JPS5970751A - Superconductive material - Google Patents

Superconductive material

Info

Publication number
JPS5970751A
JPS5970751A JP18023582A JP18023582A JPS5970751A JP S5970751 A JPS5970751 A JP S5970751A JP 18023582 A JP18023582 A JP 18023582A JP 18023582 A JP18023582 A JP 18023582A JP S5970751 A JPS5970751 A JP S5970751A
Authority
JP
Japan
Prior art keywords
phase
equiv
steel
superconducting
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18023582A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18023582A priority Critical patent/JPS5970751A/en
Publication of JPS5970751A publication Critical patent/JPS5970751A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a low-cost superconductive material having a relatively high critical temp., by preparing a ferritic-austenitic two-phase steel having a specified composition contg. Cr, Ni, etc. CONSTITUTION:This superconductive material is an alloy having a structure in wich sigma phase is present between alternate phases of a ferritic-austenitic two- phase steel contg. <0.20% C, 0.2-3.0% Si and/or Mn, 15.0-30.0% Cr, 2.5-20.0% Ni, <10.0% Mo and <0.2% N. In the composition, 20<=Cr equiv. <=35 and 5<=Ni equiv. <=15 are satisfied when Cr equiv. and Ni equiv. are expressed by Cr equiv. =Cr%+Mo%+1.5XSi% and Ni equiv. =Ni%+0.5XMn%+30XC%+25X N%. The superconductive material is less expensive than other superconductive material, and the critical temp. for superconductivity is relatively high.

Description

【発明の詳細な説明】 この発明は、臨界温度が比較的高く、シかも価格の低廉
な超電導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting material that has a relatively high critical temperature and is inexpensive.

従来、超電導特性を示す材料としては、Nb−Zr。Conventionally, Nb-Zr has been used as a material exhibiting superconducting properties.

Nb−Ti、 Nb−Zr−Ti、或いはNb−Zr 
−Ta等の合金や、Nb3 Sn 、 V3 Ga 、
 Nb3 (AM o、5Geo2) + Nbs G
e+或いはNb5AU等の金属間化合物が知られており
、これらを素材とした□超電導磁石等の実用化を目ざし
た研究が数多く行われてきている。
Nb-Ti, Nb-Zr-Ti, or Nb-Zr
-Alloys such as Ta, Nb3Sn, V3Ga,
Nb3 (AM o, 5Geo2) + Nbs G
Intermetallic compounds such as e+ or Nb5AU are known, and many studies have been conducted with the aim of commercializing □ superconducting magnets using these materials.

しかしながら、このうちの合金系材料ではその臨界温度
がせいぜい10°に程度までと極めて低いので、実用超
電導素材としては非常に不利なものであり、一方金属間
化合物系材料では、臨界温度は17〜21’に程度と比
較的高い値を示すけれども、いずれのものも極めて脆く
、通常の塑性加工技術によって線拐に加工することが極
めて困難なものであった。
However, the critical temperature of alloy-based materials is extremely low, at most 10°, which is extremely disadvantageous as a practical superconducting material.On the other hand, the critical temperature of intermetallic compound-based materials is 17~17°C. 21', but all of them were extremely brittle and extremely difficult to process into wire by ordinary plastic working techniques.

このようなことがら、金属間化合物の有する優れた超電
導特性を有効に利用゛するために、例えば、延性の良好
な基材中に所定の特性を有する金属間化合物を埋め込ん
だり、テープ状の基材に蒸着法や気相還元法等によって
金属間化合物薄膜を析出付着させたり、或いは、基材チ
ューブ中に金属間化合物を組成する単体金属粉末を混合
充填した後にこれを所定形状に加工し、その後の熱処理
によって金属間化合物を生成させるといったような複雑
な工程の下で、強度を受は持つ基材中に適当な化合物の
保持されたテープ状又は線状の超電導材が作られるよう
になってきたが、これらは単に製造工程が煩雑なだけで
なく、材料歩留りも悪くて、必然的にコスト高とならざ
るを得ないものであった。
Under these circumstances, in order to effectively utilize the excellent superconducting properties of intermetallic compounds, for example, intermetallic compounds with predetermined properties may be embedded in a base material with good ductility, or tape-shaped base materials may be used. A thin film of an intermetallic compound is precipitated and adhered to the material by a vapor deposition method or a vapor phase reduction method, or a single metal powder that forms an intermetallic compound is mixed and filled in a base material tube and then processed into a predetermined shape. Through a complex process that involves the generation of intermetallic compounds through subsequent heat treatment, tape-shaped or wire-shaped superconducting materials are produced in which appropriate compounds are retained in a strong base material. However, these methods not only have a complicated manufacturing process but also have a poor material yield, which inevitably leads to high costs.

本発明者等は、上述のような観点から、複雑で高コスト
を伴う工程を必要とすることなく所望形状が得られ、し
かも臨界温度の高い良好な特性を有する超電導材料を得
るべく続けていた種々の面からの研究の過程で、例えば
高クロム鋼等のような耐銹鋼の熱処理サイクルによって
現われるところの、調料特性に悪影響を与えるというこ
とで忌み嫌わ九でいたα相が優れた超電導特性を有して
いるということを見出したのである。そこで、本発明者
等は、とのα相を実用超電導相として利用すべく、さら
に研究を重ねた結果、 (a)  耐銹鋼の中にあっても、特に2相ステンレス
鋼は、その化学成分組成を選ぶことによって極めてα相
を析出しゃすいものとなること、(b)2相ステンレス
鋼では、α相はα相とγ相との界面に析出するので、圧
延や引抜き等の加工によって、島状に存在するγ相を予
め伸長しておけば、その後の時効処理等の熱処理にょ9
、−次元的に連なったα相を析出させることが可能であ
ること、 (C)  このような簡単な処理によって得られるとこ
ろの、フェライト相(αイ・月〕とオーステナイト相(
γ相)とが交互に層をなすとともにそれらの界面にα相
が存在する組織を有した2相鋼は、優れた超電導特性を
発揮する」二、加工性や靭性等の機械的性質も良好なも
のであること、 以」二、(al〜(C)に示される如き知見を得るに至
ったのである。
From the above-mentioned viewpoints, the present inventors have continued to strive to obtain a superconducting material that can obtain a desired shape without requiring complicated and expensive processes and has good properties such as a high critical temperature. In the course of research from various aspects, it was discovered that the alpha phase, which appears during the heat treatment cycle of rust-resistant steels such as high chromium steel, and which was disliked because it adversely affects the preparation properties, exhibits excellent superconducting properties. I discovered that I have it. Therefore, the present inventors conducted further research in order to utilize the alpha phase of and as a practical superconducting phase. (a) Even among rust-resistant steels, duplex stainless steels in particular (b) In duplex stainless steel, the α phase precipitates at the interface between the α phase and the γ phase, so it cannot be easily formed by processing such as rolling or drawing. , if the γ phase existing in the form of islands is elongated in advance, subsequent heat treatment such as aging treatment can be avoided.
(C) It is possible to precipitate a dimensionally connected α phase;
A duplex steel with a structure in which γ phase) and α phase are present at the interface exhibits excellent superconducting properties.''2.It also has good mechanical properties such as workability and toughness. Therefore, we have come to the knowledge shown in (al~(C)).

この発明は、上記知見に基づいてなされたものであって
、超電導材料を、 C:0.20%以下(以下重帯幅とする)。
This invention was made based on the above findings, and the superconducting material has the following properties: C: 0.20% or less (hereinafter referred to as "multiple band width").

Sl及びMnのうちの1種板」二、02〜3.0%。One type of Sl and Mn plate 2.02-3.0%.

Cr: 15.0−30.0%。Cr: 15.0-30.0%.

Ni:2.5〜20.0%。Ni: 2.5-20.0%.

Mo:10.0%以下。Mo: 10.0% or less.

N、02%以下。N, 02% or less.

を含有するとともに、式、Creq=Cr(%)+MO
(%)+1.58i(%)、及びN1eq =NN%)
−4−0,5Mn(%)+30C(%)+25 N(%
)で示されるCreqとN1eqとがそれぞれ、式、 20≦Creq≦35゜ 5≦Ni、eq≦15゜ を満足する成分組成(以上重量%)のフェライトとオー
ステナイトの2相鋼から成り、がっ、該フェライト相と
オーステナイト相とが交互に層をなすとともにそれらの
界面にα相が存在する組織を有せしめたもので構成する
ことによって、優れた超電導特性と機械的性質とを兼備
せしめた点に特徴を有するものである。
and the formula, Creq=Cr(%)+MO
(%) + 1.58i (%), and N1eq = NN%)
-4-0,5Mn(%)+30C(%)+25N(%
), Creq and N1eq are respectively composed of two-phase steels of ferrite and austenite whose component compositions (in weight percent) satisfy the following formula: 20≦Creq≦35゜5≦Ni, eq≦15゜. By being composed of a structure in which the ferrite phase and austenite phase are alternately layered and an α phase is present at the interface between them, it has both excellent superconducting properties and mechanical properties. It has the following characteristics.

ついで、この発明において、超電導材料を構成する各化
学成分の含有量を上述のように限定した理由を説明する
Next, in this invention, the reason why the content of each chemical component constituting the superconducting material is limited as described above will be explained.

■ C 0分が0.20 %を越えると、Cr、 Fe 、 M
o等の金属元素とともに(Cr + ’e + MO)
 23 C6の炭化物の生成が著しくなってα相の形成
に必要なCrやMOの有効量が減少してしまい、超電導
材料としての性質を有するα相の生成が抑制されてしま
うことがら、その含有量を0.20%以下と定めた。C
の含有量が低いものほど良好であることはもちろんであ
るが、その含有量が0.003%未満となると工業的な
製造が極めて困難となるので、この点から実用性に乏し
いものとなる。
■ When C 0 min exceeds 0.20%, Cr, Fe, M
With metal elements such as o (Cr + 'e + MO)
23 The formation of C6 carbides becomes significant, reducing the effective amount of Cr and MO necessary for the formation of the α phase, and suppressing the formation of the α phase, which has properties as a superconducting material. The amount was set at 0.20% or less. C
It goes without saying that the lower the content, the better the content, but if the content is less than 0.003%, industrial production becomes extremely difficult, and from this point of view it becomes impractical.

■ Si、及びMn 51及びMn成分は、鋼の溶解時に脱酸剤として作用す
るものであるが、Si及びMnを合わせた含有量が02
%未満では前記作用に所望の効果が得られず、一方3.
0%を越えて含有させてもα相生成のための格別な効果
が現われないばかりか、コスト的に不利となるので、(
Si+Mn)の含有量を02〜3.0%と定めた。
■Si and Mn 51 and Mn components act as deoxidizing agents during melting of steel, but if the combined content of Si and Mn is 0.2
If it is less than 3.%, the desired effect cannot be obtained.
Even if the content exceeds 0%, not only will no special effect for α phase generation be obtained, but it will also be disadvantageous in terms of cost.
The content of Si+Mn) was determined to be 02 to 3.0%.

■ Cr、 Ni これらの成分は、α相を析出させやすくするために、か
つ室温付近でフェライトとオーステナイトの2程組織を
形成するために必要なものである。
(2) Cr, Ni These components are necessary to facilitate precipitation of the α phase and to form a two-dimensional structure of ferrite and austenite near room temperature.

即ち、Cr及びN1成分は、それぞれα相とr相とを生
成してα/γ組織とするのに必要な元素であり、2程組
織を得るためにはCrを15.0〜30.0係の範囲で
、そしてNiを2.5〜20.0 %の範囲でそれぞれ
含有する必要がある。そして、この範囲以外では、所望
の2程組織を得るのが困難となる。
That is, Cr and N1 components are elements necessary to generate α phase and r phase respectively to form an α/γ structure, and in order to obtain a 2-degree structure, the Cr content should be 15.0 to 30.0. It is necessary to contain Ni in the range of 2.5 to 20.0%. Outside this range, it becomes difficult to obtain a desired structure.

■ MO Mo成分も、 Cr−?Niと同様にα相の析出と2程
組織を実現するために必要な元素であるが、10.0係
を越えて含有せしめるのはコストの面で不利であること
から、その含有量を10.0%以下と定めた。そして、
顕著な添加効果を獲得するためにも、また製造上の困難
性からもその含有量を0.01%以上とするのが好まし
い。
■ MO The Mo component is also Cr-? Like Ni, it is an element necessary to precipitate the α phase and realize a 2-dimensional structure, but since it is disadvantageous in terms of cost to contain more than 10.0, the content is reduced to 10. .0% or less. and,
In order to obtain a significant addition effect, and also from the viewpoint of manufacturing difficulties, it is preferable that the content is 0.01% or more.

■ N Nには、Cと同様に(Cr、 Mo ) 2 N等の窒
化物を形成してα相の析出を抑制する作用があり、その
含有量が0.、2 %を越えると特にそれが顕著になる
ことから、Nの含有量を02%以下と定めた。
■N N, like C, has the effect of forming nitrides such as (Cr, Mo) 2 N and suppressing the precipitation of α phase, and when its content is 0. Since this problem becomes particularly noticeable when the content exceeds 2%, the N content was set at 0.2% or less.

また、上述のlii成分の代pKMn、  C,及びN
を添加しても同様の効果が得られるが、上記■7■。
In addition, the above-mentioned lii component proxies pKMn, C, and N
The same effect can be obtained by adding , but the above-mentioned 7).

及び0項に記載したような理由により、その添加量を制
限する必要がある。
For reasons such as those described in Section 0, it is necessary to limit the amount added.

さらに、crの代りKMo + S iを増量しても良
いが、MOを増量するよりはCrを増量する方がコスト
的に有利であシ、Slも3,0チを越える含有量では、
それ以下のものと比べても格別なα相成形のための向」
二効果が現われないばか9か著しい靭性の低下を招くの
で、やはりその添加量を制限する必要がある。
Furthermore, KMo + Si may be increased in place of Cr, but increasing Cr is more cost-effective than increasing MO, and if the Sl content exceeds 3.0 Ti,
It is suitable for α-phase forming that is exceptional compared to anything smaller than that.”
If the two effects do not appear, it will cause a significant decrease in toughness, so it is necessary to limit the amount added.

そして、Cr成分及びN1成分の含有量を制限したのと
同様の理由から、 Cr(%l+Mo(%)十:i−、
5si(%)で表わされるCr当量(Creq)と、N
1(%H−0,5Mn(%)」−300(%l+25N
(%)で表わされるN1当量(N1eq )とを、それ
ぞれ、20≦Creq≦35.及び5≦N i e q
≦15に限定する必要がある。つまり、この範囲を外れ
ると、所望の2程組織を得るのが極めて困難となるから
である。
For the same reason as limiting the content of Cr component and N1 component, Cr(%l+Mo(%):i-,
Cr equivalent (Creq) expressed in 5si (%) and N
1(%H-0,5Mn(%)"-300(%l+25N
The N1 equivalent (N1eq) expressed in (%) is 20≦Creq≦35. and 5≦N i e q
It is necessary to limit it to ≦15. That is, outside this range, it becomes extremely difficult to obtain the desired structure.

そして、この発明の超電導材料としては、上記各成分が
それぞれの組成範囲を満たしてさえいれば、これらの成
分のほかに、AQ、  V 、 Tj、、 Nb、 T
a。
The superconducting material of the present invention may contain AQ, V, Tj, Nb, T in addition to these components, as long as each of the above components satisfies their respective composition ranges.
a.

W 、 Re 、 Cu を及びCO等の成分をさらに
含む2相鋼をも対象とするものであることはもちろんの
ことである。
It goes without saying that the present invention is also intended for duplex steels further containing components such as W, Re, Cu, and CO.

つぎに、この発明の超電導材料の製造法について説明す
る。
Next, a method for manufacturing the superconducting material of the present invention will be explained.

超電導材料の製造にあたっては、まず、所定組Di (
Dフェライトとオーステナイトの2相鋼を溶製後鍛造し
、1000〜1300℃間で30分程度保持してから鋼
組織のフェライト量とオーステナイト量の調整を行って
おく。なお、このときのフェライト量とオーステナイト
量との比率は1:1程度が好ましい。
In manufacturing superconducting materials, first, a predetermined set Di (
A dual-phase steel of D ferrite and austenite is melted and forged, held at 1000 to 1300°C for about 30 minutes, and then the amount of ferrite and austenite in the steel structure is adjusted. Note that the ratio between the amount of ferrite and the amount of austenite at this time is preferably about 1:1.

続いてこれを熱間或いは冷間で加工して目標製品寸法に
仕上げるのであるが、この加工は、フェライト粒及びオ
ーステナイト粒を展伸して、フェライト相とオーステナ
イト相とをそれぞれ層状にするためのものである。この
ため、加工度は大きい程良く、好ましくは70〜90%
である。
This is then hot- or cold-processed to achieve the target product dimensions. This process involves elongating the ferrite grains and austenite grains to form layers of the ferrite phase and austenite phase, respectively. It is something. For this reason, the higher the degree of processing, the better, preferably 70 to 90%.
It is.

この加工についで、1000℃前後の歪−取り焼鈍を行
う。この処理を施すのは、フェライト相中にα相が析出
するのを防ぐとともに、フェライト相とオーステナイト
相とα界面にα相をうまく層状に析出させるためである
。この歪取り焼鈍は省略しても良いが、省略するとα相
が細かく析出してしまって、層状の連なった形状となら
なくなる恐れがあるので、なるべくなら省略しない方が
好ましい。
Following this processing, strain relief annealing is performed at around 1000°C. The purpose of this treatment is to prevent the α phase from precipitating in the ferrite phase and to properly precipitate the α phase in a layered manner at the α interface between the ferrite phase, the austenite phase, and the α phase. This strain relief annealing may be omitted, but if omitted, the α phase may precipitate finely and the layered shape may not be formed, so it is preferable not to omit it if possible.

歪取り焼鈍の後、この鋼を600〜1000℃、%に7
00〜900℃に保持することからなる時効処理を施し
て、フェライト相とオーステナイト相の界面にσ相を層
状に析出させる。このときの保持時間は鋼の成分によっ
て異なり、数分〜数百分程度が必要であるが、経済性を
考えれば200分以下になるような成分の2相鋼を選ぶ
のが経済的である。
After strain relief annealing, this steel was heated to 600-1000℃ and 7%
An aging treatment consisting of holding at a temperature of 00 to 900°C is performed to precipitate a layered σ phase at the interface between the ferrite phase and the austenite phase. The holding time at this time varies depending on the composition of the steel, and may range from several minutes to several hundred minutes, but from an economic standpoint, it is economical to choose a duplex steel with a composition that will last 200 minutes or less. .

鋼の時効温度を、特に600〜1000℃とするのは、
その@度が600℃を下回っても、或いは1000℃を
」二回っても、いずれにしてもσ相の析出が起きないか
、又は起きても著しく遅くなってしまい(103〜10
’hr程度)実用性を欠くからである。
In particular, the aging temperature of steel is set to 600 to 1000°C.
Even if the temperature is lower than 600°C or 1000°C twice, precipitation of the σ phase does not occur, or even if it does occur, it is extremely slow (103-10
This is because it lacks practicality.

このように、時効処理によってσ相の析出量が決まるも
のであって、多量に析出させると靭性が劣化してしまい
、逆に析出量が少なすぎるとσ相が層状とならずに点在
するようになって、超電導材料としての機能を備えなく
なってしまうので、その条件は厳密に選ぶ必要がある。
In this way, the amount of σ phase precipitated is determined by aging treatment, and if a large amount is precipitated, the toughness will deteriorate, and conversely, if the amount of precipitation is too small, the σ phase will be scattered instead of layered. As a result, the material no longer functions as a superconducting material, so the conditions must be carefully selected.

第1図は、この発明の超電導材料の製造方法の1例をさ
らに簡明に示した工程図である。
FIG. 1 is a process diagram showing an example of the method for producing a superconducting material according to the present invention more simply.

そして、第2図は、最終工程である時効処理工程の前後
における2相鋼の縦断面の組織例を示した模式図であり
、化学成分と溶体化処理条件とによってフェライトとオ
ーステナイトの組成比を調整し、かつ伸線加工等の塑性
加工によりオーステナイト相の形状な整えた2相鋼材〔
第2図(a)〕に時効処理を施すと、フェライト相とオ
ーステナイト相の界面付近のフェライト相から、オース
テナイト相の一部と層状のσ相とが析出する〔第2図(
b)〕様子を説明したものである。
Figure 2 is a schematic diagram showing an example of the structure of a longitudinal section of a duplex steel before and after the final aging treatment process, and shows the composition ratio of ferrite and austenite depending on the chemical composition and solution treatment conditions. Dual-phase steel material with adjusted austenite phase shape by plastic processing such as wire drawing [
When the aging treatment is applied to the ferrite phase near the interface between the ferrite phase and the austenite phase, a part of the austenite phase and a layered σ phase precipitate out [Figure 2 (a)].
b) This is an explanation of the situation.

つぎに、この発明を実施例によって比較例と対比しなが
ら説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 まず、高周波炉を使用する通常の方法によって、第1表
に示されるような化学成分組成の本発明対象鋼A〜工、
及び化学成分組成が第1表中の※印で示す点で本発明の
範囲から外れている比較鋼J〜Kをそれぞれ溶製し、そ
れぞれ20kgの鋼塊を得た。
Examples First, by a normal method using a high frequency furnace, steels A to A, which are subject to the present invention and have chemical compositions as shown in Table 1, were prepared.
Comparative steels J to K, whose chemical compositions are outside the scope of the present invention in terms of the points indicated by * in Table 1, were melted and steel ingots weighing 20 kg were obtained.

ついで、これらの鋼塊を熱間鍛造によって直径30韮の
丸棒としてから、引抜き後の線拐寸法を1、 +IIj
+lと定めたときに所定の加工度がとれるような寸法に
まで熱延な施し、さらに溶体化処理を施した。
Next, these steel ingots were hot-forged into round bars with a diameter of 30 mm, and the wire diameter after drawing was 1, +IIj.
It was hot-rolled to a size such that a predetermined working degree could be obtained when +l was determined, and then solution treatment was performed.

そして、これらのうちのいくつかについては、溶体化処
理後、酸洗工程を経て冷間引抜き加工を施し、また、そ
の他のものについては溶体化処理後直接機械加工を施し
て、それぞれ直径が1萌の線材を製造した。
Some of these are subjected to cold drawing after solution treatment, followed by a pickling process, and others are directly machined after solution treatment, each with a diameter of 1. Manufactured Moe's wire rod.

これらの加工処理に引続いて、前記線利に歪取り焼鈍を
施し、さらに時効処理を施して、第2表に示されるよう
な本発明桐材1〜18.及び比較材料]g〜20を得た
。上記のようにして製造された導電材料1〜20の各々
に関する具体的製造条件は、第2表に示されるとおりの
ものであった。
Following these processing treatments, the wires were subjected to strain relief annealing and further subjected to aging treatment to obtain paulownia materials 1 to 18 of the present invention as shown in Table 2. and comparative material]g~20 was obtained. The specific manufacturing conditions for each of the conductive materials 1 to 20 manufactured as described above were as shown in Table 2.

なお、第2表における※印は、化学成分組成が本発明の
範囲から外れている鋼を示すものであり、また、☆印は
、溶体化処理後酸洗を経て冷間引抜きを行ったことを示
し、☆☆印は、溶体化処理後そのまま機械加工を行った
ことを示すものである。
Note that the * mark in Table 2 indicates steel whose chemical composition is outside the scope of the present invention, and the ☆ mark indicates that cold drawing was performed after solution treatment, pickling, and cold drawing. , and the ☆☆ mark indicates that machining was performed directly after solution treatment.

このようにして得られた導電材料1〜20のそれぞれに
ついて、その顕微鏡組織を観察したところ、月利1〜1
8のものは、フェライト相とオーステナイト(目とが交
互に層をなすとともにそれらの界面にσ相が存在する第
2図(b)に示すような組織が認められたのに対して、
材料19及び20のものはσ相の析出を認めることがで
きなかった。
When the microscopic structure of each of the conductive materials 1 to 20 thus obtained was observed, the monthly yield was 1 to 1.
In contrast, in the case of No. 8, a structure as shown in Fig. 2(b) was observed, in which ferrite phases and austenite (layers) were alternately layered and a σ phase was present at the interface between them.
In materials 19 and 20, no precipitation of σ phase could be observed.

さらに、これらの材料が超電導特性を発揮する臨界温度
を調べた結果を、第2表に併せて示した。
Furthermore, Table 2 also shows the results of examining the critical temperatures at which these materials exhibit superconducting properties.

第2表に示される結果からも、本発明拐料は、従来知ら
れていた金属間化合物系超電導材料と同程度か、或いは
それ以」二の優れた超電導特性を具備していることが明
白である。
From the results shown in Table 2, it is clear that the inventive material has excellent superconducting properties that are comparable to or even better than conventionally known intermetallic compound-based superconducting materials. It is.

また、本発明桐材が、通常の鋼材として使用される2相
鋼にほぼ近い優れた機械的性質をも有していたことはも
ちろんのととである。
In addition, it goes without saying that the paulownia wood of the present invention had excellent mechanical properties that were almost close to those of duplex steel used as ordinary steel.

」二連のように、この発明によれば、超電導特性及び機
械的性質の優れた、しかもコストの安い超電導材料が得
られ、直流機、タービン発電機、電カケープル、プラズ
マ機器等の電力分野、或いは記憶素子、増幅器1通信ケ
ーブル等のエレクトロニクスや通信分野、さらには磁気
浮」二輸送機関等の分野への超電導技術応用範囲をより
一層拡大することができるなど、工業」二有用な効果が
もたらされるのである。
According to this invention, a superconducting material with excellent superconducting properties and mechanical properties and low cost can be obtained, and it can be used in the power field such as DC machines, turbine generators, electric cables, plasma equipment, etc. Alternatively, the application of superconducting technology to fields such as memory elements, amplifiers, communication cables, electronics and communication fields, and magnetic levitation transport systems can be further expanded, resulting in useful industrial effects. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導材料の製造方法の例を示す工程
図、第2図は時効処理工程の前後における2相鋼の顕微
鏡組織の例を示した模式図であり、第2図(alは時効
処理前の組織を、第2図(b)は時効処理後の組織をそ
れぞれ示すものである。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 ほか1名乍1図 一□−−−■ 260 第2図 (a) (1))
FIG. 1 is a process diagram showing an example of the method for manufacturing a superconducting material of the present invention, and FIG. 2 is a schematic diagram showing an example of the microstructure of a duplex steel before and after an aging treatment step. Figure 2(b) shows the structure before aging treatment, and Figure 2(b) shows the structure after aging treatment. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and one other person 1 Figure 1 □- --■ 260 Figure 2 (a) (1))

Claims (1)

【特許請求の範囲】 C:0.20%以下。 Sl及びMnのうちの1種以上:0.2〜3.0%。 Cr:  15.0〜30.0 %。 Ni :  2.5〜20.0 %。 Mo:10.0%以下。 N:0.2%以下。 を含有すると七もに、式、Creq=:Cr(%)+M
o(%)+1.5Si(%)、及びN1eq=Ni(%
) +0.5Mn (%) + 30 C(%ン+25
 N (%)で示されるC19qとN1eqとがそれぞ
れ、式、 20≦Cr6q≦35゜ 5≦N1eq≦15゜ を満足する成分組成(以上重量%)のフェライトとオー
ステナイトの2相鋼から成シ、かつ、該フェライト相と
オーステナイト相とが交互に層をなすとともにそれらの
界面にσ相が存在する組織を有していることを特徴とす
る超電導材料。
[Claims] C: 0.20% or less. One or more of Sl and Mn: 0.2 to 3.0%. Cr: 15.0-30.0%. Ni: 2.5-20.0%. Mo: 10.0% or less. N: 0.2% or less. If it contains, the formula, Creq=:Cr(%)+M
o (%) + 1.5Si (%), and N1eq = Ni (%
) +0.5Mn (%) + 30 C (%n+25
C19q and N1eq, represented by N (%), are made of two-phase steel of ferrite and austenite, each of which has a composition (in weight %) that satisfies the formula: 20≦Cr6q≦35゜5≦N1eq≦15゜, A superconducting material characterized by having a structure in which the ferrite phase and the austenite phase are alternately layered and a σ phase is present at the interface between them.
JP18023582A 1982-10-14 1982-10-14 Superconductive material Pending JPS5970751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18023582A JPS5970751A (en) 1982-10-14 1982-10-14 Superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18023582A JPS5970751A (en) 1982-10-14 1982-10-14 Superconductive material

Publications (1)

Publication Number Publication Date
JPS5970751A true JPS5970751A (en) 1984-04-21

Family

ID=16079730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18023582A Pending JPS5970751A (en) 1982-10-14 1982-10-14 Superconductive material

Country Status (1)

Country Link
JP (1) JPS5970751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929289A (en) * 1988-04-05 1990-05-29 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property and corrosion resistance
US4933027A (en) * 1988-04-05 1990-06-12 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
US5244513A (en) * 1991-03-29 1993-09-14 Mitsubishi Jukogyo Kabushiki Kaisha Fe-cr-ni-si shape memory alloys with excellent stress corrosion cracking resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929289A (en) * 1988-04-05 1990-05-29 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property and corrosion resistance
US4933027A (en) * 1988-04-05 1990-06-12 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
US5244513A (en) * 1991-03-29 1993-09-14 Mitsubishi Jukogyo Kabushiki Kaisha Fe-cr-ni-si shape memory alloys with excellent stress corrosion cracking resistance

Similar Documents

Publication Publication Date Title
JP3300684B2 (en) Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same
US4933026A (en) Soft magnetic alloys
JP4691240B2 (en) Structure control method for duplex structure steel
JPH0536481B2 (en)
JPS5970751A (en) Superconductive material
JPS6154866B2 (en)
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JPS5818427B2 (en) Method for producing metal articles with repeated shape memory
JP2007262582A (en) Superconducting magnetic component
JPH02285053A (en) Maraging steel and its production
JP2833004B2 (en) Fine grain pearlite steel
JPH0124206B2 (en)
JPS63216946A (en) Shape-memory alloy
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JPS6148531A (en) Manufacture of hot-rolled low-carbon steel sheet having superior deep drawability
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
JP2003342693A (en) Austenitic stainless steel foil for vapor deposition substrate of high-temperature superconducting material and its production method
JPS58193347A (en) Austenite stainless steel excellent in cryogenic temperature characteristics
JPS63134627A (en) Manufacture of austenitic stainless steel having superior cryogenic characteristic after heat treatment for forming nb3sn
JP2955438B2 (en) Stainless steel for superconducting material conduit
JPS6054379B2 (en) Wire rod for V-Ti-Ta superconducting magnet and its manufacturing method
JPH10265842A (en) Production of super plastic stainless steel
JPH0331420A (en) Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH01221820A (en) Manufacture of magnetic lead-piece with rectangular hysteresis and lead switch