JPS5969677A - Low-temperature tank for cooling - Google Patents

Low-temperature tank for cooling

Info

Publication number
JPS5969677A
JPS5969677A JP18025682A JP18025682A JPS5969677A JP S5969677 A JPS5969677 A JP S5969677A JP 18025682 A JP18025682 A JP 18025682A JP 18025682 A JP18025682 A JP 18025682A JP S5969677 A JPS5969677 A JP S5969677A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
cooling
circulation path
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18025682A
Other languages
Japanese (ja)
Other versions
JPS647310B2 (en
Inventor
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18025682A priority Critical patent/JPS5969677A/en
Publication of JPS5969677A publication Critical patent/JPS5969677A/en
Publication of JPS647310B2 publication Critical patent/JPS647310B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は例えば引張試験片などを冷却するための低温
槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low temperature chamber for cooling, for example, a tensile test piece.

従来この種の低温槽として例えば第1図に示すように、
断熱構造の容器1に収容した冷媒2中に蛇管3を浸漬し
、その蛇管3内に液体窒素等の冷却用液化ガスを供給し
つつ気化させると同時に、冷媒2を撹拌翼4によって撹
拌することにより、冷却用液化ガスの気化熱で冷媒2を
極低温まで温度降下させるよう構成した低温槽が知られ
ている。
Conventionally, this type of low temperature chamber, for example, as shown in Fig. 1,
A corrugated pipe 3 is immersed in a refrigerant 2 housed in a container 1 having an insulated structure, and a cooling liquefied gas such as liquid nitrogen is supplied into the corrugated tube 3 to vaporize it, and at the same time, the refrigerant 2 is stirred by a stirring blade 4. Accordingly, a low-temperature bath is known in which the temperature of the refrigerant 2 is lowered to an extremely low temperature using the heat of vaporization of the cooling liquefied gas.

しかしながら第1図に示す従来の低温槽では、冷媒2と
蛇管3との間の熱伝達面積が小さいうえに、蛇管3内に
流す冷却用液化ガスの流器を調整することにより冷媒2
の温度制御を行う構成であるから、冷却用液化ガスの流
量を変えてから冷媒2の温度がその流量に応じた温度に
なるまでに時間がかかり、そのため第1図に示す従来の
低温槽では微妙な温度コントロールが困難であるなどの
問題があった。
However, in the conventional cryogenic chamber shown in FIG.
Because of the configuration, it takes time for the temperature of the refrigerant 2 to reach a temperature corresponding to the flow rate after changing the flow rate of the cooling liquefied gas. There were problems such as difficulty in delicate temperature control.

また従来、熱交換媒体としてのヘリウムを給排気可能な
密閉空間部を外周側に形成した内槽と、その内槽を内部
に配置した外槽とを具備し、内外多槽に収容した液化ガ
ス相互の間の熱授受を、前記空間部へのヘリウムの供給
量および空間部内のヘリウムの濃度によって調整し、そ
の結果内槽に収容した液化ガスの温度を目的温度に設定
保持するよう構成した低温槽が知られている(特開昭5
4−91850号公報)。しかしながら上記の低温槽は
、熱交換媒体として高価なヘリウムガスを使用し、また
内外各相に収容した液化ガス相互の間の熱伝導度を下げ
るべく前記空間部からヘリウムガスを積極的に排気する
だめの真空ポンプ等の排気設備を必要とするために、低
温槽全体として複雑かつ高価になるのみならず、ランニ
ングコストが嵩む問題があった。また熱交換媒体を用い
る上記従来の装置では、前記空間部に供給したヘリウム
ガスが温度降下した後に、内槽に収容した液化ガスを外
槽に収容した液化ガスによって冷却することになるから
、内槽の液化ガスを冷却する際の応答性が悪い問題があ
った。
Conventionally, the liquefied gas contained in the inner and outer multi-tanks is equipped with an inner tank with a sealed space formed on the outer periphery that can supply and exhaust helium as a heat exchange medium, and an outer tank with the inner tank inside. A low-temperature device configured to adjust heat exchange between each other by adjusting the amount of helium supplied to the space and the concentration of helium in the space, and as a result, the temperature of the liquefied gas stored in the inner tank is set and maintained at a target temperature. Tanks are known (Japanese Patent Publication No. 5
4-91850). However, the above-mentioned cryogenic chamber uses expensive helium gas as a heat exchange medium, and actively exhausts helium gas from the space in order to lower the thermal conductivity between the liquefied gases contained in the internal and external phases. Since exhaust equipment such as a vacuum pump is required, there is a problem that not only the cryostat as a whole becomes complicated and expensive, but also the running cost increases. Furthermore, in the above-mentioned conventional apparatus using a heat exchange medium, after the temperature of the helium gas supplied to the space has decreased, the liquefied gas contained in the inner tank is cooled by the liquefied gas contained in the outer tank. There was a problem with poor response when cooling the liquefied gas in the tank.

この発明は上記の事情に鑑みてなされたもので、冷媒を
効率良く冷却することができ、また冷媒温度の制御を的
確に行うことのできる低温槽を提供することを目的とす
るものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a low temperature bath that can efficiently cool a refrigerant and accurately control the refrigerant temperature.

以下この発明の実施例を第2図および第3図を参照して
説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3.

第2図はこの発明の一実施例を示す模式図であり、第3
図は第2図の■−■線断面に対応する詳細図であって、
冷媒容器10は、フレオン−12あるいはフレオン−1
3(それぞれ商品名〉もしくはメチルアルコール等の冷
媒11を収容するとともに、その冷媒11中に例えば引
張試験片等の被冷却物を浸漬するよう構成され、その冷
媒容器10の底部近辺にガイド板12が水平に配置され
、かつそのガイド板12の一端側にモータ]3によって
回転する撹拌翼14が配置され、これら撹拌翼14およ
びガイド板12によって冷媒11を上下方向に循環流動
させて撹拌するよう構成されている。また前記冷媒容器
10の外周側全体に冷却用窒素ガス循環路15が形成さ
れ、さらにその循環路15の外周側に冷却用液体窒素収
容部16が形成されている。これら循環路15および収
容部16は、両者を隔絶する隔壁17の上部、より正確
には前記収容部16に収容した液体窒素18の液面より
若干上側の隔壁17に形成した通気孔19によって連通
され、また循環路15を奇聞している上面板20の所定
個所に、窒素ガスを自然排 0− 気するための排気孔21が形成されている。また前記循
環路15の内部に送風器としてファン22が設けられる
とともにそのファン22が循環路15の外部に配置した
モータ23に連結され、さらに循環路15の内部には、
窒素ガスを冷媒容器10の外周面に沿って水平方向すな
わち周方向に案内する複数のガイド板24が、窒素ガス
の上下方向への流動を可及的に防止すべく上下方向に対
しては所謂ラビリンス構造となるよう設けられている。
FIG. 2 is a schematic diagram showing one embodiment of the present invention, and FIG.
The figure is a detailed view corresponding to the cross section taken along the line ■-■ in FIG.
The refrigerant container 10 is Freon-12 or Freon-1.
3 (trade name, respectively) or methyl alcohol, etc., and is configured to immerse an object to be cooled, such as a tensile test piece, in the refrigerant 11, and a guide plate 12 is provided near the bottom of the refrigerant container 10. is arranged horizontally, and a stirring blade 14 rotated by a motor 3 is arranged on one end side of the guide plate 12, and the stirring blade 14 and the guide plate 12 circulate and flow the refrigerant 11 in the vertical direction to stir it. A cooling nitrogen gas circulation path 15 is formed on the entire outer circumferential side of the refrigerant container 10, and a cooling liquid nitrogen storage section 16 is further formed on the outer circumferential side of the circulation path 15. The passage 15 and the storage section 16 are communicated through a vent hole 19 formed in the upper part of the partition wall 17 separating the two, more precisely, in the partition wall 17 slightly above the liquid level of the liquid nitrogen 18 stored in the storage section 16, In addition, an exhaust hole 21 for naturally discharging nitrogen gas is formed at a predetermined location of the top plate 20 adjacent to the circulation path 15.Furthermore, a fan 22 is installed inside the circulation path 15 as a blower. is provided, and its fan 22 is connected to a motor 23 disposed outside the circulation path 15, and further inside the circulation path 15,
A plurality of guide plates 24 that guide the nitrogen gas in the horizontal direction, that is, in the circumferential direction along the outer peripheral surface of the refrigerant container 10, are provided with so-called guide plates 24 in the vertical direction to prevent the nitrogen gas from flowing in the vertical direction as much as possible. It is set up to have a labyrinth structure.

したがって前記収容部16内の液体窒素が蒸発気化する
ことにより、液体窒素自体が極低温となると同時に極低
温の窒素ガスが生じ、その窒素ガスが前記通気孔19を
経て循環路15内に流れ込みかつその循環路15内を流
動することにより、前記冷媒11と液体窒素との門で窒
素ガスを介して熱授受が生じ、その結果冷媒11を冷却
し、また冷&t11と液体窒素18との間の実質的な熱
伝達率が循環路15内の窒素ガスの対流状態によって変
化するから、循環路15内での窒素ガスの対流状態すな
わち冷媒容器10の周方向への流動速5− 4一 度を変えることにより冷媒11の冷却速度を調整するよ
うになっている。
Therefore, as the liquid nitrogen in the storage section 16 evaporates, the liquid nitrogen itself becomes extremely low temperature, and at the same time, extremely low temperature nitrogen gas is generated, and the nitrogen gas flows into the circulation path 15 through the ventilation hole 19. By flowing in the circulation path 15, heat exchange occurs through the nitrogen gas at the gate between the refrigerant 11 and liquid nitrogen, and as a result, the refrigerant 11 is cooled, and the temperature between the refrigerant 11 and the liquid nitrogen 18 is Since the substantial heat transfer coefficient changes depending on the convection state of the nitrogen gas in the circulation path 15, the convection state of the nitrogen gas in the circulation path 15, that is, the flow rate in the circumferential direction of the refrigerant container 10 is changed once. This allows the cooling rate of the refrigerant 11 to be adjusted.

さらに前記冷媒容器10内の冷[11中に温度センサ2
5および電熱線等からなるヒータ26が浸漬され、かつ
これら温度センサ25およびヒータ26が制御器27に
電気的に接続されており、温度センサ25によって検出
した冷媒11の温度が所期設定温度以上の場合は、前記
ファン22をモータ23によって回転させることにより
、窒素ガスを循環路15内で強制流動させ、また逆に冷
媒11の温度が所期設定温度以下の場合は、ファン22
を停止させるか、あるいはファン22を停止させるとと
もにヒータ26を通電発熱させるよう構成されている。
Furthermore, a temperature sensor 2 is placed inside the coolant container 10.
The temperature sensor 25 and the heater 26 are electrically connected to the controller 27, and the temperature of the refrigerant 11 detected by the temperature sensor 25 is equal to or higher than the preset temperature. In this case, the fan 22 is rotated by the motor 23 to forcefully flow the nitrogen gas in the circulation path 15, and conversely, when the temperature of the refrigerant 11 is below the preset temperature, the fan 22 is rotated by the motor 23.
or the fan 22 is stopped and the heater 26 is energized to generate heat.

またさらに、前記収容部16には、流量調整弁28を介
挿した液体窒素供給管29が接続されるとともに、収容
部16内に液面検知器30が挿入され、かつこれら&1
EiJ調整弁28と液面検知器30とは、前記制御器2
7に電気的に接続されており、収容部16内の液面レベ
ルが一定以上に低下−日 − した場合に、液面検知器30の出力信号に基づいて流量
調整弁28を開くことにより、収容部16内の液体窒素
18の1をほぼ一定に保つよう構成されている。
Furthermore, a liquid nitrogen supply pipe 29 through which a flow rate adjustment valve 28 is inserted is connected to the housing part 16, and a liquid level detector 30 is inserted into the housing part 16, and these &1
The EiJ adjustment valve 28 and the liquid level detector 30 are connected to the controller 2.
7, and by opening the flow rate regulating valve 28 based on the output signal of the liquid level detector 30 when the liquid level in the storage part 16 falls below a certain level, It is configured to keep the amount of liquid nitrogen 18 in the storage portion 16 substantially constant.

なお、第2図および第3図中符号31は保温利である。Incidentally, the reference numeral 31 in FIGS. 2 and 3 is a heat retention unit.

上述した構成から明らかなように上記の低温槽では、液
体窒素18が蒸発気化することにより生じた窒素ガスが
、前記通気孔19を経て循環路15内に入り込んでここ
に充満し、その結果循環路15内の窒素カスを熱伝達媒
体として冷[11と液体窒素18との間で熱交換が生じ
、冷媒11が冷却される。その場合、冷媒11と液体窒
素18との間の熱伝達率、より正確には循環路15内の
窒素ガスと循環路15の壁面との間の熱伝達率は、窒素
ガス側に生じる温度境界層との関係で、窒素ガスを強制
対流させるほど大きくなるので、冷媒11の温度が所期
の目標温度より相当高い場合には、ファン22が高速回
転して窒素ガスを高速度で循環流動さぜ、冷媒11の温
度が所期の目標温度に近い場合には、ファン22が低速
回転するかあるいは停止することにより、窒素ガスの流
動を抑制する。その結果、冷媒11は温度が高いときに
急速冷却され、温度が低いときには緩速冷却あるいは単
に保冷され、したがって上記の低温槽では、ファン22
の回転を制−することにより、冷媒11の温度を目標温
度に容易に設定保持することができる、。なお、冷媒1
1が過冷却状態になった場合には、前記ヒータ26を通
電発熱させ、また冷媒11を均温化するために撹拌翼1
4によって冷媒11を常時撹拌しておくことは勿論であ
る。
As is clear from the above-described configuration, in the above-mentioned cryostat, nitrogen gas generated by evaporation of liquid nitrogen 18 enters the circulation path 15 through the ventilation hole 19 and fills the circulation path 15, and as a result, the circulation path 15 is filled. Heat exchange occurs between the cold liquid 11 and the liquid nitrogen 18 using the nitrogen scum in the passage 15 as a heat transfer medium, and the refrigerant 11 is cooled. In that case, the heat transfer coefficient between the refrigerant 11 and the liquid nitrogen 18, or more precisely between the nitrogen gas in the circulation path 15 and the wall surface of the circulation path 15, is determined by the temperature boundary that occurs on the nitrogen gas side. In relation to the layer, the forced convection of the nitrogen gas increases the size, so if the temperature of the refrigerant 11 is considerably higher than the desired target temperature, the fan 22 rotates at high speed to circulate and flow the nitrogen gas at a high speed. When the temperature of the refrigerant 11 is close to the desired target temperature, the fan 22 rotates at a low speed or stops, thereby suppressing the flow of nitrogen gas. As a result, the refrigerant 11 is rapidly cooled when the temperature is high, and slowly cooled or simply kept cool when the temperature is low.
By controlling the rotation of the refrigerant 11, the temperature of the refrigerant 11 can be easily set and maintained at the target temperature. In addition, refrigerant 1
1 becomes supercooled, the heater 26 is energized to generate heat, and the stirring blade 1 is turned on to equalize the temperature of the refrigerant 11.
Of course, the refrigerant 11 is constantly stirred by the refrigerant 4.

以上の説明から明らかなようにこの発明の低温槽によれ
ば、冷媒容器の外周側に冷却用窒素ガス循環路と液体窒
素収容部とを順次形成し、液体窒素が蒸発気化すること
により生じた窒素ガスを前記循環路内に充満させてその
窒素ガスを冷媒と液体窒素との相互の間の熱伝達媒体と
し、かつ前記窒素ガスを送風手段によって前記冷媒容器
の周方向に強制流動させるとともにその流動速度を冷媒
7− の温度に応じて調整することにより熱伝達率を変えるよ
うに構成したから、液体窒素による冷媒の冷却速度を容
易かつ的確に制御でき、その結果冷媒の温度を任意の目
標温度に的確に保持することができる。またこの発明の
低温槽は、冷却用の液体窒素が蒸発気化することによっ
て生じた窒素ガスを、冷媒と液体窒素との間の熱伝達媒
体として用い、かつ冷却速度を変えるためにその窒素ガ
スの流動速度を変える構成であるから、熱交換媒体とし
てヘリウムガスを用い、かつその1量および濃度を変え
ることにより、冷却速度を制御する構成の従来の低温槽
と比べて、全体の構成を大幅に簡素化することができ、
また比較的低廉な液体窒素を用いることと相まって、ラ
ンニングコストを低減することができるなどの効果が得
られる。
As is clear from the above description, according to the cryostat of the present invention, a cooling nitrogen gas circulation path and a liquid nitrogen storage section are sequentially formed on the outer circumferential side of the refrigerant container, and the liquid nitrogen generated by evaporation and vaporization is Filling the circulation path with nitrogen gas and using the nitrogen gas as a heat transfer medium between the refrigerant and liquid nitrogen, and forcing the nitrogen gas to flow in the circumferential direction of the refrigerant container by a blowing means. Since the heat transfer coefficient is changed by adjusting the flow rate according to the temperature of the refrigerant 7-, the cooling rate of the refrigerant by liquid nitrogen can be easily and accurately controlled, and as a result, the temperature of the refrigerant can be adjusted to any desired target. The temperature can be maintained accurately. Further, the cryogenic chamber of the present invention uses nitrogen gas produced by evaporation of liquid nitrogen for cooling as a heat transfer medium between the refrigerant and the liquid nitrogen, and uses the nitrogen gas to change the cooling rate. Since it is configured to change the flow rate, the overall configuration can be significantly changed compared to a conventional cryogenic chamber that uses helium gas as a heat exchange medium and controls the cooling rate by changing the amount and concentration of helium gas. can be simplified,
Furthermore, in combination with the use of relatively inexpensive liquid nitrogen, effects such as reduced running costs can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の低温槽の一例を示す略解図、第2図はこ
の発明の一実施例を示す模式図、第3図は第2図の■−
■線に沿う詳細断面図である。 9− 8− 10・・・冷媒容器、 11・・・冷媒、 15・・・
冷却用窒素ガス循環路、 16・・・冷却用液体窒素収
容部、17・・・隔壁、 18・・・液体窒素、 19
・・・通気孔、22・・・ファン。 出願人  星 野  弘 代理人  弁理士 豊 1)武 久 (ほか1名) −10−
Fig. 1 is a schematic diagram showing an example of a conventional cryogenic chamber, Fig. 2 is a schematic diagram showing an embodiment of the present invention, and Fig. 3 is a schematic diagram showing an example of the conventional cryostat.
■It is a detailed sectional view along the line. 9- 8- 10... Refrigerant container, 11... Refrigerant, 15...
Cooling nitrogen gas circulation path, 16... Cooling liquid nitrogen storage section, 17... Partition wall, 18... Liquid nitrogen, 19
...Vent, 22...Fan. Applicant Hiroshi Hoshino Agent Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) -10-

Claims (1)

【特許請求の範囲】[Claims] 冷媒を収容した冷媒容器の外周側全体に、冷却用窒素ガ
スを循環流動させるための循環路を形成するとともに、
さらにその循環路の外周側に冷却用液体窒素収容部を形
成し、かつこれら循環路と冷却用液体窒素収容部とを連
通させ、さらに前記循環路内に、冷却用窒素ガスを前記
冷媒容器の周方向へ流動させるとともにその流動速度を
前記冷媒の温度に応じて調整可能な送風器を設けたこと
を特徴とする冷却用低温槽。
A circulation path for circulating cooling nitrogen gas is formed around the entire outer circumferential side of the refrigerant container containing the refrigerant, and
Further, a cooling liquid nitrogen storage section is formed on the outer circumferential side of the circulation path, and these circulation paths and the cooling liquid nitrogen storage section are communicated with each other, and cooling nitrogen gas is supplied to the refrigerant container in the circulation path. A cooling cryogenic tank characterized by being provided with an air blower which causes the refrigerant to flow in the circumferential direction and whose flow rate can be adjusted according to the temperature of the refrigerant.
JP18025682A 1982-10-14 1982-10-14 Low-temperature tank for cooling Granted JPS5969677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18025682A JPS5969677A (en) 1982-10-14 1982-10-14 Low-temperature tank for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18025682A JPS5969677A (en) 1982-10-14 1982-10-14 Low-temperature tank for cooling

Publications (2)

Publication Number Publication Date
JPS5969677A true JPS5969677A (en) 1984-04-19
JPS647310B2 JPS647310B2 (en) 1989-02-08

Family

ID=16080075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18025682A Granted JPS5969677A (en) 1982-10-14 1982-10-14 Low-temperature tank for cooling

Country Status (1)

Country Link
JP (1) JPS5969677A (en)

Also Published As

Publication number Publication date
JPS647310B2 (en) 1989-02-08

Similar Documents

Publication Publication Date Title
US3626706A (en) Cryostat
EP2372274A2 (en) Freezer with liquid cryogen refrigerant and method
JPH04320399A (en) Cooling device for electronic apparatus
JPS5969677A (en) Low-temperature tank for cooling
US3866431A (en) Method of and means for freezing by a cooling arrangement embodying a secondary refrigeration system and primary absorption refrigeration apparatus associated therewith
US5343717A (en) Refrigerator with intermittently working sorption refrigerating apparatus
JPH0712421A (en) Cooling device
JP3757637B2 (en) Sample cooling device
JPH08219630A (en) Thermostat
JPH0296634A (en) Liquid tank type environment testing apparatus
JP2502240B2 (en) Dew condensation prevention method for constant temperature and humidity chamber
US1947442A (en) Refrigerated cabinet
US2271574A (en) Reprigeration
JPS5824451Y2 (en) Jiyo Hatsurei Yakusouchi
JPS63297983A (en) Cryogenic cold reserving device
JPS6339870B2 (en)
JPH0847630A (en) Coolant feeder
JPH07284675A (en) Liquid circulation type thermostatic device
JPH06194025A (en) Cold storage type refrigerator
SU1224517A1 (en) Arrangement for cryogenic freezing of biological objects
US1877187A (en) Refrigerating apparatus and method
JPH08136108A (en) Temperature control method in cold keeping unit
JPS58190669A (en) Heat accumulation type cold water generator
JPS63294471A (en) Low-temperature heat insulator
ES2975796A1 (en) Thermostabilization system of a charge within a dielectric fluid (Machine-translation by Google Translate, not legally binding)