JPH03133040A - High voltage electron gun apparatus - Google Patents

High voltage electron gun apparatus

Info

Publication number
JPH03133040A
JPH03133040A JP1268934A JP26893489A JPH03133040A JP H03133040 A JPH03133040 A JP H03133040A JP 1268934 A JP1268934 A JP 1268934A JP 26893489 A JP26893489 A JP 26893489A JP H03133040 A JPH03133040 A JP H03133040A
Authority
JP
Japan
Prior art keywords
electron gun
voltage
high voltage
electron
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1268934A
Other languages
Japanese (ja)
Inventor
Masahide Okumura
正秀 奥村
Shinichi Kato
慎一 加藤
Hisao Nitta
久雄 新田
Yoshihisa Namikawa
南川 佳久
Toshiyuki Morimura
利幸 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1268934A priority Critical patent/JPH03133040A/en
Publication of JPH03133040A publication Critical patent/JPH03133040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make high voltage conditioning efficiently by inserting an electric current limiting resistor into an end part of an electron gun side in series, making an electric power source and an electrode having a structure to be short-circuited, and applying voltage over a standard voltage for a prescribed period through a high voltage cable. CONSTITUTION:A resistor 9 with resistance as high as 1 GOMEGA is inserted between an output wire and a leading in rod 10, 13 of a high voltage cable 1 and each lead wire in each of both ends of it is short-circuited and a gap 3 between an insulator 4 and an end part 2 is filled with an inert gas so that electric discharge due to over voltage is prevented in outer air. Consequently, when high voltage conditioning is carried out and since electric current generated in the inside of an electron gun 20 and running at the time of discharge is determined based on purely resistor components, the current is limited to be constant. As a result, electric power source 12 existing in the inside of an electron gun 20 and an electrode 11 are prevented from being damaged. Safe and efficient high voltage conditioning is thus carried out and withstand voltage of the electron gun is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、電子線描画装置および、類似装置において用
いられる電子銃装置に関し、特に耐電圧を向上させた電
子銃装置に関する。
[Industrial Field of Application] The present invention relates to an electron gun device used in an electron beam lithography device and similar devices, and particularly relates to an electron gun device with improved withstand voltage.

【従来の技術】[Conventional technology]

電子銃の耐圧を向上させる一つの方法として、定格電圧
よりも高い電圧を印加することにより、放電のもとを断
つ、いわゆる高電圧コンディショニング法が良く知られ
ている。これは、真空中の残留ガスを放電によってイオ
ン化し、そのイオン衝撃により、電極や碍子表面上の吸
着ガス分子を除去する作用、あるいは、強電界の静電力
による放電因子の離脱作用、更には、電極突起部のジュ
ール熱による溶融作用1等によるものと考えられる。 高電圧コンディショニングの従来構成の一例を第2図に
示している。定格出力の直流電源24、交流電源23.
高抵抗9.高耐圧ケーブル21゜電子銃20.とが直列
ループを構成している。 第3図に示すように、このような従来構成の等価回路は
高圧ケーブルの静電容量が電子銃20に対して並列に入
るようになる。従って、電子銃内部で放電が生じると、
その放電電流は、第4図に示すごとく極めて大きな電流
が瞬時に流れるため、電極表面に傷をつけてしまい、耐
圧が低くなってしまう場合もあった〔高真空における高
電圧電子銃での微小放電:真空 第30巻 第3号(1
987)第105〜115頁参照〕 【発明が解決しようとする課題] 本発明は、耐圧向上を目的としたコンディショニングの
ために、電子銃内部で積極的に放電をさせたときに問題
となる電極表面の損傷や、電子源の破損を防止し、効果
的な高電圧コンディショニングを可能とする電子銃装置
を提供することを目的としてなされたものである。 【課題を解決するための手段1 本発明においては、電子銃側の高電圧ケーブルの終端部
に、端子部において、電子源と電極とが電気的にショー
トされる構造とした電流制限抵抗を直列に設けたもので
ある。すなわち、従来例(第3図)との対比において、
第5図に示しているように、高抵抗9を電子銃20の側
に置く。 【作用1 本発明の構成により、高圧コンディショニングの実施に
よって、電子銃20の内部で生じた、放電時に流れる電
流の大きさは、純粋な抵抗成分によって決定されるため
、第4図に示すごとく、定の大きさに制限される。この
結果、電子銃20の内部にある電子源の破損や、電極の
損傷を防止することが可能になる。以下、実施例で、詳
細に説明する。 [実施例1 第1図は本発明の一実施例を示す電子銃装置の概酩構成
図である。 まず初めに、電子銃の構成と、電子銃として通常使用す
る場合の電極等の電圧配分について説明する。図中12
は、シールド電極8と同電位の保持金具14で保持され
る電界放射電子源であり、シールド電極8は絶縁碍子4
により保持されている。11は、該電子源の電圧よりも
数kV低い電圧をかけ、12の電子源先端から電子線を
放射させるための陽極であり、絶縁碍子7で保持されて
いる。各々の電圧の具体的数値の一例としては、シール
ド電極8、保持金具14、電界放射電子源12の電圧は
一50kV。陽極11の電圧は一46kVである。それ
ぞれの電圧は、導入棒10と13とを経由し、高圧ケー
ブル1に接続される。 図示は省略しであるが、高圧ケーブルの他端には一50
kVと一46kVの電源が接続されることになる。 ここで、斜線で示す端末部2が本発明の構成部である。 すなわち、高圧ケーブル1の出力線と導入棒(10と1
3)との間にIGΩの高抵抗を直列に入れかつ、その両
端において、各々のリード線を、図示のごとくショート
しである。また、過高圧による大気側での放電を防止す
るため、碍子4と端末部2との隙間3に不活性ガスSF
、を充填する構造としである。 さて、このような構成にて、高圧コンディショニングは
、高圧ケーブルの他端に−60〜−75kVの電圧を連
続的に印加することによって行われる。この場合、−5
0kVの直流電源に、10〜15kVの交流電源を重畳
させても良いし、75kVまで出力可能な直流電源で行
っても良い。 放電の有無は真空室5の真空度変化あるいは、高圧電源
の出力電流変化をモニターすることにより行われる。 第1図において、高圧コンディショニングの放電により
、電極11がアース電位に下がろうと変化している場合
を仮定する。この時の電極11の電圧をEボルトとする
と、電極11に電気的に接している1電捧10.13お
よび、電極8の電圧は、Eボルトに追随する。したがっ
て、電極8と同電位にある電子源12は瞬時にEボルト
になる。 この結果、電子源12には異常な電界がかからないため
、二次的な電子源12と電極11との間の放電による破
損を防止できる。 高抵抗9は、導電棒10と13との接続点から高圧電源
をみたインピーダンスを高くしているため、放電に伴う
高圧電源のダメージを防止すると共に、電極11から見
た導電棒10.13の負荷が軽くなることにより、’R
極11の電圧変化に対し、電子源12の電位がより速や
かに追随できるようにする作用がある。また、高抵抗9
によって放電電流が制限(第4図参照)されるため、電
極11あるいは、電極8の表面に傷がつくことが防止さ
れる。 第1図において、端子部2と碍子4との空間3に不活性
ガス(例えばS F、)を充填したごとにより、大気に
晒されている場合と比べ、耐圧は数倍向上し、外気の影
響も受けない効果が生じる。 また、一般的に、コンディショニングを必要とするよう
な真空室内の耐圧よりも不活性ガス雰囲気中の耐圧の方
が高い。したがって、効果的な高圧コンディショニング
が可能になる。 高圧コンディショニングの明確な終了判定基準はないが
、本実施例においては、高圧印加1〜2時間後で放電頻
度激減が見られたため、タイマーで終了するようにして
いる(図示省略)。あるいは、タイマーとカウンタを併
用して放電回数をカウンタで計数し、終了判定をしても
良い。 [発明の効果1 以上詳述した如く1本発明は、安全かつ効果的な高圧コ
ンディショニングを可能とするもので、本発明を使用す
ることにより、電子銃の耐圧向上が図れる。
A well-known method for improving the withstand voltage of an electron gun is the so-called high-voltage conditioning method, in which the source of discharge is cut off by applying a voltage higher than the rated voltage. This is because residual gas in a vacuum is ionized by discharge, and the ion bombardment removes adsorbed gas molecules on the electrode or insulator surface, or discharge factors are separated by the electrostatic force of a strong electric field. This is thought to be due to the melting action 1 due to Joule heat of the electrode protrusion. An example of a conventional configuration for high voltage conditioning is shown in FIG. DC power supply 24 with rated output, AC power supply 23.
High resistance9. High voltage cable 21° electron gun 20. constitute a series loop. As shown in FIG. 3, in the equivalent circuit of the conventional structure, the capacitance of the high voltage cable is connected in parallel to the electron gun 20. Therefore, when a discharge occurs inside the electron gun,
As shown in Figure 4, the discharge current is extremely large and flows instantaneously, which can damage the electrode surface and lower the withstand voltage. Discharge: Vacuum Volume 30 No. 3 (1
987) See pages 105 to 115] [Problems to be Solved by the Invention] The present invention solves the problem of electrodes that are problematic when actively discharging inside an electron gun for conditioning with the aim of improving withstand voltage. The purpose of this invention is to provide an electron gun device that prevents damage to the surface and damage to the electron source and enables effective high voltage conditioning. [Means for Solving the Problems 1] In the present invention, a current limiting resistor is connected in series at the terminal end of the high voltage cable on the electron gun side, and the electron source and the electrode are electrically short-circuited at the terminal part. It was established in That is, in comparison with the conventional example (Fig. 3),
As shown in FIG. 5, a high resistor 9 is placed on the side of the electron gun 20. [Effect 1] According to the configuration of the present invention, the magnitude of the current flowing during discharge generated inside the electron gun 20 by performing high-voltage conditioning is determined by a pure resistance component, so as shown in FIG. limited to a certain size. As a result, it is possible to prevent damage to the electron source inside the electron gun 20 and damage to the electrodes. Examples will be described in detail below. Embodiment 1 FIG. 1 is a schematic diagram of an electron gun device showing an embodiment of the present invention. First, the configuration of the electron gun and the voltage distribution of electrodes, etc. when normally used as an electron gun will be explained. 12 in the diagram
is a field emission electron source held by a holding fitting 14 having the same potential as the shield electrode 8;
It is maintained by Reference numeral 11 denotes an anode for applying a voltage several kV lower than the voltage of the electron source and emitting an electron beam from the tip of the electron source 12, and is held by an insulator 7. As an example of specific numerical values of each voltage, the voltage of the shield electrode 8, the holding metal fitting 14, and the field emission electron source 12 is -50 kV. The voltage of the anode 11 is -46 kV. Each voltage is connected to the high voltage cable 1 via introduction rods 10 and 13. Although not shown, the other end of the high voltage cable has a
kV and -46kV power supplies will be connected. Here, the terminal portion 2 shown with diagonal lines is a component of the present invention. In other words, the output line of high voltage cable 1 and the introduction rod (10 and 1
3) A high resistance of IGΩ is connected in series between the two terminals, and the respective lead wires are short-circuited at both ends as shown in the figure. In addition, in order to prevent discharge on the atmospheric side due to excessively high pressure, an inert gas SF is added to the gap 3 between the insulator 4 and the terminal part 2.
, is a structure that fills . Now, in such a configuration, high voltage conditioning is performed by continuously applying a voltage of -60 to -75 kV to the other end of the high voltage cable. In this case, -5
An AC power source of 10 to 15 kV may be superimposed on a DC power source of 0 kV, or a DC power source capable of outputting up to 75 kV may be used. The presence or absence of discharge is determined by monitoring changes in the degree of vacuum in the vacuum chamber 5 or changes in the output current of the high-voltage power source. In FIG. 1, it is assumed that the electrode 11 is changing to fall to the ground potential due to high voltage conditioning discharge. If the voltage of the electrode 11 at this time is E volts, the voltages of the electrodes 10 and 13 electrically connected to the electrode 11 and the electrode 8 follow E volts. Therefore, the electron source 12, which is at the same potential as the electrode 8, instantly becomes E volts. As a result, since no abnormal electric field is applied to the electron source 12, damage caused by discharge between the secondary electron source 12 and the electrode 11 can be prevented. The high resistance 9 increases the impedance when looking at the high voltage power source from the connection point between the conductive rods 10 and 13, so it prevents damage to the high voltage power source due to discharge and also prevents the conductive rods 10 and 13 from being damaged when viewed from the electrode 11. By reducing the load, 'R
This has the effect of allowing the potential of the electron source 12 to more quickly follow changes in the voltage of the pole 11. Also, high resistance 9
Since the discharge current is limited (see FIG. 4), the surface of the electrode 11 or the electrode 8 is prevented from being scratched. In Fig. 1, by filling the space 3 between the terminal part 2 and the insulator 4 with an inert gas (for example, SF), the withstand pressure is improved several times compared to when it is exposed to the atmosphere, and An effect occurs that is unaffected. Further, the withstand pressure in an inert gas atmosphere is generally higher than the withstand pressure in a vacuum chamber that requires conditioning. Therefore, effective high pressure conditioning is possible. Although there are no clear criteria for determining whether high-voltage conditioning is finished, in this example, a sharp decrease in the discharge frequency was observed 1 to 2 hours after high-voltage conditioning was applied, so a timer was used to finish the conditioning (not shown). Alternatively, a timer and a counter may be used in combination to count the number of discharges and determine the end. [Effect of the Invention 1] As detailed above, the present invention enables safe and effective high-pressure conditioning, and by using the present invention, it is possible to improve the withstand voltage of an electron gun.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電子銃装置の要部縦断
面図、第2図は従来の高電圧コンディショニングの方法
の一例を示す図、第3図は高圧ケーブルの静電容量を考
慮した時の従来構成の等価回路図、第4図は本発明の実
施例と従来例における放電電流の変化を示す図、第5図
は本発明の実施例の等価回路図である。 符号の説明 1・・・高圧ケーブル、2・・・端子部、9・・・高抵
抗、4.7・・・絶縁碍子、8.11・・・電極、10
.13・・・導入棒、20・・・電子銃、23・・・交
流電源、24・・・直流電源 冨 図 乙、7 轄戚碍子 243−
Fig. 1 is a vertical cross-sectional view of a main part of an electron gun device showing an embodiment of the present invention, Fig. 2 is a diagram showing an example of a conventional high voltage conditioning method, and Fig. 3 is a diagram showing an example of a conventional high voltage conditioning method. FIG. 4 is an equivalent circuit diagram of the conventional configuration when considered, FIG. 4 is a diagram showing changes in discharge current in the embodiment of the present invention and the conventional example, and FIG. 5 is an equivalent circuit diagram of the embodiment of the present invention. Explanation of symbols 1... High voltage cable, 2... Terminal part, 9... High resistance, 4.7... Insulator, 8.11... Electrode, 10
.. 13... Introducing rod, 20... Electron gun, 23... AC power supply, 24... DC power supply Tomizu Otsu, 7 Divisional insulator 243-

Claims (1)

【特許請求の範囲】 1、電子線描画装置や電子顕微鏡類似装置に用いられる
、絶縁碍子、電子源、電極とから成る電子銃、および高
電圧発生装置とで構成される電子銃装置において、上記
電子銃の高電圧コンディショニングを行う手段として、
該電子銃に高電圧を供給するための高電圧ケーブルは、
電子銃側の終端部において、電流制限抵抗を直列に挿入
し、更に、電子源と電極とが電気的にショートされる構
造とし、該構造の高電圧ケーブルを介して定格電圧を超
える高い電圧を所定の時間印加するようにしたことを特
徴とする高電圧電子銃装置。 2、前記電子銃側の終端部には、不活性ガスを充填する
ことを特徴とする特許請求の範囲第1項記載の高電圧電
子銃装置。 3、前記定格電圧を超える高い電圧は、少なくとも定格
電圧の20%を超える電圧であることを特徴とする特許
請求の範囲第1項記載の高電圧電子銃装置。 4、前記所定の時間は少なくとも1回以上電子銃室内で
放電が生じるまでの時間であることを特徴とする特許請
求の範囲第1項記載の高電圧電子銃装置。 5、前記電子源は電界放射チップであることを特徴とす
る特許請求の範囲第1項記載の高電圧電子銃装置。
[Claims] 1. An electron gun device comprising an electron gun including an insulator, an electron source, and an electrode, and a high voltage generator, which is used in an electron beam lithography device or an electron microscope-like device, As a means of high-voltage conditioning of the electron gun,
The high voltage cable for supplying high voltage to the electron gun is
At the terminal end on the electron gun side, a current limiting resistor is inserted in series, and the electron source and electrode are electrically shorted, and a high voltage exceeding the rated voltage is applied via the high voltage cable of this structure. A high voltage electron gun device characterized in that the voltage is applied for a predetermined period of time. 2. The high-voltage electron gun device according to claim 1, wherein the terminal end on the electron gun side is filled with an inert gas. 3. The high voltage electron gun device according to claim 1, wherein the high voltage exceeding the rated voltage is a voltage exceeding at least 20% of the rated voltage. 4. The high-voltage electron gun device according to claim 1, wherein the predetermined time is a time until discharge occurs in the electron gun chamber at least once. 5. The high voltage electron gun device according to claim 1, wherein the electron source is a field emission chip.
JP1268934A 1989-10-18 1989-10-18 High voltage electron gun apparatus Pending JPH03133040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1268934A JPH03133040A (en) 1989-10-18 1989-10-18 High voltage electron gun apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1268934A JPH03133040A (en) 1989-10-18 1989-10-18 High voltage electron gun apparatus

Publications (1)

Publication Number Publication Date
JPH03133040A true JPH03133040A (en) 1991-06-06

Family

ID=17465316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1268934A Pending JPH03133040A (en) 1989-10-18 1989-10-18 High voltage electron gun apparatus

Country Status (1)

Country Link
JP (1) JPH03133040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038858A (en) * 2010-08-05 2012-02-23 Nuflare Technology Inc Conditioning method for electron gun and electron beam lithography system
CN105161394A (en) * 2015-08-13 2015-12-16 北京中科科仪股份有限公司 High-voltage cable leading-in device of field emission electron gun
WO2020003428A1 (en) * 2018-06-28 2020-01-02 株式会社日立ハイテクノロジーズ Charged particle beam generation device and charged particle beam device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038858A (en) * 2010-08-05 2012-02-23 Nuflare Technology Inc Conditioning method for electron gun and electron beam lithography system
CN105161394A (en) * 2015-08-13 2015-12-16 北京中科科仪股份有限公司 High-voltage cable leading-in device of field emission electron gun
WO2020003428A1 (en) * 2018-06-28 2020-01-02 株式会社日立ハイテクノロジーズ Charged particle beam generation device and charged particle beam device
US11139139B2 (en) 2018-06-28 2021-10-05 Hitaclii High-Tech Corporation Charged particle beam generator and charged particle beam apparatus

Similar Documents

Publication Publication Date Title
KR0121433B1 (en) Arc suppressor for electron gun
CN1033196C (en) Inductive X-ray tube high voltage transient suppression
US4604554A (en) Triggered spark gap discharger
JP2008226683A (en) Charged particle beam device
CN103765545A (en) Current limiter for high voltage power supply used with ion implantation system
Smeets Stability of low-current vacuum arcs
JPH03133040A (en) High voltage electron gun apparatus
US2456986A (en) Protective arrangement for electrical windings
CN209844549U (en) Multi-gap type surge protection device
US3207947A (en) Triggered spark gap
Yao et al. Determination of opening velocities for vacuum circuit breakers at transmission voltage
KR101000484B1 (en) Discharge element with discharge-control electrode and the control apparatus thereof
JP4947401B2 (en) Ion implanter
CN209844545U (en) Initiative-triggered multi-gap surge protection device
US7573046B1 (en) Thermal field emission electron gun with reduced arcing
US2330918A (en) Expulsion lightning arrester
US3474290A (en) Ignition circuit for an arc-discharge lamp and devices therefor
US3254268A (en) Protective system for capacitance serially connected with inductive apparatus
US5013969A (en) Protective device for neutron tubes
EP0454215B1 (en) Method of manufacturing a cathode ray tube
Cross et al. Effect of area on surface flashover voltage in vacuum
US2881346A (en) Discharge gap
Korolev et al. Test Procedure for NSDD Conditioning and Control of Vacuum Interrupters
Tsuruta et al. Ignition and instability of low-current DC vacuum arcs ignited by the opening of the electrodes
RU2101799C1 (en) Gear feeding pulse high-voltage device