JPS60108717A - Vehicle-weight measuring apparatus - Google Patents

Vehicle-weight measuring apparatus

Info

Publication number
JPS60108717A
JPS60108717A JP21682483A JP21682483A JPS60108717A JP S60108717 A JPS60108717 A JP S60108717A JP 21682483 A JP21682483 A JP 21682483A JP 21682483 A JP21682483 A JP 21682483A JP S60108717 A JPS60108717 A JP S60108717A
Authority
JP
Japan
Prior art keywords
vehicle
axle
weight
speed
axle load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21682483A
Other languages
Japanese (ja)
Inventor
Ryokichi Wada
和田 良吉
Riichiro Yamashita
山下 利一郎
Osamu Satonishi
里西 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21682483A priority Critical patent/JPS60108717A/en
Publication of JPS60108717A publication Critical patent/JPS60108717A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the weight of a vehicle required for receiving a toll, by providing a vehicle judging means, a speed detecting means, an axle-load detecting means, a pulse-width detecting means, a maximum-value detecting means, a correcting-factor keeping means, and a computing means. CONSTITUTION:A vehicle judging means (a) comprises a vehicle detector 18 and a vehicle judging circuit 19. A speed detecting means (b) comprises a speedometer 16 and a speed detecting circuit 17. An axle-load detecting means (c) comprises an axle-load detector 11. A pulse-width detecting means comprises a pulse- width detecting device 15. A maximum-value detecting means comprises a maximum-value detecting circuit 14. A correction-factor keeping means comprises a correcting circuit 20, which keeps the correction factor of the weight of a vehicle based on a vehicle speed obtained beforehand and the pulse width of the output signal of the axle-load detecting means. A computing means comprises a computing circuit 21, which corrects the maximum value based on the correcting factor corresponding to the detected speed and the detected pulse width and obtains the vehicle weight. The fluctuation of the axle load due to the vibration and passing pattern of the running vehicle is corrected, and the correct weight can be obtained positively.

Description

【発明の詳細な説明】 本発明は通行料金を通行車両の重帯を加味して定めた有
料道路における料金収受システムに用いる車両重量測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle weight measuring device used in a toll collection system on a toll road where tolls are determined by taking into account the heavy traffic of passing vehicles.

車両重量に応じた通行料金を徴収する有料道路において
は車両型は測定を行う必要がある0そのための装置とし
て第1図、第2図に示すような構成の車両重量測定装置
がある。第1図はそのシステムレイアウトを示す斜視図
、第2図はその平面図であシ、図中W Yは車両の通行
路である。また、Id はこの通行路WYの両脇のアイ
ランドであシ、通行路W Yを横断して路面上に軸重検
出器1が敷設されているOこの軸重検出器1は車両の軸
重11を検出するためのもので埋設用外枠1aの内側に
4個のひずみゲージ式ロードセル2を並べて配設し、そ
の上に荷重を受ける載荷板3を設けて構成されるO 前記ひずみケージ式ロードセル2は荷重ヲ受けるとその
荷重に応じた抵抗値変化を示すもので、載荷板3の4隅
に1つずつ配され、載荷板3上に車両7かさじか\す、
その車輪8またけ9が載荷板3を踏むと、その荷重がひ
ずみゲージ式ロードセル2に加わるようにし、これによ
って荷重検出を行う。4,5は投光器及び受光器で前記
軸重検出器1の配設位置におけるアイランドId 上に
互いに対峙して設けられておシ、この投受光器4,5の
光路を通行車両7がしゃ断することによシ軸重検出器1
の位置に該通行車両7がさじか\ったことを検出する。
On toll roads where tolls are collected according to the weight of the vehicle, it is necessary to measure the type of vehicle.As a device for this purpose, there is a vehicle weight measuring device having a configuration as shown in FIGS. 1 and 2. FIG. 1 is a perspective view showing the system layout, and FIG. 2 is a plan view thereof. In the figure, WY represents a vehicle passageway. In addition, Id is an island on both sides of this traffic road WY, and an axle load detector 1 is installed on the road surface across the traffic road WY. 11, and is constructed by arranging four strain gauge type load cells 2 side by side inside the burial outer frame 1a, and providing a loading plate 3 for receiving the load on top of the strain gauge type load cells 2. The load cells 2 exhibit a change in resistance value in accordance with the load when they receive a load, and are placed one at each of the four corners of the loading plate 3.
When the wheel 8 straddles 9 steps on the loading plate 3, the load is applied to the strain gauge type load cell 2, thereby detecting the load. Reference numerals 4 and 5 denote a light emitter and a light receiver, which are provided facing each other on the island Id at the location where the axle load detector 1 is disposed, and the optical path of the light emitters and receivers 4 and 5 is interrupted by a passing vehicle 7. Especially the axle load detector 1
It is detected that the passing vehicle 7 has approached the position.

6は速度計で車両7の速度検出を行うものである。A speedometer 6 detects the speed of the vehicle 7.

図に示したように、軸重測定装置の@重検出器1は路面
に埋設されており、また軸重検出器1の4個のひずみゲ
ージ式ロードセル2はホイーストンブリッジを形成させ
であるので、載荷板3上に車両の車輪が差しか\るとそ
の車軸の荷重が載荷板3下の各≠−≠祷ロードセル2に
加わシ、これらの抵抗値が変ゎシ、ホイーストンブリッ
ジのバランスが変化する結果、軸重量に対応した電気信
号に変換され2軸車の場合、通常走行においては第3図
に示すような波形が検出される。その結果P、m 、 
P2mで示すような前輪、後輪の最大軸重値とパルス幅
T、、T。
As shown in the figure, the @load detector 1 of the axle load measuring device is buried in the road surface, and the four strain gauge type load cells 2 of the axle load detector 1 are arranged to form a Wheatstone bridge. When the wheels of the vehicle are placed on the loading plate 3, the load of the axle is applied to each ≠−≠ load cell 2 under the loading plate 3, and their resistance values change, resulting in the balance of the Wheatstone bridge. As a result of the change in the axle weight, it is converted into an electrical signal corresponding to the axle weight, and in the case of a two-axle vehicle, a waveform as shown in FIG. 3 is detected during normal driving. As a result, P, m,
The maximum axle load value of the front wheel and rear wheel and the pulse width T, , T as shown by P2m.

が検出される。is detected.

第4図は軸重検出器の上を通常走行する車両のタイヤが
通過する場合、タイヤ接地面の長さと軸重検出器の長さ
関係と最大軸重値が検出されるタイヤ位置を示す断面図
で、10はタイヤ。
Figure 4 is a cross-section showing the relationship between the length of the tire contact surface and the length of the axle load detector, and the tire position where the maximum axle load value is detected when the tires of a normally running vehicle pass over the axle load detector. In the diagram, 10 is the tire.

tはタイヤ接地面の長さ、Lは軸重検出器の車両走行長
であシ、第1図と同一のものは同一符号で示しである。
t is the length of the tire contact surface, L is the vehicle running length of the axle load detector, and the same parts as in FIG. 1 are indicated by the same symbols.

第4図は右方から進入したタイヤ10が第3図に示すよ
うじ軸重値を増加させつつ、軸重ビーク値P8mまだは
p、mを発生させる付近に来たことを示している。この
軸重検出器10車両走行長りはタイヤ接地面長tより犬
であシ、その大きさはひずみゲージ式ロードセル2の感
度によるが、走行車両7の速度、タイヤ形状、軸重検出
器の埋設状態によシ異なるが、ひずみゲージ式ロードセ
ル2が高感度の場合、通常の使用状態で40 mg 〜
100m5+のTItT! に示されるパルス幅となる
。又、第3図点線で示す理想的(真値)な軸重波形に重
畳しく P、rn−PIt)あるいは(P2m−Pzt
)の軸重測定誤差を発生する0 この誤差は、軸重検出器が重量計として応答性に優れて
いる程一般的には大きく走行車両の重量測定を難しくし
ていた。この走行車両の誤要 差のl因となる有害な撮動成分は、路面の凹凸や車両の
ブレーキのかけ方等による車両自身の振動が原因で真の
軸重Wt に重畳された形で変動し、軸重検出器の検出
する軸重Wは、フーリエ級数展開して したがって、軸重波形を観測し、走行車両による振動分
析を繰シ返し実駿すれば正しい軸重Wt を推定するこ
とが出来る。
FIG. 4 shows that the tire 10 that entered from the right side increases the axle load value shown in FIG. 3, and has come close to generating the axle load peak value P8m, p, and m. The vehicle traveling length of this axle load detector 10 is longer than the tire contact surface length t, and its size depends on the sensitivity of the strain gauge type load cell 2, but it depends on the speed of the traveling vehicle 7, the tire shape, and the axle load detector. Although it varies depending on the buried state, if the strain gauge type load cell 2 is highly sensitive, it will be 40 mg ~ under normal usage conditions.
100m5+ TItT! The pulse width is shown in . Also, superimposed on the ideal (true value) axis load waveform shown by the dotted line in Figure 3, P,rn-PIt) or (P2m-Pzt)
) This error is generally larger as the axle load detector has better responsiveness as a weighing scale, making it difficult to measure the weight of a running vehicle. The harmful imaging component that causes the error difference of the running vehicle is caused by vibrations of the vehicle itself due to unevenness of the road surface, how the vehicle is braked, etc., and is superimposed on the true axle load Wt and fluctuates. However, the axle load W detected by the axle load detector is expanded into a Fourier series, and the correct axle load Wt can be estimated by observing the axle load waveform and repeatedly performing vibration analysis of the running vehicle. I can do it.

しかしながら実用上問題点となる点は、第5図に示す様
な波形が頻発することである。これは、車両軸輪のジャ
ンプ、雨や凍結による車両のスリップが原因で、この様
な特殊走行時は第3図に示す様な波形に比べ、検出され
る最大軸重値p 、 t/ 、 p 2t/、パルス幅
T、” 、 T、’は小さな値となる。即ち、PHt′
<PHt 、 P2t’ < Pzt 。
However, a practical problem is that waveforms as shown in FIG. 5 frequently occur. This is caused by jumps in the vehicle axle wheels and vehicle slippage due to rain or ice.During such special driving, the detected maximum axle load values p, t/, p2t/, the pulse width T,'', T,' is a small value. That is, PHt'
<PHt, P2t'< Pzt.

T+ ′<T+ t Tz’ < T2が成立つ。T+'<T+tTz'<T2 holds true.

第6図は、第5図に示すような軸重波形の場合のタイヤ
位置の1例を示すもので符号は第4図と同一である。
FIG. 6 shows an example of tire positions in the case of an axle load waveform as shown in FIG. 5, and the reference numerals are the same as in FIG. 4.

このため、第5図の様な特殊走行時の波形を除去するた
め、従来は第4図の車両走行長りを数mとるか、軸重検
出器を相ml後して複数個を一定間隔で設置した。しか
しこれらの方法は、(1) 軸重検出器が多数必要とな
るが、長大となシ埋設費用、保守面での負担が大きすぎ
る。
For this reason, in order to remove the waveform during special driving as shown in Figure 5, conventional methods have been to increase the vehicle running length as shown in Figure 4 by several meters, or to install multiple axle load detectors at regular intervals. It was installed with. However, these methods (1) require a large number of axle load detectors, which are long and burdensome in terms of burial costs and maintenance;

(2)通常走行での軸重は61す定出来ても、特殊走行
時、例えば軸重検出器の性能を上まわる速度、上限30
 ht/ hに対し40bn、/hで通過しても補正す
ることなく重量値を出力してしまう。
(2) Even if the axle load can be set at 61 during normal driving, during special driving, for example, at a speed that exceeds the performance of the axle load detector, the upper limit is 30.
Even if it passes at 40bn/h for ht/h, the weight value will be output without correction.

等の欠点のため重量を用いた料金収受システムの実用化
を難しくしていた。
These drawbacks have made it difficult to put a weight-based toll collection system into practical use.

本発明は、このような従来の重量測定装置の欠点を除去
し、走行車両の軸重検出部上の通過形態による影響を補
正し、料金収受に必要な車両重量が正確に測定出来るよ
うにし、かつ料金収受に必要な車両の前、後、進、先行
車両と後とする。
The present invention eliminates the drawbacks of the conventional weight measuring device, corrects the influence of the passing form on the axle load detection section of the traveling vehicle, and makes it possible to accurately measure the vehicle weight necessary for toll collection. Also, the front, rear, forward, leading vehicle and rear of the vehicle necessary for toll collection.

以下図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第7図は、本発明に使用する補正曲線で、速度vl +
V2 *VS sV4の関係はv4. >vs ) v
2 )vlである。
FIG. 7 is a correction curve used in the present invention, where the speed vl +
The relationship between V2 *VS sV4 is v4. > vs ) v
2) It is vl.

真の軸重Wt に車両振動成分が重畳してフーリエ級数
によ請求められる軸重Wは軸重検出器を通過する走行車
両の通過形態によシ異なるが、料金収受に必要な精度(
例えば=ヒエ0チ)、実用上の問題という観点にたてば
通過速度とその時、得られるパルス幅の2つの要因によ
り傾向値的に定まる。すなわち、 (1)通過速度は、速度v = Oの静止状態を考えれ
ば、通過速度が大きい程車両振動成分が重畳され検出さ
れる軸重Wは大となる。
The axle load W calculated by the Fourier series by superimposing the vehicle vibration component on the true axle load Wt varies depending on the form of the vehicle passing through the axle load detector, but the accuracy required for toll collection (
For example, from the point of view of practical problems, the trend value is determined by two factors: the passing speed and the pulse width obtained at that time. That is, (1) Considering the stationary state of speed v=O, the higher the passing speed, the more the vehicle vibration component is superimposed and the detected axle load W becomes larger.

(2)パルス幅は、第7図でT。以上のノ々ルス幅が得
られた時はひずみゲージ式ロードセル2が充分応答した
第3図に示すような通過形態をと考えて良く、To以下
のパルス幅の時は、第5図のような通過形態と考えられ
、この場合、ひずみゲージ式ロードセル2は不充分な応
答であるが、検出される軸重Wはその特待られるパルス
幅に比例する0 上記のことから、あらかじめ真の重量Wt がわかって
いる車両を用い種々の形態で走行させて通過形態に応じ
た実験的なデータ収集を行い、サンプリングすれば第7
図の様な補正曲線が得られる。
(2) Pulse width is T in Figure 7. When the Knoll width above is obtained, the strain gauge type load cell 2 can be considered to have a sufficient response as shown in Fig. 3, and when the pulse width is less than To, the passage form as shown in Fig. 5 can be considered. In this case, the strain gauge type load cell 2 has an insufficient response, but the detected axle load W is proportional to its special pulse width. If we collect experimental data according to the passing mode by driving in various configurations using vehicles with known
A correction curve as shown in the figure is obtained.

例えば、 単位 係数 単位係数は第7図においては重量係数dで真の軸重Wt
 に対する検出された軸重Wの比、即ち、W/Wtであ
る。
For example, in Figure 7, the unit coefficient is the weight coefficient d, which is the true axle load Wt.
The ratio of the detected axle load W to the detected axle load W, that is, W/Wt.

又、実用上重量検出器を30&/h以下で通過するのが
通常であるが、80Jea/hで通過させた場合、ある
いは重量検出器直前で急ブレーキをかけ意図的に車両を
ジャンプさせた場合は、得られるパルス幅が小さくなシ
、例えば第7図Tc 以下のパルス幅となる。
Also, in practice, it is normal to pass the weight detector at less than 30Jea/h, but if you pass at 80Jea/h, or if you brake suddenly just before the weight detector and intentionally cause the vehicle to jump. In this case, the obtained pulse width is small, for example, the pulse width is less than Tc in FIG.

この様な通過形態は実用1希であシ、このような時はア
ラーム信号等を出力し、人手にょシ、1を未満、3を未
満+ 8 を未満、12を未満。
This type of passage is rare in practical use, and in such cases, an alarm signal etc. is output and manual intervention is required.Less than 1, less than 3 + less than 8, less than 12.

12t 以上といった設定釦を目視にょシ押下げれば料
金収受上業務的に差しつかえない。
If the setting button of 12 tons or more is pushed down visually, there is no problem in terms of toll collection.

したがって、第7図に示す補正曲線が得られれば、近似
的に真の軸重をめることが可能である。
Therefore, if the correction curve shown in FIG. 7 is obtained, it is possible to approximate the true axle load.

第8図は本発明の重量測定装置全体の一実施例の構成を
示すブロック図で、11はホイートストンブリッジを組
んだ第1図に示した軸重検出器1と同様の軸重検出器、
12は軸重検出器11よシの信号を増幅する増幅器、1
3はこの増幅器12よシの信号をA/D 変換するA/
])変換器、14はこのA/l)変換器13よシのデー
タ信号を時系列に蓄積し、フーリエ級数に展開した最大
値を検出する最大値検出回路、15は前記増幅器12よ
りの信号よシパルス幅を検出するパルス幅検出回路で1
1.12,13゜J4,15で軸重検出装置を構成する
。16は車両の速度検出を行う速度計、17はこの速度
計16よシの信号を一定時間間@(例えば10m5等)
ごとにディジタル化して出力する速度検出回路でこれら
16.77で速度検出装置を構成する。18は車両検知
部、19は車両判別回路で、車両通過路を介してアイラ
ンド上に投受光器を対向して配設した車両検知用の車両
検知部18の投受光器によ多形成される光路の遮へいに
よシ、車両通過オン状態のパルス信号を出力する回路で
あシ、これら18.19で車両判別装置を構成する。2
0は実験的にめた第7図に示す補正曲線を記憶している
補正回路、2ノは最大値検出回路14の出力信号に対1
7、パルス幅検出回路15の出力信号と速度検出回路1
7よシの出力信号に対応して補正回路20よシ得られる
データを用い演算によシ補正して近似的真値の軸重をめ
るようにし、車両判別回路19がオン状態の間、各軸輪
に対し、各々軸重量め積算して車両の重量を出力するか
あるいは演算途中に演算不可能な状態(速度オーバ。
FIG. 8 is a block diagram showing the configuration of an embodiment of the entire weight measuring device of the present invention, and 11 is an axle load detector similar to the axle load detector 1 shown in FIG. 1, which has a Wheatstone bridge;
12 is an amplifier for amplifying the signal from the axle load detector 11;
3 is an A/D converter for A/D converting the signal from this amplifier 12.
]) converter, 14 is a maximum value detection circuit that accumulates data signals from this A/l) converter 13 in time series and detects the maximum value expanded into a Fourier series; 15 is a signal from the amplifier 12; 1 with a pulse width detection circuit that detects the pulse width.
1.12, 13° J4, 15 constitute an axle load detection device. 16 is a speedometer that detects the speed of the vehicle, and 17 is a signal from this speedometer 16 for a certain period of time (for example, 10m5, etc.)
These 16.77 constitute a speed detection device, which is a speed detection circuit that digitizes and outputs each time. Reference numeral 18 denotes a vehicle detection unit, and 19 a vehicle discrimination circuit, which is formed by the light emitter and receiver of the vehicle detection unit 18 for vehicle detection, which is arranged opposite to each other on an island through a vehicle passageway. These circuits 18 and 19 constitute a vehicle discrimination device, including a circuit for shielding the optical path and outputting a pulse signal indicating that a vehicle is passing through. 2
0 is a correction circuit that stores the experimentally determined correction curve shown in FIG.
7. Output signal of pulse width detection circuit 15 and speed detection circuit 1
Corresponding to the output signals of 7 and 7, data obtained by the correction circuit 20 is used to correct the axle weight by calculation to obtain an approximate true value of the axle weight, and while the vehicle discrimination circuit 19 is in the ON state, For each axle wheel, the axle weight is integrated and the weight of the vehicle is output, or there is a situation where the calculation is impossible (over speed).

パルス幅が極小)あるいは機器の故障等の場合アラーム
信号を出力する重量演算用の演算回路で、20.21で
重量演算装置を構成する。
This is an arithmetic circuit for weight calculation that outputs an alarm signal in case of an extremely small pulse width) or a failure of equipment, and 20.21 constitutes a weight calculation device.

次に上記構成の本装置の作用について説明する。本装置
は軸重検出器11.車両検知部18の投受光器、速度計
16は第1図、第2図と同じ配設形態としである。
Next, the operation of this device having the above configuration will be explained. This device has an axle load detector 11. The light emitter/receiver of the vehicle detection unit 18 and the speedometer 16 are arranged in the same manner as in FIGS. 1 and 2.

このような本装置においては、車両が進入して来て車両
の先端が車両検知部18の投受光器の形成する光路をし
ゃ断した時点でこのしゃ断によシ車両検知部18は車両
を検知し、車両判別回路19に検知出力を与える。
In this device, when a vehicle enters and the front end of the vehicle interrupts the optical path formed by the light emitter/receiver of the vehicle detection unit 18, the vehicle detection unit 18 detects the vehicle due to this interruption. , gives a detection output to the vehicle discrimination circuit 19.

これによシ車両判別回路19は前記車両検知部18が車
両検知している期間、すなわち、光路しゃ断が続く間、
車両通過中を示すパルス信号(例えばIt HIIレベ
ルの信号)を出力して演算回路21に与える〇 一方、車両検知部18の投受光器設置位置近傍には速度
計16が設けられており、この速度計16は該車両検知
部18の投受光器位置近傍での上記車両の速度を検出し
てその検出出力を速度検出回路17に送る。するとこの
速度検出回路17はこの検出出力よシ速度データをめ、
これを演算回路21に与える。
Therefore, the vehicle discrimination circuit 19 detects a vehicle while the vehicle detection section 18 is detecting a vehicle, that is, while the optical path continues to be interrupted.
A pulse signal (for example, an It HII level signal) indicating that the vehicle is passing is outputted and given to the arithmetic circuit 21. On the other hand, a speedometer 16 is provided near the light emitting/receiving device installation position of the vehicle detection unit 18. This speedometer 16 detects the speed of the vehicle near the position of the light projector/receiver of the vehicle detection section 18 and sends its detection output to the speed detection circuit 17 . Then, this speed detection circuit 17 receives this detection output and the speed data,
This is given to the arithmetic circuit 21.

また、車両のタイヤが軸重検出器11の載荷板を踏圧す
るとその踏圧電量に応じホイートストンブリッジを形成
した軸重検出器1ノのロードセルから出力が発生し、こ
の出力は増幅器12によシ増幅されてパルス幅検出回路
15及びA/D変換器13に送られる。
Furthermore, when the tires of the vehicle press the loading plate of the axle load detector 11, an output is generated from the load cell of the axle load detector 1 forming a Wheatstone bridge in accordance with the amount of the applied electric current, and this output is amplified by the amplifier 12. and sent to the pulse width detection circuit 15 and A/D converter 13.

これによシパルス幅検出回路15は車両が載荷板を踏圧
した際の形態に対応して軸重検出器1ノの出力する信号
のパルス幅を検出し、データとして演算回路21に送る
Accordingly, the pulse width detection circuit 15 detects the pulse width of the signal output from the axle load detector 1 in accordance with the form in which the vehicle presses the loading plate, and sends it to the arithmetic circuit 21 as data.

また、A/l)変換器13は軸重検出器1ノの検出軸重
に対応した信号をA/D 変換してディジタル化した後
、最大値検出回路14に与える。
Further, the A/l) converter 13 A/D converts a signal corresponding to the axle load detected by the axle load detector 1 to digitize it, and then supplies the signal to the maximum value detection circuit 14 .

す°ると最大値検出回路14はこのディジタル化された
データ信号を受けてこれを時系列に蓄積し、フーリエ級
数に展開して最大値を検出し、演算回路2ノに与える。
Then, the maximum value detection circuit 14 receives this digitized data signal, stores it in time series, expands it into a Fourier series, detects the maximum value, and supplies it to the arithmetic circuit 2.

ここで最大値を検出するのは軸重検出器11の載荷板上
を車軸が通過する際、タイヤの位置が載荷板の中央に来
るまでは正しい軸重を反映した出力とならず、低い値を
示すためで、従って最大値を検出することによシ正しい
軸重を反映した出力を得るようにする。すると演算回路
2ノは車両判別回路19がオン状態の間、前記パルス幅
検出回路15の検出パルス幅と速度検出回路17よ多出
力される所定時間刻み毎の車両速度データに基づき、第
7図の関係で予め補正データを記憶しである補正回路2
0の対応データを読み出し、この補正データで前記最大
値検出回路14の出力データを補正する。そして、この
補正後のデータを軸重量の検出データとしてail記通
過車両の通過完了までの間、蓄積する。すなわち、二軸
車であれば前軸と後軸の二軸分の上記検出データが軸重
検出器11の通過に対応してそれぞれ前後し且つ軸重に
独立して順次得られることから投受光器の光路しゃ断の
間に該順次得られた検出データを蓄積(積算)して上記
光路しゃ断が解消された時点でこの積算した検出データ
を上記通過車両のitデータとして出力する。
The maximum value is detected here because when the axle passes over the loading plate of the axle load detector 11, the output does not reflect the correct axle load until the position of the tire reaches the center of the loading plate, so it is a low value. Therefore, by detecting the maximum value, an output reflecting the correct axle load can be obtained. Then, while the vehicle discrimination circuit 19 is in the on state, the arithmetic circuit 2 calculates the speed of the vehicle based on the detected pulse width of the pulse width detection circuit 15 and the vehicle speed data outputted from the speed detection circuit 17 at every predetermined time interval, as shown in FIG. The correction circuit 2 stores correction data in advance due to the following relationship.
The data corresponding to 0 is read out, and the output data of the maximum value detection circuit 14 is corrected using this correction data. The corrected data is then stored as axle weight detection data until the ail passing vehicle completes passage. In other words, in the case of a two-axle vehicle, the above-mentioned detection data for the two axles of the front axle and the rear axle are obtained sequentially in response to the passing of the axle load detector 11, and independently of the axle load. The detection data sequentially obtained during the optical path interruption of the device is accumulated (integrated), and when the optical path interruption is resolved, the accumulated detection data is output as the IT data of the passing vehicle.

これによって車両の通行形態に影響されることなく正し
い車両重量の測定が行える。重量デ−タの出力が終ると
次の車両が車両検知部18の光路をしゃ断する時点まで
の間にシステムのリセットが行われる。
This allows accurate vehicle weight measurement without being affected by vehicle traffic patterns. After the output of the weight data is finished, the system is reset until the next vehicle interrupts the optical path of the vehicle detection section 18.

また、演算回路21は車両の速度オーバやパルス幅極小
などのために演算が不可能となった場合やシステムを構
成している機器の故障などの振動による軸重変動と通過
形態にょるIlηむ重変動を補正して料金収受に必要な
正しい重量値を確実に得ることができるようになシ、又
重量測定不可能な時あるいは機械故障時はアラームを出
し、手動設定をうながすことにょ多重量による料金収受
を可能とするものである。
In addition, the arithmetic circuit 21 is operated when calculation becomes impossible due to overspeed of the vehicle or extremely small pulse width, or due to axle load fluctuations due to vibrations such as failure of equipment composing the system and Ilη due to the passing pattern. It is possible to compensate for heavy weight fluctuations to ensure that the correct weight value required for toll collection is obtained, and to issue an alarm when weight measurement is impossible or when there is a mechanical failure, prompting manual setting. This enables toll collection by

尚、車両の前、後進は速度検出回路17が一定時間間隔
で前号出力していることにょシ、前進は車両の速度信号
が発生したのちにパルス幅検出回路15の信号が検出さ
れるが、後進の場合、速度信号とパルス幅信号が同時と
なることから、速度検出回路17とパルス幅検出回路1
5との信号出力タイミングで判1所出来る。又通過重量
の惚累計を711労する等の糾古1処Prも可能となる
ことも容易に推C11l出来る。
It should be noted that when the vehicle is moving forward or backward, the speed detection circuit 17 outputs the previous signal at fixed time intervals, and when the vehicle is moving forward, the signal from the pulse width detection circuit 15 is detected after the vehicle speed signal is generated. , in the case of reverse movement, the speed signal and the pulse width signal are simultaneous, so the speed detection circuit 17 and the pulse width detection circuit 1
One judgment can be made at the signal output timing with 5. It can also be easily surmised that it will be possible to make a total of 711 points of passing weight.

また、本発明は上証し、旧つ南面に示す実施例に限定す
ることなくその要旨を変更しない範囲内で適宜変形して
実施し得るものであり、例えば軸重検出器は用いる検出
素子としてロードセルのみに特定さ」するもので):i
ない。
Further, the present invention is not limited to the embodiments shown in the above-mentioned example, and can be implemented with appropriate modifications within the scope of the gist thereof. i.
do not have.

以上詳述したように本発明は車両通過路の所定位置を車
両が通過する間、車両検出出力を発生する車両判別手段
と、上記所定位置通過時の車両の速度を検出する速度検
出手段と、車両通過路の上記所定位置における路面に敷
設され、車輪の踏圧を受けてその重量に応じた信号を発
生する軸重検出手段と、この軸重検出手段の出力信号を
受け、そのパルス幅を検出するパルス幅検出手段と、上
記軸重検出手段の出力信号の最大値を検出する最大値検
出手段と、予めめた車両速度と1ii1重検lit手段
の出力信号のパルス幅に基づく車両重量の補正係数を保
持する手段と、上;C車両検出出力を受けている間j二
1いて上記速度検出手段の検出速度と検出パルス幅に対
応する補正係数を上記110正係数保持手段より得ると
共に1゛1り記最大値庖この補正係数で補正して・1(
(1重をめ、・:曲毎のi!11重値を積算して車両型
1予のデータを得る演算手段とより構成し、所定位置に
車両が到達するとこれを検出して該所定位置を通過完了
するまでの間、車両の検出出力を発生させ、また、この
位置を通過する際の車両の速度を検出し、まだ該位置の
路面上に設置した車軸重量検出用の手段によシ該通過車
両の車Il!i11重者の検出出力を得、この車軸重量
の検出出力のパルス幅と最大値を得ると共に予め得だ車
両の、速度と上記パルス幅に基づく補正係数のうち上記
検出速度とパルス幅に対応する補正係数を得て、これに
より前記最大値を補正し、上記車軸の重量データとし、
且つ前記通過完了までの間に順次得られる各I軸重の重
量データを積算して車両重量のデータを得るようにした
ので、車両の走行形態に応じて変化する軸重の検出値を
その走行形態に応じて補正することができ、この補正さ
れた値より正しい11両重量が得られるので、有料道路
等において車両重量別料金体系をとる場合の自動重量測
定が可能となり、従って、自動利金収受システム等の実
現が可能になる他、従来、走行117両の軸重測定を行
う場合、車両の振動分による重fit変動を重縫割のみ
で吸収しようとしていたため、重4.■(が大きくなる
かあるいは複数台必要とし、しかも不正確であったのを
小形で正確、旧つ重量計は一台で済むようになり、また
軸筋に検出出力が得られるので軸数情報(2軸車、3軸
If 、 4軸車等)も得ることができ軸数をも含めた
料金体系に対処することができる等の特徴を有する車両
重量測定装置を提供することができる。
As described in detail above, the present invention includes a vehicle discriminating means that generates a vehicle detection output while the vehicle passes a predetermined position on a vehicle passageway, a speed detecting means that detects the speed of the vehicle when passing the predetermined position, Axle load detection means is installed on the road surface at the above-mentioned predetermined position of the vehicle passageway, and generates a signal according to the weight of the wheel in response to the pedal pressure of the wheel.The axle load detection means receives the output signal of the axle load detection means and detects its pulse width. a maximum value detection means for detecting the maximum value of the output signal of the axle load detection means, and a vehicle weight correction based on a predetermined vehicle speed and the pulse width of the output signal of the 1ii1 double inspection lit means. a means for holding a coefficient; Corrected with this correction coefficient, 1 (
(1st layer, ・: Consists of a calculation means that obtains data for vehicle type 1 by integrating the i!11 weighted values for each song, and detects when the vehicle reaches a predetermined position and The vehicle generates a detection output until it completes passing through this position, and also detects the speed of the vehicle when passing this position, and still detects the axle weight detection means installed on the road surface at that position. Obtain the detection output of the heavy vehicle of the passing vehicle, obtain the pulse width and maximum value of the detection output of the axle weight, and calculate the above-mentioned detection among the correction coefficients based on the speed and the pulse width of the vehicle obtained in advance. Obtaining a correction coefficient corresponding to the speed and pulse width, and correcting the maximum value using the correction coefficient as the weight data of the axle;
In addition, since the vehicle weight data is obtained by integrating the weight data of each I axle load sequentially obtained until the completion of the passage, the detected value of the axle load, which changes depending on the driving mode of the vehicle, is It can be corrected according to the vehicle type, and the correct weight of 11 cars can be obtained from this corrected value, so automatic weight measurement is possible when toll roads have a toll system based on vehicle weight. In addition to making it possible to implement a collection system, etc., conventionally, when measuring the axle load of 117 running vehicles, it was attempted to absorb weight fit fluctuations due to vehicle vibration only by heavy stitching, so the weight 4. ■(It used to be large or require multiple units and was inaccurate, but it is small and accurate. The old weighing scale only needs one unit, and since the detection output can be obtained from the shaft bar, information on the number of shafts can be obtained.) It is possible to provide a vehicle weight measuring device having characteristics such as being able to obtain vehicle weights (two-axle vehicles, three-axle If, four-axle vehicles, etc.) and being able to deal with a fee system that also includes the number of axles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は車両重量測定装置のシステムレイアウトを示す
図、第2図は第1図の平面図、第3図は通常走行時の2
軸車両が軸重検出器を通過した時の軸重波形、第4図は
通常走行時の軸重検出器上を通過する場合の最大値検出
タイヤ位置とタイヤ接地面と軸重検出器の長さとの関係
を示す断面図、第5回は特殊走行時の2軸車両7図は本
発明に用いろ補正曲線の説明図、第8図は、本発明の重
量測定装置の一実施例のブロック図である。 1・・・埋設用外枠、2・・・ひずみゲージ式ロードセ
ル、3・・・載荷板、4・・・投光器、5・・・受光器
、6・・・速度計、7・・・走行車両、8・・・走行車
両の前輪、9・・・走行車両の後輪、10・・・走行車
両のタイヤ、1ノ・・・S+重検出器、12・・・増幅
器、13・・・A/D 変換器、14・・・最大値検出
回路、15・・・パルス幅検出回路、16・・・速度計
、17・・・速度検出回路、18・・・車両検知器、1
9°°°車両判別回路、20・・・補正回路、21・・
・演算回路。 出願人復代理人 弁理士 鈴 江 武 彦第1図 第2図 鞠醸
Figure 1 is a diagram showing the system layout of the vehicle weight measuring device, Figure 2 is a plan view of Figure 1, and Figure 3 is a diagram showing the system layout of the vehicle weight measuring device.
Axle load waveform when the axle vehicle passes the axle load detector, Figure 4 shows the maximum value detection tire position, tire contact surface, and length of the axle load detector when the vehicle passes over the axle load detector during normal driving. Part 5 is a two-axle vehicle during special running. Figure 7 is an explanatory diagram of the correction curve used in the present invention. Figure 8 is a block diagram of an embodiment of the weight measuring device of the present invention. It is a diagram. 1... Outer frame for burial, 2... Strain gauge type load cell, 3... Loading plate, 4... Emitter, 5... Light receiver, 6... Speed meter, 7... Traveling Vehicle, 8... Front wheels of the running vehicle, 9... Rear wheels of the running vehicle, 10... Tires of the running vehicle, 1... S+ heavy detector, 12... Amplifier, 13... A/D converter, 14... Maximum value detection circuit, 15... Pulse width detection circuit, 16... Speed meter, 17... Speed detection circuit, 18... Vehicle detector, 1
9°°° Vehicle discrimination circuit, 20... Correction circuit, 21...
・Arithmetic circuit. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2 Marijo

Claims (1)

【特許請求の範囲】[Claims] 車両通過路の所定位置を車両が通過する間、車両検出出
力を発生する車両判別手段と、上記所定位置通過時の車
両の速度を検出する速度検出手段と、車両通過路の上記
所定位置における路面に敷設され、車輪の踏圧を受けて
その重量に応じた信号を発生する軸重検出手段と、この
軸重検出手段の出力信号を受け、そのパルス幅を検出す
るパルス幅検出手段と、上記軸重検出手段の出力信号の
最大値を検出する最大値検出手段と、予めめた車両速度
と軸重検出手段の出力信号のパルス幅:二基づく車両重
量の補正係数を保持する手段と、上記車両検出出力を受
けている間において上記速度検出手段の検出速度と検出
パルス幅に対応する補正係数を上記補正係数保持手段よ
シ得ると共に前記最大値をこの補正係数で補正して軸重
をめ、軸重の軸重値を積算して車両重量のデータを得る
演算手段とを備えて成る車両重量゛測定装置。
A vehicle determining means that generates a vehicle detection output while the vehicle passes a predetermined position on the vehicle passageway, a speed detection means that detects the speed of the vehicle when passing the predetermined position, and a road surface at the predetermined position on the vehicle passageway. an axle load detection means installed on the shaft and generating a signal according to the weight of the wheel in response to the pedal pressure of the wheel; a pulse width detection means receiving the output signal of the axle load detection means and detecting the pulse width thereof; maximum value detection means for detecting the maximum value of the output signal of the weight detection means; means for holding a vehicle weight correction coefficient based on a predetermined vehicle speed and a pulse width of the output signal of the axle load detection means; While receiving the detection output, the correction coefficient holding means obtains a correction coefficient corresponding to the detected speed and the detected pulse width of the speed detection means, and corrects the maximum value using the correction coefficient to correct the axle load; A vehicle weight measurement device comprising calculation means for obtaining vehicle weight data by integrating axle load values.
JP21682483A 1983-11-17 1983-11-17 Vehicle-weight measuring apparatus Pending JPS60108717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21682483A JPS60108717A (en) 1983-11-17 1983-11-17 Vehicle-weight measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21682483A JPS60108717A (en) 1983-11-17 1983-11-17 Vehicle-weight measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60108717A true JPS60108717A (en) 1985-06-14

Family

ID=16694464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21682483A Pending JPS60108717A (en) 1983-11-17 1983-11-17 Vehicle-weight measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60108717A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315915A (en) * 1987-06-18 1988-12-23 Yamato Scale Co Ltd Axle weight measuring instrument
JP2003028700A (en) * 2001-07-16 2003-01-29 Hisashi Ando Apparatus for measuring axle load of traveling motor vehicle
KR20030084402A (en) * 2002-04-26 2003-11-01 주식회사 서광 Automatic zero point compensator for a axial-load gauging machine
KR100977977B1 (en) * 2008-05-02 2010-08-24 김홍균 Method for detecting overload and unlawful measurement of vehicle
JP2010216918A (en) * 2009-03-16 2010-09-30 Yamato Scale Co Ltd Weight measurement system of wheel or axle
EP3499198A1 (en) * 2017-12-15 2019-06-19 Kistler Holding AG Wim sensor with acceleration sensors and method for deflexion and presence measuring by means of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315915A (en) * 1987-06-18 1988-12-23 Yamato Scale Co Ltd Axle weight measuring instrument
JP2003028700A (en) * 2001-07-16 2003-01-29 Hisashi Ando Apparatus for measuring axle load of traveling motor vehicle
JP4742380B2 (en) * 2001-07-16 2011-08-10 久 安藤 Axle load measuring device for traveling vehicle
KR20030084402A (en) * 2002-04-26 2003-11-01 주식회사 서광 Automatic zero point compensator for a axial-load gauging machine
KR100977977B1 (en) * 2008-05-02 2010-08-24 김홍균 Method for detecting overload and unlawful measurement of vehicle
JP2010216918A (en) * 2009-03-16 2010-09-30 Yamato Scale Co Ltd Weight measurement system of wheel or axle
EP3499198A1 (en) * 2017-12-15 2019-06-19 Kistler Holding AG Wim sensor with acceleration sensors and method for deflexion and presence measuring by means of the same
US10809120B2 (en) 2017-12-15 2020-10-20 Kistler Holding, Ag WIM sensor comprising acceleration sensors and method for deflection and presence measurement using the same

Similar Documents

Publication Publication Date Title
US5998741A (en) System and methods for accurately weighing and characterizing moving vehicles
US4560016A (en) Method and apparatus for measuring the weight of a vehicle while the vehicle is in motion
EP2351680A1 (en) System and process for monitoring railway tracks
JP6912113B2 (en) Weighing machine and its method
TW201102625A (en) Weight measuring device for traveling vehicle and method of amending the sensibility of the same
EP1213561B1 (en) Bicycle inclinometer using accelerometer and wheel revolution sensor to compute instantaneous road gradient, uphill power, altitude and frequency of pedalling
US4813004A (en) Method for measuring the maximum gross weight of a motor vehicle
CN113624311A (en) Multi-parameter dynamic vehicle weighing optical fiber sensing system
JP3721874B2 (en) Axle load measuring device
JPS60108717A (en) Vehicle-weight measuring apparatus
JP2003270029A (en) Vehicle-weight measuring method, axle load measuring system and overloaded vehicle warning system
JP3015653B2 (en) Footboard of vehicle type identification device
US4667757A (en) System for determining axle spacing
EP1702313B1 (en) Vehicle speed determination system and method
NL9100591A (en) Pressure sensitive mat counting feet to monitor passenger traffic - is placed in entry or exit path of vehicle, building etc. to detect and count persons passing through
KR100815203B1 (en) Weight scale for the cargo vehicle and installation method thereof
JP2001133314A (en) Vehicle weight measuring device and vehicle weight measuring method
CN207636163U (en) A kind of axis load detection device
JP2010223755A (en) Device and method for measuring axle load
JPH10185665A (en) Axle load measuring device
CN117109712B (en) Automobile scale split balance and use method thereof
CN2463258Y (en) Overload and bias load detecting device for railway vehicle
JPS5828533B2 (en) Axle load measuring device for running vehicles
JP2710785B2 (en) Method and apparatus for measuring stationary weight of running vehicle
US5020236A (en) Method of measuring the distance between the axles or wheels of a vehicle, and device for doing so