JPS597200B2 - charged particle accelerator - Google Patents

charged particle accelerator

Info

Publication number
JPS597200B2
JPS597200B2 JP14735479A JP14735479A JPS597200B2 JP S597200 B2 JPS597200 B2 JP S597200B2 JP 14735479 A JP14735479 A JP 14735479A JP 14735479 A JP14735479 A JP 14735479A JP S597200 B2 JPS597200 B2 JP S597200B2
Authority
JP
Japan
Prior art keywords
accelerating
voltage
stage
constant voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14735479A
Other languages
Japanese (ja)
Other versions
JPS5671300A (en
Inventor
健一 水沢
太一 木村
周一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSHIN HAIBORUTEEJI KK
Original Assignee
NITSUSHIN HAIBORUTEEJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSHIN HAIBORUTEEJI KK filed Critical NITSUSHIN HAIBORUTEEJI KK
Priority to JP14735479A priority Critical patent/JPS597200B2/en
Publication of JPS5671300A publication Critical patent/JPS5671300A/en
Publication of JPS597200B2 publication Critical patent/JPS597200B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 この発明は、荷電粒子加速装置に関する。[Detailed description of the invention] The present invention relates to a charged particle accelerator.

周知のように、この種加速装置においては、荷電粒子の
加速エネルギーを変化させることが要求されることがあ
り、そのためには加速のために印加される高電圧を変更
するようにしている。
As is well known, in this type of accelerator, it is sometimes required to change the acceleration energy of charged particles, and to do this, the high voltage applied for acceleration is changed.

しかし、単純に高電圧を変更した場合、加速エネルギー
と同時にフィラメントから放射される粒子の量が変化す
るとともに、焦点距離も変化して粒子軌道が変更してし
まう。
However, if the high voltage is simply changed, the amount of particles emitted from the filament changes at the same time as the acceleration energy, and the focal length also changes, changing the particle trajectory.

そのため、従来においては定電圧装置を高電位部に配設
し、これによって得られる定電圧を加速管の加速電極な
どに付与し、これを饋電するようにしていたが、次のよ
うな問題点がある。
For this reason, in the past, a constant voltage device was installed in the high potential part, and the constant voltage obtained by this device was applied to the accelerating electrode of the accelerating tube, etc., to feed the accelerating electrode, but this caused the following problems. There is a point.

すなわち、■ 定電圧装置およびその電源を必要とする
こと。
In other words, ■ Requires a constant voltage device and its power source.

@ 定電圧装置等が高電位部に設けられるところから加
速電極等への饋電が困難であること。
@ It is difficult to feed electricity from a constant voltage device, etc. installed in a high potential area to an accelerating electrode, etc.

である。It is.

これに対し、第1図に示すように、定電圧素子1を加速
管2の初段から数段までの加速電極3間に設け、加速管
2を適宜定電圧化することが考えられている。
On the other hand, as shown in FIG. 1, it has been considered to provide a constant voltage element 1 between the accelerating electrodes 3 of the first stage to several stages of the accelerating tube 2 to appropriately adjust the voltage of the accelerating tube 2 to a constant voltage.

なお、図において、4は電源、5はフィラメントトラン
ス、6はフィラメントである。
In the figure, 4 is a power source, 5 is a filament transformer, and 6 is a filament.

而して、これによれば上述の■■の問題点は一応解決さ
れるが、定電圧素子1の定電圧領域より印加電圧が低下
すると、加速電極3に饋電するための抵抗に流れる所謂
ブリーダー電流が流れなくなり、各電極の電位が不安定
になる。
According to this, the above-mentioned problem (■) is solved to a certain extent, but when the applied voltage decreases from the constant voltage region of the constant voltage element 1, the so-called so-called current flows through the resistance for feeding the accelerating electrode 3. The bleeder current stops flowing and the potential of each electrode becomes unstable.

さらに、電圧コンディショニングを目的として加速管2
に過電圧を印加しても定電圧化された部分には過電圧が
印加されないので、コンディショニングを完全に行なう
ことができないなどという欠点がある。
Additionally, an acceleration tube 2 is installed for voltage conditioning purposes.
Even if an overvoltage is applied to the voltage, the overvoltage is not applied to the constant voltage portion, so there is a drawback that conditioning cannot be performed completely.

この発明は上述の問題点、欠点等を一挙に解決しようと
するもので、加速管を構成する加速電極のうち、初段の
加速電極から荷電粒子の焦点距離を決定する領域内にあ
る加速電極の各段間に、定電圧素子と抵抗素子とを直列
接続したものて抵抗素子とを並列接続してなる複合素子
を設けたことを特徴とする。
This invention attempts to solve the above-mentioned problems and drawbacks all at once. Among the accelerating electrodes constituting the accelerating tube, the accelerating electrodes located within the region that determines the focal length of charged particles from the first stage accelerating electrode. The present invention is characterized in that a composite element formed by connecting a constant voltage element and a resistance element in series and a resistance element in parallel is provided between each stage.

以下、この発明の実施例を第2図、第3図によって説明
すると、11a〜llfは加速管10を構成する複数の
加速電極で、円盤状に形成され、その中央に孔12が設
けられてあり、後述するように荷電粒子はこの孔12を
通って下方に向けて加速される。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 2 and 3. Reference numerals 11a to llf are a plurality of accelerating electrodes constituting the accelerating tube 10, which are formed in a disk shape, with a hole 12 provided in the center. As will be described later, charged particles are accelerated downward through this hole 12.

各加速竃極11a〜11fは絶縁性のリング13を介し
て積み上げられてある。
Each of the acceleration rods 11a to 11f is stacked with an insulating ring 13 interposed therebetween.

14はフィラメント、15は焦点カップ、16は焦点カ
ップを支持する電極、17は加速電圧である直流高電圧
が印加される電源端子、18は加速管10を構成する加
速電極11a〜11fのうち初段の加速電極から荷電粒
子の焦点距離を決定する領域内にある加速電極の各段間
に設けられた複合素子で、その具体的構成は第3図に示
す通りである。
14 is a filament, 15 is a focusing cup, 16 is an electrode that supports the focusing cup, 17 is a power supply terminal to which a DC high voltage that is an accelerating voltage is applied, and 18 is the first stage of accelerating electrodes 11a to 11f that constitute the accelerating tube 10. A composite element is provided between each stage of accelerating electrodes in a region that determines the focal length of charged particles from the accelerating electrode, and its specific configuration is as shown in FIG.

すなわち、この複合素子18は定竃圧素子ZDと抵抗素
子R8を直列接続したものと抵抗素子RPとを並列接続
して構成される。
That is, this composite element 18 is constructed by connecting a constant pressure element ZD and a resistive element R8 in series, and a resistive element RP connected in parallel.

19は前記複合素子18と直列に接続され、かつ加速管
10を構成する前記以外の加速電極の各段間にそれぞれ
並列接続される分圧抵抗である。
Reference numeral 19 denotes a voltage dividing resistor connected in series with the composite element 18 and connected in parallel between each stage of the accelerating electrodes other than those mentioned above constituting the accelerating tube 10.

これら複数の複合素子18と分圧抵抗19とからなる直
列接続回路の上端は前記電源端子17に、また、下端は
アースに接続されてある。
The upper end of a series-connected circuit consisting of a plurality of composite elements 18 and the voltage dividing resistor 19 is connected to the power supply terminal 17, and the lower end is connected to ground.

そして、前記複合素子18の定格運転時における電気的
数値は第3図の通りである。
The electrical values of the composite element 18 during rated operation are as shown in FIG.

すなわち、股間に印加される電圧をE1流れるtFiI
を1とするとき、定電圧素子zDと直列接続された抵抗
素子R8の分担電圧が0.03E〜0.3E,他の抵抗
素子R,に分流される電流が0.03I〜0,3■であ
る。
In other words, tFiI flows through E1 through the voltage applied to the crotch.
When is 1, the voltage shared by the resistance element R8 connected in series with the constant voltage element zD is 0.03E to 0.3E, and the current shunted to the other resistance element R is 0.03I to 0.3■ It is.

以上の構成において、フィラメント14から、初段の加
速電極11aVcよって引き出された荷電粒子は各加速
電極の電位によって加速されて下方に向かう。
In the above configuration, the charged particles extracted from the filament 14 by the first-stage accelerating electrode 11aVc are accelerated by the potential of each accelerating electrode and move downward.

而して、図示する構成において、加速エネルギーの変更
のために電源端子17K印加される直流高電圧を変更し
たとき、初段の加速電圧11aに対する最終段の加速電
極11fの電位は変更されるにしても、初段から第3段
までの加速電極11a〜11cまでの各加速電極の電位
は複合素子18を構成する定電圧素子ZDの存在によっ
て何ら変更されない。
Therefore, in the illustrated configuration, when the DC high voltage applied to the power supply terminal 17K is changed to change the acceleration energy, the potential of the final stage accelerating electrode 11f with respect to the first stage accelerating voltage 11a is changed. Also, the potential of each accelerating electrode from the first stage to the third stage accelerating electrodes 11a to 11c is not changed at all by the presence of the constant voltage element ZD constituting the composite element 18.

そしてこれら加速雷極11a〜llcにおける段間電圧
Eが小さくなっても、定電圧素子zD と並列関係にあ
る抵抗素子Rpが−あるため、ブリーダーHitが零と
なることはない。
Even if the interstage voltage E in these accelerating lightning poles 11a to 11c becomes small, the bleeder Hit will not become zero because there is a resistive element Rp in parallel with the constant voltage element zD.

従って、各加速電極には何らかの電位が饋電されること
となり、ブリーダー電流がなくなることによる電位の不
安定さが解消される。
Therefore, each accelerating electrode is fed with some potential, and potential instability caused by the absence of bleeder current is eliminated.

また、電流Iを増やすと、定電圧素子ZDと直列関係に
ある抵抗素子R8があるため、段間雷圧Eが犬となり、
従って加速電極に印加される電圧が増大し、過電圧を生
ずる。
Furthermore, when the current I is increased, the interstage lightning pressure E becomes a dog because there is a resistive element R8 in series with the constant voltage element ZD.
Therefore, the voltage applied to the accelerating electrode increases, creating an overvoltage.

この過電圧によってコンディショニングが可能となる。This overvoltage allows conditioning.

ここで、複合素子18が設げられる電圧領域は上述した
ように焦点距離を決定する加速電極を含む領域とすれば
よく、具体的には最大加速電圧の1/5〜1/′2の電
圧領域とするのがよい。
Here, the voltage region in which the composite element 18 is provided may be a region including the accelerating electrode that determines the focal length as described above, and specifically, a voltage range of 1/5 to 1/'2 of the maximum accelerating voltage. It is better to make it an area.

以上詳述したように、この発明によれば、初段から複数
段に亘る加速電極の電圧は、加速エネルギーの変更のた
めに直流高電圧を変更させても、股間電圧は一定値を維
持することができるので、フィラメントから放射される
粒子の量は変化しないし、またこの間における光学系は
何ら変化することがない。
As detailed above, according to the present invention, even if the voltage of the accelerating electrodes from the first stage to multiple stages is changed to change the DC high voltage to change the acceleration energy, the crotch voltage can be maintained at a constant value. Therefore, the amount of particles emitted from the filament does not change, and the optical system does not change at all during this time.

さらに、複合素子を設けているから、加速電極は何らか
の電位が饋電されるようになり、その電位が不安定にな
ることがなくなるとともに、過電圧によるコンディショ
ニングを行なうことが可能となる。
Furthermore, since the composite element is provided, the accelerating electrode is supplied with a certain potential, which prevents the potential from becoming unstable and makes it possible to perform conditioning by overvoltage.

特に当該加速装置などの高電圧機器ではこの様なコンデ
ィショニングが出来ることが当該機器を安全且つ安定に
運転する上で重要である。
Particularly in high-voltage equipment such as the accelerator, it is important to be able to perform such conditioning in order to operate the equipment safely and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の荷電粒子加速装置を示す構成図、第2図
はこの発明の1実施例を示す概略図、第3図は複合素子
の構成図である。 10・・・・・助漣管、11a〜llf・・・・・・加
速電極、18・・・・・・複合素子、zD・・・・・・
定電圧素子、R8・・・・・・抵抗素子、恥・・・・・
・抵抗素子。
FIG. 1 is a block diagram showing a conventional charged particle accelerator, FIG. 2 is a schematic diagram showing one embodiment of the present invention, and FIG. 3 is a block diagram of a composite element. 10...Sukeren tube, 11a-llf...Acceleration electrode, 18...Composite element, zD...
Constant voltage element, R8... Resistance element, shame...
・Resistance element.

Claims (1)

【特許請求の範囲】[Claims] 1 加速管を構成する複数の加速電極のうち、初段の加
速電極から荷電粒子の焦点距離を決定する領域内にある
加速電極の各段間に、定電圧素子と抵抗素子とを直列接
続したものと抵抗素子とを並列接続してなる複合素子を
設けたことを特徴とする荷電粒子加速装置。
1 Among the multiple accelerating electrodes that make up the accelerating tube, a constant voltage element and a resistance element are connected in series between each stage of the accelerating electrodes in the area that determines the focal length of charged particles from the first accelerating electrode. A charged particle accelerator comprising a composite element formed by connecting a resistive element and a resistive element in parallel.
JP14735479A 1979-11-13 1979-11-13 charged particle accelerator Expired JPS597200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14735479A JPS597200B2 (en) 1979-11-13 1979-11-13 charged particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14735479A JPS597200B2 (en) 1979-11-13 1979-11-13 charged particle accelerator

Publications (2)

Publication Number Publication Date
JPS5671300A JPS5671300A (en) 1981-06-13
JPS597200B2 true JPS597200B2 (en) 1984-02-16

Family

ID=15428286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14735479A Expired JPS597200B2 (en) 1979-11-13 1979-11-13 charged particle accelerator

Country Status (1)

Country Link
JP (1) JPS597200B2 (en)

Also Published As

Publication number Publication date
JPS5671300A (en) 1981-06-13

Similar Documents

Publication Publication Date Title
DE834263C (en) Electrical discharge system and its application to spray painting
DE2342456A1 (en) INVERTER TO OPERATE A LOW WATCH FLUORINE LAMP FROM A DC SOURCE
DE1208420B (en) Device for generating a beam of ions or electrons in which at least two similar ion or electron sources are arranged one behind the other
EP0402641A2 (en) Electric heating for a vehicle
GB1366185A (en) Electron beam units
JPH0442908B2 (en)
JPS597200B2 (en) charged particle accelerator
CN103177921A (en) Electron beam control system and method for electronic gun
US3614422A (en) Surge reduction resistors between a high-voltage source and an electron microscope electron gun
DE2237334A1 (en) GAS DISCHARGE TUBE
US3197634A (en) Delayed warm-up filament power supply for mass spectrometer with emission current regulation
DE19963308A1 (en) Charged particle generator
JP2019139964A (en) Electron microscope and control method of electron microscope
JPS61148757A (en) Charged particle ray device
JPS60189851A (en) Electrostatic lens
DE695841C (en) nale
US3912930A (en) Electron beam focusing system
JP3475563B2 (en) Ion beam accelerator
US2068539A (en) Discharge tube
JPH0455440Y2 (en)
US2050383A (en) Electric discharge device
JPS586142Y2 (en) Wehnelt power supply for electron guns
JPH03133040A (en) High voltage electron gun apparatus
JPH0728716Y2 (en) Charged particle accelerator
DE2544548A1 (en) Battery charger control circuit - interrupts power supply when fully charged regardless of battery condition