JPS5971417A - Manufacture of graphite fiber - Google Patents

Manufacture of graphite fiber

Info

Publication number
JPS5971417A
JPS5971417A JP17838282A JP17838282A JPS5971417A JP S5971417 A JPS5971417 A JP S5971417A JP 17838282 A JP17838282 A JP 17838282A JP 17838282 A JP17838282 A JP 17838282A JP S5971417 A JPS5971417 A JP S5971417A
Authority
JP
Japan
Prior art keywords
fiber
temperature
treated
flame
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17838282A
Other languages
Japanese (ja)
Inventor
Tadahiro Yamamoto
山本 直裕
Hisao Anzai
安西 久雄
Toa Kobayashi
東亜 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP17838282A priority Critical patent/JPS5971417A/en
Publication of JPS5971417A publication Critical patent/JPS5971417A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a graphite fiber having high specific strength and specific elastic modulus, and high performance as a reinforcing material for composite material, by heat-treating a flame-resistant yarn under specific rate of temperature increase of the yarn to be treated in a low-temperature range. CONSTITUTION:A flame-resistant fiber (preferably a fiber obtained by making an acrylonitrile fiber precursor flame-resistant, and carbonizing at >=800 deg.C in a non-oxidizing atmosphere) is treated at >=2,000 deg.C to obtain a graphite fiber. In the above process, the rate of the temperature increase of the fiber to be treated is adjusted to >2,000 deg.C/min and <=5,000 deg.C/min in the temperature range of 1,300-2,000 deg.C.

Description

【発明の詳細な説明】 本発明は黒鉛繊維の製造法に関するもので、更に詳しく
は比強度および比弾性率の高い高性能黒鉛繊維の製造法
にかかわるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing graphite fibers, and more particularly to a method for producing high-performance graphite fibers with high specific strength and specific modulus.

アクリロニ) IJル系織繊維前駆体酸化雰囲気中で通
常長OO℃乃至300℃の温度で処理して耐炎化した後
、実質的に非酸化性雰囲気中で800℃以上1300℃
未満の温度で炭素化し、更にこの炭素繊維を不活性雰囲
気中で少なくとも2000℃の温度で処理して黒鉛繊維
となすことが知られている。
After making it flame resistant by treating it in an oxidizing atmosphere at a temperature of usually 00°C to 300°C, it is treated at a temperature of 800°C or higher to 1300°C in a substantially non-oxidizing atmosphere.
It is known to carbonize the carbon fibers at temperatures below 2000 DEG C. and further treat the carbon fibers in an inert atmosphere at temperatures of at least 2000 DEG C. to give graphite fibers.

近年、黒鉛繊維が複合材料の補強材として注目を集める
のは、弾性率および強度に優れているばかりでなく軽量
であるということが大きな理由である。すなわち、材料
特性として極めて重装な強度および弾性率と密度の比で
ある比強度および比弾性率という点で他の補強材料、た
とえばガラス繊維、アルミナ繊維、ボロン繊維、炭化珪
素繊維、スチール等に比較すると格段に優れているから
である。
In recent years, graphite fibers have attracted attention as reinforcing materials for composite materials, largely because they not only have excellent elastic modulus and strength, but also are lightweight. That is, the material properties are extremely heavy in terms of strength and specific strength and specific modulus, which are the ratios of elastic modulus and density, compared to other reinforcing materials such as glass fiber, alumina fiber, boron fiber, silicon carbide fiber, steel, etc. This is because it is far superior in comparison.

黒鉛繊維は炭素繊維をより高温で熱処理する過程で、黒
鉛結晶化が進行し、炭素繊維よりも一層繊維密度は高い
ものとなり、前記の比強度および比弾性率という観点か
らすれば、このような黒鉛繊維密度の増加は好ましくな
い。しかし、従来強度および弾性率等の力学的特性を損
うことなく、繊維密度の低減下を図り、以って比強度お
よび比弾性率を向上させた黒鉛繊維を得ることは極めて
難しいといわれていた。
In the process of heat-treating carbon fiber at a higher temperature, graphite crystallization progresses, and the fiber density of graphite fiber becomes even higher than that of carbon fiber. An increase in graphite fiber density is undesirable. However, it has been said that it is extremely difficult to obtain graphite fibers with improved specific strength and specific modulus by reducing the fiber density without impairing mechanical properties such as strength and elastic modulus. Ta.

そこで本発明者らは材料特性として極めて重要な特性で
ある比強度および比弾性率に優れる黒鉛繊維の製造法を
見出すべく鋭意検討した結果本発明を完成した。
Therefore, the present inventors have completed the present invention as a result of intensive studies to find a method for producing graphite fibers that are excellent in specific strength and specific modulus, which are extremely important material properties.

本発明の要旨とするところは耐炎化系とくに、アクリロ
ニトリル系繊維前駆体を耐炎化したのち、少なくとも2
ooo℃の温度にて処理し、黒鉛繊維を製造するにあた
り1300℃乃至2ooo℃の処理温度域における被処
理繊維の昇温速度を2000℃/分を越えて5000℃
/分以下で処理することを特徴とする黒鉛繊維の製造法
にある。
The gist of the present invention is to make a flame-resistant system, especially an acrylonitrile-based fiber precursor, flame-resistant, and then to
When producing graphite fibers by processing at a temperature of ooo°C, the heating rate of the treated fiber in the processing temperature range of 1300°C to 200°C exceeds 2000°C/min to 5000°C.
The present invention provides a method for producing graphite fiber, which is characterized in that the processing time is less than 1 minute.

本発明の実施に際して用いる耐炎化系は、アクリロニト
リル系繊維、セルロース系繊維、フェノール系繊維等の
有機繊維前駆体を耐炎化処理したもの、或いはピッチ系
繊維等を挙げることができるが、と(に比強度、比弾性
率の高い黒鉛繊維を′本発明の方法により作るにはアク
リロニトリル系繊維前駆体を用いるのが好ましい。
The flame-retardant system used in carrying out the present invention includes organic fiber precursors such as acrylonitrile-based fibers, cellulose-based fibers, and phenol-based fibers that have been flame-retardantly treated, or pitch-based fibers. In order to produce graphite fibers with high specific strength and specific modulus by the method of the present invention, it is preferable to use an acrylonitrile fiber precursor.

アクリロニトリル系繊維前駆体を用いて作られた黒鉛繊
維は補強材料として使用した場合、その複合材料の性能
が優れている。アクリロニトリル系繊維は、アクリロニ
トリルを主成分とする重合体又は共重合体よりなる繊維
であり、共重合体成分としてはアクリル酸、メタクリル
酸、イタコン酸等の不飽和カルボン酸、これらの酸のエ
ステル類、アクリルアミド、メタクリルアミド等の通常
使用される共重合成分が用いられる。
Graphite fibers made using acrylonitrile-based fiber precursors have excellent performance in composite materials when used as reinforcing materials. Acrylonitrile fibers are fibers made of polymers or copolymers whose main component is acrylonitrile, and the copolymer components include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and esters of these acids. Commonly used copolymerization components such as , acrylamide, and methacrylamide are used.

本発明を実施するに際してはアクリロニトリル系繊維を
少なくとも耐炎化処理していることが必要であり、好ま
しくは更に8oo℃以上の非酸化性雰囲気下で炭素化処
理したものが好ましい。
When carrying out the present invention, it is necessary that the acrylonitrile fibers be at least flame-resistant treated, and preferably carbonized in a non-oxidizing atmosphere at a temperature of 80° C. or higher.

2000℃以上の所望の温度で黒鉛化する場合、被処理
繊維は必然的に2000℃以下の低温域の熱処理を受け
ることになる。本発明の特徴はこの低温熱処理域におい
て、被処理繊維が受ける熱履歴に関し、その昇温速度を
規制することにより、弾性率および強度を低下せしめる
ことなく、従来法より密度の低い黒鉛繊維が得られるこ
とを見い出した点にある。この低温熱処理域のうち昇温
速度の密度に及ぼす効果が顕著にあられれるのは130
0℃乃至20oo℃の範囲にある。前記範囲外の温度域
では顕著な効果は認められない。
When graphitizing at a desired temperature of 2000°C or higher, the fibers to be treated will necessarily undergo heat treatment at a low temperature of 2000°C or lower. The feature of the present invention is that in this low-temperature heat treatment region, by regulating the heating rate of the heat history that the treated fibers undergo, graphite fibers with lower density than conventional methods can be obtained without reducing the elastic modulus and strength. The point is that we have discovered that it can be done. Among these low-temperature heat treatment areas, the temperature increase rate has a remarkable effect on the density in 130
The temperature ranges from 0°C to 200°C. No significant effect is observed in a temperature range outside the above range.

更に、前記温度範囲内における昇温速度は2000℃/
分を越えて5000℃/分以下、好ましくは2500℃
/分乃至4500℃/分で行なうのがよい。
Furthermore, the temperature increase rate within the above temperature range is 2000℃/
more than 5000°C/min, preferably 2500°C
It is preferable to carry out the reaction at a rate of 4500° C./min to 4500° C./min.

2000℃/分以下の昇温速度では黒鉛繊維を低密度化
せしめる事は困難であり、また5000℃/分を越えた
昇温速度にしても2000℃/分を越えて5000℃/
分以下の場合に比べてさ程低密度化を達成する事ができ
ないばかりでなく、得られる黒鉛繊維の強度の低下が著
しく、結果的に比強度の省る繊維しか得られない。
It is difficult to reduce the density of graphite fibers at a heating rate of 2000°C/min or less, and even if the heating rate exceeds 5000°C/min, it is difficult to reduce the density of graphite fibers.
Not only is it not possible to achieve a much lower density than in the case where the graphite fibers are less than 10 minutes, but the strength of the obtained graphite fibers is significantly reduced, and as a result, only fibers with low specific strength can be obtained.

前記処理温度域における被処理繊維の昇温速度は炉の温
度勾配と被処理繊維の走行速度により決定されるが、炉
の温度勾配としては特に限定されることなく、所望とす
る被処理繊維の走行速度において、前記昇温速度範囲を
満足するように設定する。
The rate of temperature increase of the fiber to be treated in the above treatment temperature range is determined by the temperature gradient of the furnace and the running speed of the fiber to be treated, but the temperature gradient of the furnace is not particularly limited and is determined by the temperature of the fiber to be treated as desired. The running speed is set so as to satisfy the temperature increase rate range.

以下実施例をあげて本発明方法を具体的に説明するが本
発明はこれに限定されるものではない。ただし、本実施
例および比較例で使用された繊維密度の測定法は、繊維
束より20〜30本の繊維集団を取り出し、これを直径
2〜3wnの輪状とし、100℃で3時間乾燥後、測定
繊維に近い密度を有する浸漬液中で真空脱泡後、温度5
℃の密度勾配管液(四塩化炭素−臭化エチレン系)に浸
漬して求めたものである。
The method of the present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. However, the method for measuring fiber density used in the present examples and comparative examples is to take out a group of 20 to 30 fibers from a fiber bundle, form it into a ring shape with a diameter of 2 to 3 wn, and dry it at 100 ° C. for 3 hours. After vacuum defoaming in an immersion liquid with a density close to that of the fiber to be measured, the temperature was 5.
It was determined by immersing it in a density gradient tube solution (carbon tetrachloride-ethylene bromide system) at ℃.

実施例1゜ ポリアクリロニトリル系繊維(単糸デニール1.5.フ
ィラメント数3000 )を空気中250℃で耐炎化し
、更に窒素雰囲気中1250℃で炭素化処理し、引続い
て窒素雰囲気中、最高温度2300℃の炉で黒鉛化する
。その際、黒鉛化昇温過程における1300℃乃至20
00℃の温度域での被処理繊維の昇温速度3500℃/
分となるように被処理繊維の速度および炉の温度分布を
制御し、黒鉛繊維となした。
Example 1 Polyacrylonitrile fiber (single denier 1.5, number of filaments 3000) was made flame resistant in air at 250°C, further carbonized at 1250°C in a nitrogen atmosphere, and then heated at the maximum temperature in a nitrogen atmosphere. Graphitize in a furnace at 2300°C. At that time, 1300℃ to 20℃ during graphitization heating process.
Temperature increase rate of treated fiber in the temperature range of 00°C: 3500°C/
The speed of the fibers to be processed and the temperature distribution of the furnace were controlled to obtain graphite fibers.

上記の処理によって得られた黒鉛繊維をエポキシ樹脂で
含浸し硬化後、試技200聾として引張試験機で引張り
強度および引張り弾性率を測定した。また黒鉛繊維の密
度は前記記載の方法によって測定した。得られた性能は
引張り強度290に、/J、引張り弾性率33.6 t
on / −1密度1.74f / c4であり、これ
らより求めた比強度は1.67 X 108岨、比弾性
率は1.93 X 10”朝と優れたものであった。
The graphite fiber obtained by the above treatment was impregnated with an epoxy resin and after hardening, the tensile strength and tensile modulus were measured using a tensile tester using a trial test of 200 deafness. Further, the density of the graphite fibers was measured by the method described above. The obtained performance was tensile strength of 290/J and tensile modulus of 33.6 t.
The on/-1 density was 1.74 f/c4, the specific strength determined from these was 1.67 x 108 cm, and the specific elastic modulus was excellent, 1.93 x 10''.

比較例1゜ 実施例1.に使用したと同じポリアクリロニトリル系繊
維を実施例1と同一条件で耐炎化、炭素化処理を施し、
その後、実施例1.と同じ2300℃の炉で黒鉛化処理
を行なった。その際1300℃乃至2000℃の温度域
の昇温速度は1500℃/分と規制し、処理した。その
性状は下記の如く、比強度および比弾性率の劣ったもの
であった。
Comparative example 1゜Example 1. The same polyacrylonitrile fiber used in Example 1 was subjected to flame resistance and carbonization treatment under the same conditions as in Example 1.
After that, Example 1. Graphitization treatment was performed in the same 2300°C furnace. At that time, the temperature increase rate in the temperature range of 1300°C to 2000°C was regulated to 1500°C/min. As shown below, its properties were poor in specific strength and specific modulus.

引張り゛強度   300Kg/− 引張り弾性率  33.7 ton / −密  度 
       1832/cr/l比強度     1
.64 X 10Fm比弾性率    1.84 X 
1010闇実施例2゜ 実施例1.に使用したと同じポリアクリロニトリル系繊
維を実施例1.と同一条件で耐炎化、炭素化処理を施し
、その後、最高温度2600℃の炉で黒鉛化処理を行な
った。その際1300℃乃至2000℃の温度域の昇温
速度は3000℃/分と規制し、処理した。その性状は
下記の如く、比強度および比弾性率の優れたものであっ
た。
Tensile strength 300Kg/- Tensile modulus 33.7 tons/-Density
1832/cr/l specific strength 1
.. 64 x 10Fm specific elastic modulus 1.84 x
1010 Darkness Example 2゜Example 1. The same polyacrylonitrile fiber used in Example 1. Flameproofing and carbonization treatments were performed under the same conditions as above, and then graphitization treatment was performed in a furnace with a maximum temperature of 2600°C. At that time, the temperature increase rate in the temperature range of 1300°C to 2000°C was regulated to 3000°C/min. As shown below, its properties were excellent in specific strength and specific modulus.

引張り強度   270に9/J 引張り弾性率  42  ton/7 密度  1.79 f / cr& 比強度     1.51 X 10’m比弾性率  
  2.35 X 10”闇比較例2 実施例1.に使用したと同じポリアクリロニトリル系繊
維を実施例1.と同一条件下で、耐炎化し、次いで炭素
化して得た炭素繊維を実施例2゜と同じ2600℃の炉
で黒鉛化処理を行なった。その際1300℃乃至2oo
o℃における温度域の昇温速度を1500℃/分として
処理した。
Tensile strength 270 to 9/J Tensile modulus 42 ton/7 Density 1.79 f/cr & Specific strength 1.51 x 10'm specific modulus
2.35 x 10" Dark Comparative Example 2 The same polyacrylonitrile fibers used in Example 1 were made flame resistant under the same conditions as in Example 1, and then carbonized to obtain carbon fibers. Graphitization treatment was carried out in the same 2600°C furnace.
The temperature increase rate in the temperature range of 0°C was set to 1500°C/min.

得られた黒鉛繊維の性状は下記の如(、比弾性率におい
て劣ったものであった。
The properties of the obtained graphite fiber were as follows (the specific modulus was poor).

引張り強度   280に9/− 引張り弾性率  42 ton /4 密  度        1.86 グ/ atl比強
度     1.51 X 108wn比弾性率   
 2.25 X 10”瓢比較例3゜ 実施例1.に使用したと同じポリアクリロニトリル系繊
維を実施例1.と同一条件下で、耐炎化し、次いで炭素
化して得た炭素繊維を実施例2゜と同じ2600℃の炉
で黒鉛化処理を行なった。その際、1300℃乃至20
00℃における温度域における昇温速度を5500℃/
分と規制し、処理した。
Tensile strength 280 to 9/- Tensile modulus 42 ton /4 Density 1.86 g/atl specific strength 1.51 x 108wn specific modulus
2.25 x 10" Gourd Comparative Example 3゜The same polyacrylonitrile fiber used in Example 1 was made flame resistant under the same conditions as in Example 1, and then carbonized, and the obtained carbon fiber was used in Example 2. Graphitization treatment was carried out in the same 2600℃ furnace as ゜.
The temperature increase rate in the temperature range at 00℃ is 5500℃/
Minutes and regulated and processed.

得られた黒鉛繊維の性状は下記の如く、比強度において
劣ったものであった。
The properties of the graphite fibers obtained were poor in specific strength as shown below.

引張り強度   200にり/− 引張り弾性率  41 ton /、i密  度   
    1.79 f / crtl比強度     
1.12X108箇 比弾性率    2.29×10101oこれらの結果
より、本発明の範囲外の条件にて得られた黒鉛繊維の比
強度および比弾性率は本発明方法によって得られた黒鉛
繊維の比強度および比弾性率に比べて劣るものであるこ
とが明らかである。
Tensile strength: 200 ton/- Tensile modulus: 41 ton/, i Density
1.79 f/crtl specific intensity
1.12×108 Specific modulus 2.29×10101o From these results, the specific strength and specific modulus of the graphite fiber obtained under conditions outside the scope of the present invention are the same as those of the graphite fiber obtained by the method of the present invention. It is clear that the strength and specific modulus of elasticity are inferior.

特許出願人 三菱レイヨン株式会社 代理人弁理士   1)村 武 敏Patent applicant: Mitsubishi Rayon Co., Ltd. Representative Patent Attorney 1) Taketoshi Mura

Claims (2)

【特許請求の範囲】[Claims] (1)耐炎化系糸を少なくとも2ooo℃の温度にて処
理し、黒鉛繊維を製造するにあたり1300 ℃乃至2
000℃の処理温度域における被処理繊維の昇温速度を
2000℃/分を越えて5000 ℃/分以下で処理す
ることを特徴とする黒鉛繊維の製造法。
(1) Flame-resistant yarn is treated at a temperature of at least 200°C to 1300°C to 200°C to produce graphite fibers.
1. A method for producing graphite fibers, characterized in that the heating rate of the fiber to be treated in a treatment temperature range of 000°C is more than 2000°C/min and less than 5000°C/min.
(2)耐炎化糸としてアクリロニトリル系繊維前駆体を
耐炎化したものを用いることを特徴とする特許請求の範
囲第1項記載の黒鉛繊維の製造法。
(2) The method for producing graphite fibers according to claim 1, wherein a flame-resistant acrylonitrile fiber precursor is used as the flame-resistant yarn.
JP17838282A 1982-10-13 1982-10-13 Manufacture of graphite fiber Pending JPS5971417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17838282A JPS5971417A (en) 1982-10-13 1982-10-13 Manufacture of graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17838282A JPS5971417A (en) 1982-10-13 1982-10-13 Manufacture of graphite fiber

Publications (1)

Publication Number Publication Date
JPS5971417A true JPS5971417A (en) 1984-04-23

Family

ID=16047511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17838282A Pending JPS5971417A (en) 1982-10-13 1982-10-13 Manufacture of graphite fiber

Country Status (1)

Country Link
JP (1) JPS5971417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274621A (en) * 1988-09-08 1990-03-14 Toray Ind Inc Graphitized fiber having low density and high elastic modulus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274621A (en) * 1988-09-08 1990-03-14 Toray Ind Inc Graphitized fiber having low density and high elastic modulus

Similar Documents

Publication Publication Date Title
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
JP2018145541A (en) Carbon fiber bundle and method for production of the same
US3917776A (en) Process for producing carbon fiber
KR870000533B1 (en) Carbon fiber&#39;s making method
JPS6328132B2 (en)
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
JPS6128019A (en) Production of pitch based carbon fiber
JPH0314624A (en) Production of carbon yarn
JPS5971417A (en) Manufacture of graphite fiber
JPS58144128A (en) Preparation of carbon fiber having high performance
JPH02264011A (en) Acrylic fiber for graphite fibers
JP3303424B2 (en) Method for producing acrylic carbon fiber
JPS5920004B2 (en) Carbon fiber manufacturing method
JPS6141326A (en) Preparation of precursor for carbon fiber
JP3002698B2 (en) Manufacturing method of graphite fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JPS6353295B2 (en)
JPH0931758A (en) Carbon fiber
JP2736428B2 (en) Manufacturing method of ultra-high elasticity graphite fiber
JPH07292526A (en) Production of acrylic carbon fiber
CN117187989A (en) Carbon fiber and preparation method thereof
JPS59125912A (en) Production of carbon yarn
JPS60155714A (en) Production of pitch based carbon fiber
JPS58186614A (en) Production of graphite fiber
JPH02259118A (en) Graphite fiber having high tensile strength