JPS5971266A - Battery - Google Patents

Battery

Info

Publication number
JPS5971266A
JPS5971266A JP57179129A JP17912982A JPS5971266A JP S5971266 A JPS5971266 A JP S5971266A JP 57179129 A JP57179129 A JP 57179129A JP 17912982 A JP17912982 A JP 17912982A JP S5971266 A JPS5971266 A JP S5971266A
Authority
JP
Japan
Prior art keywords
battery
supporting electrolyte
organic solvent
porous adsorbent
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57179129A
Other languages
Japanese (ja)
Inventor
Kazunori Fujita
一紀 藤田
Shigeoki Nishimura
西村 成興
Hiroyuki Sugimoto
博幸 杉本
Noboru Ebato
江波戸 昇
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP57179129A priority Critical patent/JPS5971266A/en
Publication of JPS5971266A publication Critical patent/JPS5971266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve performance and service life of a battery by providing a porous adsorbent in a solvent of supporting electrolyte in a chargeable battery using polyacethylene for poles. CONSTITUTION:In a chargeable battery using poles 4 made of polyacethylene, a porous adsorbent 6 is provided between separators 5 and it is sufficiently impregnated with a supporting electrolyte. A water content in an organic solvent is adsorbed and removed by such adsorbent 6 and impurity produced by electric decomposition of such organic solvent is also adsorbed and removed by it. As a result, a charging/discharging efficiency of battery is improved and service life of battery can be extended.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はアセチレン高重合体(以下ポリアセチレンと略
称する)を電極とし特定の物質を含む支持電解質溶媒を
用いた充電可能な電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rechargeable battery using an acetylene polymer (hereinafter abbreviated as polyacetylene) as an electrode and a supporting electrolyte solvent containing a specific substance.

〔従来技術〕[Prior art]

ポリアセチレンに、ato4−1PF、−及びBF4−
等のアニオン並びにLl“及び(04Hll )4 ’
M+等のカチオンを電気化学的にドーピングすると、そ
れぞれn型並びにp型導電性ポリアセチレンが生成する
ことは知られている〔例えば、ケミカルアンド エンジ
ニアリング ニュース(Ckllll)、26.39頁
(1981)参照〕。このような電気化学的ドーピング
を応用した充電可能な電池は種種報告されておシ、例え
ば、正極にポリアセチレン、負極にリチウム金属そして
電解質にプロピレンカーボネートにLi0tO4を溶解
させたものを用いた電池では、開路電圧器7V、短絡電
流25mムのものが得られている。又、正極及び負極に
ポリアセチレン、電解質にプロピレンカーボネートに(
C411I9)4Mcto4を溶解させたものを用いた
電池では、開路電圧2.5V、短絡電流1 t1mムの
ものが得られている〔ジャーナル オブ ザ ケミカル
 ソサイエ?イ、 ケミ−)jル コミュニケーション
(J、c、s。
polyacetylene, ato4-1PF, - and BF4-
anions such as Ll" and (04Hll)4'
It is known that electrochemical doping of cations such as M+ produces polyacetylenes with n-type and p-type conductivity, respectively [see, for example, Chemical and Engineering News (Ckllll), p. 26.39 (1981)]. . Various types of rechargeable batteries applying such electrochemical doping have been reported.For example, a battery using polyacetylene as the positive electrode, lithium metal as the negative electrode, and Li0tO4 dissolved in propylene carbonate as the electrolyte, One with an open circuit voltage of 7 V and a short circuit current of 25 mm has been obtained. In addition, polyacetylene is used for the positive and negative electrodes, and propylene carbonate is used for the electrolyte (
A battery using a solution of C411I9)4Mcto4 has an open circuit voltage of 2.5 V and a short circuit current of 1 t1 mm [Journal of the Chemical Society? i, chemistry) j le communication (j, c, s.

Ohsm、、 Oomm、 )、(1981)317〜
319頁参照〕。しかしながら、いずれの電池において
も、電池電圧が高く、電解質兼ドーパントになるLlo
tOa あるいは(04馬)4NCtOi等は有機溶媒
に溶解させている。これらの電池においては、電池電圧
が高いため有機溶媒中の水分は完全に除去する必要があ
る。この水分は、電池の充放電における電流効率あるい
は電池の自己放電に悪影響を及ぼす。一方、有機溶媒中
の不純物は電極への吸着等によシミ池寿命に影響する。
Ohsm, Oomm, ), (1981) 317~
See page 319]. However, in both batteries, the battery voltage is high, and Llo, which serves as an electrolyte and dopant,
tOa or (04 horse) 4NCtOi etc. are dissolved in an organic solvent. In these batteries, since the battery voltage is high, it is necessary to completely remove water in the organic solvent. This moisture adversely affects the current efficiency during charging and discharging of the battery or the self-discharge of the battery. On the other hand, impurities in the organic solvent affect the life of the stain pond due to adsorption to the electrodes, etc.

このような理由から、電解質を溶解させる有機溶媒は、
あらかじめ従来手法に・より蒸留精製を行って不純物及
び水分除去を行ったものを用いている。
For this reason, the organic solvent that dissolves the electrolyte is
It is used that has been purified by distillation using conventional methods to remove impurities and water.

しかしながら、このようにして得られた支持電解質を用
いた電池でも、電流効率はそれほど高く寿ぐ、充放電を
繰返して使用すると、電池性能は低下してサイクル寿命
は短い。これは、有機溶媒を精製脱水しても、電池形成
後の支持電解質中に微量の水分が残存し、又、充放電の
繰返しによシ有機溶媒が電気分解され、この不純物によ
る影響があることが判明した。
However, even a battery using the supporting electrolyte obtained in this way has a high current efficiency and a long life, but when used repeatedly for charging and discharging, the battery performance deteriorates and the cycle life is short. This is because even if the organic solvent is purified and dehydrated, a small amount of water remains in the supporting electrolyte after battery formation, and the organic solvent is electrolyzed by repeated charging and discharging, and this impurity has an effect. There was found.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の欠点を解決し、高性能かつ
高寿命の充電可能な電池を提供することにある。
The purpose of the present invention is to overcome the drawbacks of the prior art and provide a rechargeable battery with high performance and long life.

〔発明の概要〕[Summary of the invention]

本発明につき概説すれば、本発明の充電可能な電池は、
ポリアセチレンを電極とする充電可能な電池において、
支持電解質溶媒中に多孔質吸着剤を存在させたことを特
徴とするものである。
To summarize the present invention, the rechargeable battery of the present invention includes:
In a rechargeable battery using polyacetylene as an electrode,
It is characterized by the presence of a porous adsorbent in the supporting electrolyte solvent.

本発明者等は、電池の支持電解質溶媒中の不純物及び水
分につき種種検討を重ねた結果、従来法による精製で精
製直後に得られた有機溶媒中の不純物はガスクロマトグ
ラフ法(Fより検出法)ては検出されず、又、水分は5
 、ppm前後までであることを確認した。しかしなが
ら、電池を形成後、充放電を行わず長時間放置したもの
Kついて、支持電解質中の水分を測定したところ、その
水分は40〜50 ppmに増加してお)、又、充放電
を65サイクル行った後における支持電解質のガスクロ
マトグラフ分析を行ったところ、使用した有機溶媒の#
丘かに4つのピークを有するクラマドグラムが得られた
As a result of repeated studies on impurities and moisture in the supporting electrolyte solvent of batteries, the present inventors have found that impurities in organic solvents obtained immediately after purification using conventional methods can be detected using gas chromatography (detection method from F). was not detected, and moisture was 5.
, it was confirmed that the amount was around ppm. However, when batteries were left for a long time without being charged or discharged after formation, the moisture content in the supporting electrolyte was measured and found to have increased to 40 to 50 ppm). Gas chromatography analysis of the supporting electrolyte after the cycle revealed that the # of the organic solvent used was
A chromatogram with four peaks was obtained.

本発明者等は、上記の知見に基づき、電池を構成する要
素として、支持電解質溶媒中に多孔質吸着剤を存在させ
ることによシ、前記した問題点を解決しうろことを見出
して本発明に到達したものである。
Based on the above findings, the present inventors have discovered that the above-mentioned problems can be solved by providing a porous adsorbent in the supporting electrolyte solvent as an element constituting the battery, and have invented the present invention. has been reached.

すなわち、本発明においては、後記第1図に示すように
、電池を構成する支持電解質層中、詳しくは電池内のセ
パレータ間に多孔質吸着剤を置き、これに支持電解質を
十分に含浸させ、これによシ有機溶媒中の水分を吸着、
除去し、又、有機溶媒の電気分解によル生成する不純物
を吸着、除去するととによル、電池の充放電効率を向上
させ、かつ電池の寿命を延ばすことができる。
That is, in the present invention, as shown in FIG. 1 below, a porous adsorbent is placed in the supporting electrolyte layer constituting the battery, specifically between the separators in the battery, and is sufficiently impregnated with the supporting electrolyte. This absorbs water in organic solvents,
In addition, by adsorbing and removing impurities generated by electrolysis of organic solvents, the charging and discharging efficiency of the battery can be improved and the life of the battery can be extended.

本発明における多孔質吸着剤は、絶縁体あるいは不導体
のもの以外であれば特に限定されず、水分並びに不純物
を吸着、除去できるものであればよく、例えば市販のア
ルミナ、モレキュラーシープ及びシリカ等の微粉末又は
多孔質成形物等を適宜使用することができ、通常粒径2
00〜400メツシュ程度の微粉末状のものが適してい
る。
The porous adsorbent used in the present invention is not particularly limited as long as it is not an insulator or a nonconductor, and may be any material that can adsorb and remove moisture and impurities, such as commercially available alumina, molecular sheep, silica, etc. Fine powder or porous molded products can be used as appropriate, and the particle size is usually 2.
A fine powder of about 0.00 to 400 mesh is suitable.

又、電池に多孔質吸着剤を存在させる形態は、後記実施
例に示すようにセパレータの間に置いてもよいが、多孔
質吸着剤自身をセパレータ兼支持電解質保持材として用
いてもよい。
Furthermore, the porous adsorbent may be present in the battery between separators as shown in Examples below, but the porous adsorbent itself may also be used as a separator and supporting electrolyte holding material.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明を実施例によシ詳細に説明するが、本発明
はこれらによりなんら限定されるものではない。
Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these in any way.

実施例1 正極及び負極に、比重Q、91、厚み230F111%
  直径2emのポリアセチレンを用い、ドーパンF兼
支持電解質に、(04ks)amazonを120℃、
10−”m1H1<の条件で十分に脱水し、これをプロ
ピレンカーボネートとジメトキシエタン(容量比1:1
)の混合溶媒(モレキュラーシーブで脱水、蒸留した)
に、α5モル/lの濃度に溶解したものを用い、この支
持電解質保持材兼セパレータに乾燥脱水したポリプロピ
レンを用いて電池を組んだ。第1図はこの電池の構成を
示した断面概略図であ)、1は電池ケース、2は電池保
持体(ポリテトラフルオロエチレン)、3は電極集電体
、4は電極(ポリアセチレン)、5はセパレータ、6は
多孔質吸着剤を示す。第1図に示すように、セパレータ
5の間に多孔質吸着剤6として粒径200メツシユのア
ルミナ〔エム ウオルム エシュウエ)y’ (M、W
oe1mJ!+8chwege ) 社製〕を電極間距
離2.5〜5 mになるように置き上記支持電解質を十
分に含浸させて、電池を構成した。
Example 1 Positive electrode and negative electrode, specific gravity Q: 91, thickness 230F 111%
Using polyacetylene with a diameter of 2em, as the dopan F and supporting electrolyte, (04ks) Amazon at 120℃,
It was thoroughly dehydrated under the conditions of 10-"m1H1<, and then mixed with propylene carbonate and dimethoxyethane (volume ratio 1:1).
) mixed solvent (dehydrated and distilled with molecular sieves)
Then, a battery was assembled using polypropylene dissolved in a concentration of α5 mol/l and dried and dehydrated polypropylene as the supporting electrolyte holding material and separator. Figure 1 is a schematic cross-sectional view showing the structure of this battery), 1 is a battery case, 2 is a battery holder (polytetrafluoroethylene), 3 is an electrode current collector, 4 is an electrode (polyacetylene), 5 indicates a separator, and 6 indicates a porous adsorbent. As shown in FIG. 1, alumina (M,W)y' (M, W
oe1mJ! +8chwege) was placed so that the distance between the electrodes was 2.5 to 5 m, and the supporting electrolyte was sufficiently impregnated to form a battery.

この電池を、1 mA/cW1” の電流密度で1時間
充電し、電池電圧が1vになるまで1 mA/cyi”
の電流密度で放電した。このサイクルを65回まで行っ
たときの電池特性を調べた結果を第2図に示す。すなわ
ち、第2図は充放電のサイクル数(回)(横軸)と電流
効率(充電電荷量と放電電荷量の割合:チ)(縦軸)と
の関係を示したグラフであり、曲線ムは本実施例1の場
合、Bは後記実施例2の場合、そしてCは後記比較例の
場合を示す。
This battery was charged at a current density of 1 mA/cW1" for 1 hour, and then charged at a current density of 1 mA/cyi" until the battery voltage reached 1V.
discharged at a current density of FIG. 2 shows the results of examining the battery characteristics when this cycle was repeated up to 65 times. In other words, Figure 2 is a graph showing the relationship between the number of charge/discharge cycles (horizontal axis) and current efficiency (ratio of charge amount to discharge charge amount: Ch) (vertical axis). indicates the case of Example 1, B indicates the case of Example 2 described later, and C indicates the case of Comparative Example described later.

第2図の曲線Aから、本実施例1の場合、3〜15回目
のサイクルにおける電流効率は90〜93チ、65回目
のサイクルにおける電流効率は89チと大きな低下はな
かった。又、65回目の放電終了後の有機溶媒中の水分
をカールフィッシャー法で測定したところ、4ppmと
いう結果が得られた。一方、この有機溶媒をガスクロマ
トグラフ法(Fより検出)で分析したところ、プロピレ
ンカーボネートとジメトキシエタンのピーク以外のピー
クは観察されなかった。
From the curve A in FIG. 2, in the case of Example 1, the current efficiency in the 3rd to 15th cycles was 90 to 93 inches, and the current efficiency in the 65th cycle was 89 inches, with no significant decrease. Further, when the water content in the organic solvent after the 65th discharge was measured by the Karl Fischer method, a result of 4 ppm was obtained. On the other hand, when this organic solvent was analyzed by gas chromatography (detected from F), no peaks other than those of propylene carbonate and dimethoxyethane were observed.

更に又、上記試験における電池の65回目の充放電特性
を調べた結果を第3図に示す。すなわち、第3図は65
回目のサイクルにおける充電率及び放電率(チ)(横軸
)と電池電圧(’V)(縦軸)との関係を示したグラフ
であシ、曲線りは本実施例1の場合、Eは後記実施例2
の場合、モして7は後記比較例の場合を示す。
Furthermore, the results of examining the 65th charge/discharge characteristics of the battery in the above test are shown in FIG. In other words, Figure 3 is 65
This is a graph showing the relationship between the charging rate and discharging rate (H) (horizontal axis) and the battery voltage ('V) (vertical axis) in the second cycle. Example 2 below
In the case of , 7 shows the case of the comparative example described later.

第3図の曲線りから明らかなように、充電終了後の電圧
は12Vで、電圧は低い。
As is clear from the curve in FIG. 3, the voltage after charging is 12V, which is low.

実施例2 実施例1と同様の構成の電池を組み、多孔質吸着剤6と
して粒径200〜400メツシユのモレキュラーシーブ
4A〔富士−デビソン ケミカル リミテッド(Fuj
i−Davison Ob@1m、I+ta、)製〕を
使用した電池につき、実施例1と同様の充放電サイクル
試験を行い、次の結果を得た。
Example 2 A battery having the same structure as in Example 1 was assembled, and a molecular sieve 4A with a particle size of 200 to 400 mesh was used as the porous adsorbent 6 [Fuji-Devison Chemical Limited (Fuj
A charge/discharge cycle test similar to that in Example 1 was conducted on a battery using a battery manufactured by i-Davison Ob@1m, I+ta, ), and the following results were obtained.

サイクル数と電流効率の関係は、前記第2図の曲線Bに
示すとおシであり、3〜15回目のサイクルにおける電
流効率は90〜92チ、65回目のサイクルにおける電
流効率は85チであった。又、65回目の放電終了後の
有機溶媒中の水分の量は3 ppmであった。一方、こ
の有機溶媒をガスクロマトグラフ法(Fより検出)で分
析したととる、プロピレンカーボネートとジメトキシエ
タンのピーク以外に1つのピークのあるクロマトグラム
が得られた。又、前記試験における電池の65回目の充
放電特性は、前記第3図の曲線Eに示すように、充電終
了後の電圧は3.4vであった。
The relationship between the number of cycles and current efficiency is shown in curve B in Figure 2 above, where the current efficiency in the 3rd to 15th cycles is 90 to 92 cm, and the current efficiency in the 65th cycle is 85 cm. Ta. Further, the amount of water in the organic solvent after the 65th discharge was 3 ppm. On the other hand, this organic solvent was analyzed by gas chromatography (detected from F), and a chromatogram with one peak in addition to the peaks of propylene carbonate and dimethoxyethane was obtained. Further, regarding the charging/discharging characteristics of the battery at the 65th time in the test, the voltage after charging was 3.4 V, as shown by curve E in FIG. 3 above.

比較例 実施例1と同様の電池構成であるが、第1図に示した多
孔質吸着剤を入れない電池につき、実施例1と同様の充
放電サイクル試験を行い、次の結果を得た。
Comparative Example A battery having the same battery configuration as Example 1 but without the porous adsorbent shown in FIG. 1 was subjected to the same charge/discharge cycle test as Example 1, and the following results were obtained.

サイクル数と電流効率の関係は、前記第2図の曲線Cに
示すとおシであシ、3〜15回目のサイクルにおける電
流効率は68〜70%、65回目のサイクルにおける電
流効率は35チに低下した。又、前記第3図の7に示す
ように16565回目イクルにおける充電終了電圧は4
.2■と非常に高かった。一方、65回目のサイクル終
了後の有機溶媒中の水分を測定したところ、その濃度は
48 ppmであった。又、この有機溶媒をガスクロマ
トグラフ法で分析した結果、プロピレンカーボネートと
ジメトキシエタンのピーク以外に4つのピークのあるク
ロマトグラムが得られた。
The relationship between the number of cycles and current efficiency is shown in curve C in Figure 2 above, where the current efficiency in the 3rd to 15th cycles is 68 to 70%, and the current efficiency in the 65th cycle is 35%. decreased. Also, as shown in 7 of FIG. 3, the charging end voltage at the 16565th cycle is 4.
.. It was extremely high at 2■. On the other hand, when the moisture content in the organic solvent was measured after the 65th cycle, the concentration was 48 ppm. Furthermore, as a result of analyzing this organic solvent by gas chromatography, a chromatogram was obtained that had four peaks in addition to the propylene carbonate and dimethoxyethane peaks.

〔発明の効果〕〔Effect of the invention〕

以上の実施例及び比較例の結果から明らかなように、電
池の支持電解質溶媒中に多孔質吸着剤を存在させること
によシ、電池の充放電効率を高め、かつ電池の寿命を延
ばすことができる。
As is clear from the results of the above Examples and Comparative Examples, the presence of a porous adsorbent in the supporting electrolyte solvent of a battery can improve the charging and discharging efficiency of the battery and extend the life of the battery. can.

したがって、本発明の電池は新型二次電池として有用な
ものである。
Therefore, the battery of the present invention is useful as a new type of secondary battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における電池の構成を示した断
面概略図、第2図は本発明の実施例及び比較例における
充放電のサイクル数と電流効率との関係を示したグラフ
、第5図は本発明の実施例及び比較例における充電率及
び放電率と電池電圧との関係を示したグラフである。 1・・・電池ケース、   2・・・電池保持体、3・
・・電極集電体、   4・・・電極、5・・・セパレ
ータ、   6・・・多孔質吸着剤特許出願人  株式
会社日立製作所 同   昭和電工株式会社 代理人 中 本   宏 第1図 第2図 310 第 3 圀
FIG. 1 is a cross-sectional schematic diagram showing the configuration of a battery in an example of the present invention, FIG. 2 is a graph showing the relationship between the number of charge/discharge cycles and current efficiency in an example of the present invention and a comparative example, and FIG. FIG. 5 is a graph showing the relationship between charging rate, discharging rate, and battery voltage in Examples and Comparative Examples of the present invention. 1...Battery case, 2...Battery holder, 3.
...electrode current collector, 4...electrode, 5...separator, 6...porous adsorbent Patent applicant Hitachi Ltd. Showa Denko K.K. agent Hiroshi Nakamoto Figure 1 Figure 2 310 Third area

Claims (1)

【特許請求の範囲】[Claims] t アセチレン高重合体を電極とする充電可能な電池に
おいて、支持電解質溶媒中に多孔質吸着剤を存在させた
ことを特徴とする充電可能な電池。
t A rechargeable battery having an acetylene polymer as an electrode, characterized in that a porous adsorbent is present in a supporting electrolyte solvent.
JP57179129A 1982-10-14 1982-10-14 Battery Pending JPS5971266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179129A JPS5971266A (en) 1982-10-14 1982-10-14 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179129A JPS5971266A (en) 1982-10-14 1982-10-14 Battery

Publications (1)

Publication Number Publication Date
JPS5971266A true JPS5971266A (en) 1984-04-21

Family

ID=16060490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179129A Pending JPS5971266A (en) 1982-10-14 1982-10-14 Battery

Country Status (1)

Country Link
JP (1) JPS5971266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222576A (en) * 1986-03-25 1987-09-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222576A (en) * 1986-03-25 1987-09-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5687496B2 (en) Negative electrode coated with LiF compound, method for producing the same, and lithium ion secondary battery including the negative electrode
US4029854A (en) Halogen electrode
EP1435675A1 (en) Accumulator
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP2014530502A (en) High voltage electrochemical double layer capacitor
Micka et al. Studies of doped negative valve-regulated lead-acid battery electrodes
JP3244017B2 (en) Method for producing electrolyte solution for lithium secondary battery
JP2009187958A (en) Nonaqueous electrolyte and lithium secondary battery
JP2009259764A (en) Lithium air cell
US4713731A (en) Double layer capacitor
JP2010135647A (en) Electrode for electric double layer capacitor, method of manufacturing same, and electrode for electric double layer capacitor using same
JPS5971266A (en) Battery
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JPH09283383A (en) Electric double layered capacitor
JP4356321B2 (en) Lead acid battery
KR101647405B1 (en) Binder for lithium-ion battery and lithium-ion battery having the binder
JPS6217963A (en) Storage battery
JPH06103979A (en) Manufacture of conductive binding agent and application top various kinds of batteries
JP2000294459A (en) Electric double layer capacitor
US3002040A (en) Battery separator
JPH07122301A (en) Nonaqueous electrolyte secondary battery
JPH04237949A (en) Electrode material
JPS6014762A (en) Cell
RU2156512C2 (en) Improved capacitor with high specific capacitance
RU2025002C1 (en) Process of manufacture of positive electrode of lead-acid cell