であ
る。このような出力パルスから、隣接する区間を通過す
る前軸または後軸による出力パルスのタイミング差tを
知ることによって軸重か求められる。すなわち軸重Vは
、 ■=区間距離、/ 1 として求めることができる(手順20 )。同タイミン
グで異なる区間顛発生する出力パルスは、次の軸を表わ
しているが、これらの隣接区間の通過タイミング差、例
えば、t2と11を比較しく手順21)2両者が等しけ
れば(ただし、所定の許容範囲内にある場合を含む)−
車両と判別される(手順22)。第6図に示す例の場合
、区間Aと区間Eとに略同時に出力パルスA15.E1
5が発生しており、次の区間にそれぞれ発生するパルス
B16゜F15とのタイミング差は、それぞれt2とt
lとなる。この場合、t2とtlとは等しいから同一車
両の前軸と後軸が区間Eと区間Aにパルスを発生してい
ることが分り、従って、区間A乃至E。
Figure 6 (a) is an explanatory diagram showing the state in which two vehicles are running on the measurement girder, and Figure 6 (b) shows the output of each detector as a digital signal when those vehicles pass. A timing diagram is shown below. Next, with reference to FIG. 6 and FIG. 3, a method for determining whether or not the obtained axle load outputs are from the same vehicle will be explained. The signals from the detectors 5A to 5L input to the control circuit 9 are digitally processed and made into waveforms that only indicate the presence or absence of output as shown in the timing chart in FIG. 1
5, an output A' 15 is generated in section A, and the rear shaft 16
The output A]6 is generated. Similarly, the following vehicle 17
The front shaft 18 generates an output A18, and the rear shaft 19 generates an output A19. The same applies to other sections BL. From such output pulses, the axle load can be determined by knowing the timing difference t between the output pulses of the front axle or the rear axle passing through adjacent sections. That is, the axle load V can be determined as (2)=section distance, /1 (step 20). Output pulses that occur in different sections at the same timing represent the next axis. Compare the passing timing difference between these adjacent sections, for example, t2 and 11. Step 21) If the two are equal (however, if t2 and 11 are equal), then (including cases within the allowable range) −
It is determined that it is a vehicle (step 22). In the case of the example shown in FIG. 6, the output pulse A15. E1
5 is generated, and the timing difference with the pulse B16°F15 generated in the next section is t2 and t, respectively.
It becomes l. In this case, since t2 and tl are equal, it can be seen that the front and rear axles of the same vehicle generate pulses in sections E and A, and therefore in sections A to E.

あるいは13乃至Fが軸間距離として求められる(手順
23)。この軸間距離を仮に第6図示のタイミング図上
にLBFとして表わす。
Alternatively, 13 to F are determined as the distance between the axes (step 23). This distance between the axes is tentatively represented as LBF on the timing diagram shown in FIG.

区間へに生じる次の出力AI8とタイミングの一致する
他の区間■の出力116を基に、同様にしてそれぞれ隣
接する区間n、Jに生じる出力とのタイミング差t3と
14を求め(手順20)、両者を比較する(手順21)
。タイミング差t3とt4とは、同一でないことから同
一車両の1軸でないことが分るが(手順22)、軸間距
離L D 、Tを計測する(手順23)。このL IJ
 Jは、先行車両の後軸と後続車両の前軸との軸間距離
を示すものである。この軸間距離Ln、rは、前に求め
た軸間距離L B Fに加えず、総軸間距離を出す(手
順25)。もし、t3とt4が等しい場合にば、LBJ
がLBFに加えられ、総軸間距離が求められる。この軸
間距離も軸重とU様、常にスキャンニングされて、順次
隣接区間へ移動するタイミングに合わせて計測し、どれ
ら各軸間距離を手順24で比較すると、この変化から(
手順22)、−車両の判別ができる(手順22)。
Based on the output 116 of another interval ■ whose timing matches the next output AI8 generated in the interval, similarly calculate the timing differences t3 and 14 between the outputs generated in the adjacent intervals n and J, respectively (step 20). , compare both (step 21)
. Since the timing differences t3 and t4 are not the same, it can be seen that the two axles of the same vehicle are not the same (step 22), but the inter-axle distances L D and T are measured (step 23). This L IJ
J indicates the inter-axle distance between the rear axle of the preceding vehicle and the front axle of the following vehicle. These inter-axle distances Ln, r are not added to the previously determined inter-axle distance LBF, but the total inter-axle distance is calculated (step 25). If t3 and t4 are equal, LBJ
is added to the LBF to determine the total center distance. This distance between the axles is also constantly scanned and measured at the same time as the axle load and U-sama move to adjacent sections sequentially, and when the distance between each axle is compared in step 24, from this change (
Step 22), - The vehicle can be identified (Step 22).

斯くして手順】0乃至12で得た各軸の軸重値を一車両
判別手順22による信号によって加算し、−車両分の総
重量を求める(手順13)。これら総重量と総軸間距離
とによって車両の種類、いわゆる車種を判別する。
Thus, the axle load values of each axle obtained in steps 0 to 12 are added according to the signal from the one-vehicle discrimination step 22, and the total weight for the -vehicle is determined (step 13). The type of vehicle, so-called vehicle type, is determined based on the total weight and total distance between the axles.

尚、第3図に示す手順は、上述のよってあるが、同一車
両か否かを判別するには、軸間距離の測定は必らずしも
必要ではなく、手順20と21によって軸重の変化を検
知するだけでも充分である。また、同一車両の判別は、
手順23と手順24によって軸間距離の変化のみから行
なってもよい。
Although the procedure shown in Fig. 3 is as described above, it is not necessary to measure the distance between the axles in order to determine whether the vehicles are the same. It is sufficient to detect a change. In addition, to identify identical vehicles,
Steps 23 and 24 may be used to change only the distance between the axes.

第3図に示した実施例によれば、軸重値を精度よく計れ
るのみならず、同一車両の判別によって総重量を、また
総軸間距離をそれぞれ計測できるため車種の判別が正確
、確実であり、これによって過積載車両の監視、取締り
ゃ有料道路の料金徴収業務の省力化乃至無人化を実現す
ることが可能である。
According to the embodiment shown in Fig. 3, not only can the axle load value be measured with high precision, but also the total weight and total distance between the axles can be measured by determining whether the vehicle is the same, making it possible to accurately and reliably identify the vehicle type. This makes it possible to monitor and control overloaded vehicles, and to save labor and make toll road toll collection operations unmanned.

以上詳述したように本発明によれば、測定用桁の上面お
よびその前後の路面を敢えて平坦に仕上げて走行車体の
振動を無くさずとも軸重を精度よく測定でき、この軸重
をもとに被測定車両の総重量を高精度に測定することが
できる。
As detailed above, according to the present invention, the axle load can be measured accurately without eliminating the vibration of the running vehicle by intentionally finishing the top surface of the measuring girder and the road surface in front and behind it to be flat. The total weight of the vehicle to be measured can be measured with high accuracy.

また、第2の発明によれば、軸速度の変化を測定して同
一車両の軸か否かを簡単に判別でき、これによって総重
量を自動的に測定することかできる。しかして、この発
明によって過積載および速度違反の車両に対しての取締
り、監視を精度よく且つ効率的に行なうことができる。
Further, according to the second invention, it is possible to easily determine whether or not the shafts belong to the same vehicle by measuring changes in shaft speed, and thereby the total weight can be automatically measured. Therefore, according to the present invention, it is possible to accurately and efficiently control and monitor overloaded and speeding vehicles.

更に、第3の発明によれば、第2の発明による場合と同
様、総重量の測定、過積戦車の監視、取締りが精度よく
且つ効率的に行なえると共に正確な総重量と総軸間距離
と総軸数とから被測定車両の車種の判別が可能となるの
で、積載重量違反車の取締りが容易且つ確実となり、ま
た有料道路におシつる発券業務や料金徴収業務を著しく
簡易化し乃至は無人化し得る利点がある。
Furthermore, according to the third invention, as in the case of the second invention, measurement of the total weight, monitoring and enforcement of overloaded tanks can be performed accurately and efficiently, and accurate total weight and total axle distance can be obtained. Since it is possible to determine the type of vehicle being measured based on the number of axles and the total number of axles, it becomes easier and more reliable to control vehicles that violate the loaded weight, and it also greatly simplifies ticketing and toll collection operations on toll roads. It has the advantage of being unmanned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる測定用桁とその配置
状態を示す平面図、第2図は第1図の縦断面図、第3図
は本発明の実施例を示す回路の概略構成と回路内での信
号処理の手順を示すブロック図、第4図(a)は、車両
が測定用桁上を走行する状態を示す説明図、同図(b)
は、車両が通過した場合の各検出器の出力を表わすタイ
ミング図、第5図は第4図示の各出力の軸重波形を前軸
および後軸のそれぞれにつき合成した波形図、第6図(
a)は2台の車両が測定用桁上を走行する状態を示す説
明図、同図(b)はそれらの車両が通過した場合の各検
出器の出力をデジタル化して表わしたタイミング図であ
る。 1・・・・・・測定用桁、  1a・・・・・平板部、
Ib、Ic・・・桟状板部、  2・・・・路面、3・
・・・・保守点検用ピッ1〜、 4・・−・・支持具、
5・・・・・せん断力検出用センサ、 5八〜5L・・・・検出器、 A−L・・・・・・区間
、6 、14 、17・・・・・車両、 7,15.1
8・・画前軸(前輪)、 8 、16 、19・・・・
・後軸(後輪)、9・・・・・制御回路、 10、II、12,1.3,20,21,22,23,
24,25.26 −・・−・手順、tl 、 t2.
 t3. t4 ・・・・隣接区間間の出力パルスのタ
イミンク差、 LBF、LBJ・・・・・軸間距離。 第   1    j:=j+ パ;;   2  口 第3図 第   4  図 (C)) ノ 第   5  図
FIG. 1 is a plan view showing the measuring girders used in carrying out the method of the present invention and their arrangement, FIG. 2 is a longitudinal sectional view of FIG. 1, and FIG. 3 is a schematic configuration of a circuit showing an embodiment of the present invention. FIG. 4(a) is an explanatory diagram showing the state in which the vehicle is running on the measurement girder, and FIG. 4(b) is a block diagram showing the signal processing procedure in the circuit.
5 is a timing diagram showing the output of each detector when a vehicle passes by, FIG. 5 is a waveform diagram that combines the axle load waveforms of each output shown in FIG.
(a) is an explanatory diagram showing the state in which two vehicles are running on the measurement girder, and (b) is a timing diagram that digitizes and represents the output of each detector when those vehicles pass. . 1... Measuring girder, 1a... Flat plate part,
Ib, Ic...Bar-shaped plate portion, 2...Road surface, 3...
...Maintenance and inspection pins 1~, 4...Supports,
5... Sensor for shear force detection, 58-5L... Detector, A-L... Section, 6, 14, 17... Vehicle, 7, 15. 1
8... Image front axis (front wheel), 8, 16, 19...
・Rear axle (rear wheel), 9...control circuit, 10, II, 12, 1.3, 20, 21, 22, 23,
24, 25.26 -... procedure, tl, t2.
t3. t4... Timing difference of output pulses between adjacent sections, LBF, LBJ... Distance between axes. 1 j:=j+ p;; 2 Figure 3 Figure 4 (C)) Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)走行中の車両の軸重を測定して該車両の重量を測
定する方法において、前記車両の最長軸間距離以上の長
さの橋梁状の桁に最短軸間距離以下の等間隔区間でせん
断力検出用の検出器を配備し、前記桁上を前記車両が走
行するとき前記各検出器から出力される軸重波形を順次
重畳し、前記車両の車体振動に基づく前記軸重波形の頭
部包絡線の変動周期の少なくとも半周期以上にわたる前
記出力を平均して一軸の軸重を測定し、更に同一車両の
各軸重を総計して走行中の一車両の重量を測定すること
を特徴とする車両重量測定方法。
(1) In a method of measuring the weight of a moving vehicle by measuring the axle load of the vehicle, a bridge-like girder having a length greater than or equal to the longest axle distance of the vehicle has equally spaced sections less than or equal to the shortest axle distance. A detector for detecting shear force is provided, and when the vehicle runs on the girder, the axle load waveforms output from each of the detectors are sequentially superimposed, and the axle load waveform based on the body vibration of the vehicle is The axle load of one axle is measured by averaging the output over at least a half cycle of the fluctuation cycle of the head envelope, and the weight of one vehicle in motion is determined by summing up each axle load of the same vehicle. Characteristic vehicle weight measurement method.
(2)走行中の車両の軸重を測定して該車両の重量を測
定する方法において、前記車両の最長軸間距離以上の長
さの橋梁状の桁に最短軸間距離以下の等間隔区間でせん
断力検出用の検出器を配備し、前記桁上を前記車両が走
行するとき前記各検出器から得られる軸重波形を順次重
畳し、前記車両の車体振動に基づく前記軸重波形の頭部
包絡線の変動周期の少なくとも半周期以上にわたる前記
出力を平均して一軸の軸重を演算すると共に、前記各区
間の信号の移動から軸速度を演算し、得られた該軸速度
の変化から同一車両の軸か否かを判別して、前記演算に
より得られた軸重を総計して走行中の一車両の重量を測
定することを特徴とする車両重量測定方法。
(2) In a method of measuring the weight of a moving vehicle by measuring the axle load of the vehicle, a bridge-like girder with a length greater than or equal to the longest axle distance of the vehicle has equally spaced sections less than or equal to the shortest axle distance. A detector for detecting shear force is provided in the vehicle, and when the vehicle runs on the girder, the axle load waveforms obtained from each of the detectors are sequentially superimposed, and the head of the axle load waveform based on the body vibration of the vehicle is Calculate the axle load of one shaft by averaging the output over at least half the period of variation of the partial envelope, calculate the shaft speed from the movement of the signal in each section, and calculate the shaft speed from the obtained change in the shaft speed. A method for measuring vehicle weight, characterized in that the weight of one running vehicle is measured by determining whether the axles belong to the same vehicle or not, and totaling the axle loads obtained by the calculation.
(3)走行中の車両の軸重を測定して該車両の重量を測
定する方法において、前記車両の最長軸間距離以上の長
さの橋梁状の桁に最短軸間距離以下の等間隔区間でせん
断力検出用の検出器を配備し、前記桁上を前記車両が走
行するとき前記各検出器から得られる軸重波形を順次重
畳し、前記車両の車体振動に基づく前記軸重波形の頭部
包絡線の変動周期の少なくとも半周期以上にわたる前記
出力を平均して一軸の軸重を演算すると共に、上記検出
器の出力が同時に出ている区間距離から軸間距離を測定
し、得られた該軸間距離の変化から同一車両の軸か否か
を判別して、前記演算により得られた軸重を諾計して走
行中の一車両の重量を測定することを特徴とする車両重
量測定方法。
(3) In a method of measuring the weight of a moving vehicle by measuring the axle load of the vehicle, a bridge-like girder having a length greater than or equal to the longest axle distance of the vehicle has equally spaced sections less than or equal to the shortest axle distance. A detector for detecting shear force is provided in the vehicle, and when the vehicle runs on the girder, the axle load waveforms obtained from each of the detectors are sequentially superimposed, and the head of the axle load waveform based on the body vibration of the vehicle is The axle load of one axis is calculated by averaging the output over at least half the period of fluctuation of the part envelope, and the distance between the axles is measured from the interval distance where the output of the detector is simultaneously output. A vehicle weight measurement characterized in that it is determined from the change in the distance between the axles whether the axles are of the same vehicle or not, and the axle load obtained by the calculation is calculated to measure the weight of one moving vehicle. Method.
JP18269982A 1982-10-20 1982-10-20 Vehicle weight measuring method Granted JPS5973736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18269982A JPS5973736A (en) 1982-10-20 1982-10-20 Vehicle weight measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18269982A JPS5973736A (en) 1982-10-20 1982-10-20 Vehicle weight measuring method

Publications (2)

Publication Number Publication Date
JPS5973736A true JPS5973736A (en) 1984-04-26
JPH0146014B2 JPH0146014B2 (en) 1989-10-05

Family

ID=16122883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18269982A Granted JPS5973736A (en) 1982-10-20 1982-10-20 Vehicle weight measuring method

Country Status (1)

Country Link
JP (1) JPS5973736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153523A (en) * 1984-08-24 1986-03-17 Mitsubishi Heavy Ind Ltd Apparatus for discriminating kind of car
JPH01282430A (en) * 1988-05-06 1989-11-14 Kubota Ltd Method and apparatus for measuring static weight for running vehicle
JP2007178213A (en) * 2005-12-27 2007-07-12 Yamato Scale Co Ltd Axle load measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153523A (en) * 1984-08-24 1986-03-17 Mitsubishi Heavy Ind Ltd Apparatus for discriminating kind of car
JPH0423732B2 (en) * 1984-08-24 1992-04-23 Mitsubishi Heavy Ind Ltd
JPH01282430A (en) * 1988-05-06 1989-11-14 Kubota Ltd Method and apparatus for measuring static weight for running vehicle
JP2007178213A (en) * 2005-12-27 2007-07-12 Yamato Scale Co Ltd Axle load measuring instrument
JP4721895B2 (en) * 2005-12-27 2011-07-13 大和製衡株式会社 Axle load measuring device

Also Published As

Publication number Publication date
JPH0146014B2 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
US3593263A (en) Apparatus for vehicle direction sensing
US7668692B2 (en) Method for weighing vehicles crossing a bridge
US9804017B2 (en) Method for weighing a vehicle, and measuring system and measuring arrangement therefor
CN110530480B (en) Bridge dynamic weighing system based on ranging laser sensor and method thereof
CN108318117A (en) A kind of vehicle dynamic weighing compensation sensor array, System and method for
JP3702238B2 (en) Vehicle weight measuring method, vehicle axle weight measuring system, and overloaded vehicle warning system
JPS62255828A (en) Measuring system for maximum vehicle total weight
JP4721895B2 (en) Axle load measuring device
CN109916487B (en) Intelligent monitoring system and method for driving weight
CN112781702B (en) Method and system for weighing vehicle
JP3467906B2 (en) Axle load measuring device
CN110268237A (en) Method and apparatus for detecting the weight for the load being moved on scale
JPS5973736A (en) Vehicle weight measuring method
JP2022042580A (en) Failure detector, charge collection system, method for detecting failure, and program
JP2001133314A (en) Vehicle weight measuring device and vehicle weight measuring method
JP6741797B2 (en) In-vehicle system, billing system, billing method and program
CN213014021U (en) Load recognition device of bridge
JPH10185665A (en) Axle load measuring device
JPH11232586A (en) Wheel interval calculating device
JP5094984B2 (en) Axle load measuring device
RU2239798C2 (en) Method of weighing vehicle
JPS60108717A (en) Vehicle-weight measuring apparatus
JP3521072B2 (en) Vehicle speed and vehicle length measurement method for moving objects
CN219830074U (en) Comprehensive measurement and identification system
JPS5828533B2 (en) Axle load measuring device for running vehicles