JPH0118561Y2 - - Google Patents

Info

Publication number
JPH0118561Y2
JPH0118561Y2 JP1984147232U JP14723284U JPH0118561Y2 JP H0118561 Y2 JPH0118561 Y2 JP H0118561Y2 JP 1984147232 U JP1984147232 U JP 1984147232U JP 14723284 U JP14723284 U JP 14723284U JP H0118561 Y2 JPH0118561 Y2 JP H0118561Y2
Authority
JP
Japan
Prior art keywords
temperature
cooling
freezing
refrigerant
buffer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984147232U
Other languages
Japanese (ja)
Other versions
JPS6164101U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984147232U priority Critical patent/JPH0118561Y2/ja
Publication of JPS6164101U publication Critical patent/JPS6164101U/ja
Application granted granted Critical
Publication of JPH0118561Y2 publication Critical patent/JPH0118561Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、血液や、細胞等を凍結するための装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for freezing blood, cells, etc.

〔従来の技術〕[Conventional technology]

従来、この種の凍結方法としては、既に収納管
に収容せる緩衝液の中に被凍結物である血液や細
胞等を入れ、この緩衝液を凍結することが知られ
ている。
Conventionally, as a freezing method of this type, it is known that blood, cells, etc. to be frozen are placed in a buffer solution already contained in a storage tube, and the buffer solution is frozen.

ところで、一般に純粋物質が一定圧力下で冷却
されたときの時間に対する温度変化は、冷却曲線
として知られており、これによると当該物質が凝
固点に達した時点で直ちに凝固が始まるとはかぎ
らず、一般的には当該凝固点よりも低い温度まで
過冷却された後、凝固が如まり、これと同時に温
度が上昇して真の凝固点に達し、さらに全物質の
凝固が終つてから再び温度が低下していくことに
なる。
By the way, the temperature change over time when a pure substance is cooled under a constant pressure is generally known as a cooling curve, and according to this, solidification does not necessarily begin immediately when the substance reaches its freezing point; Generally, after being supercooled to a temperature lower than the freezing point, the solidification occurs, and at the same time the temperature rises to reach the true freezing point, and then the temperature decreases again after all the substances have solidified. I'm going to go there.

従つて、従来の単に冷却するだけの上記凍結方
法によるときは、凍結過程において緩衝液が凍結
時に過冷却状態となり、その後に急激な温度上昇
をもたらすことになるから、この温度急変による
当該熱衝撃により血液や細胞が斃死してしまうと
いう重大な欠陥を有するのである。
Therefore, when using the above-mentioned conventional freezing method, which involves simply cooling, the buffer solution becomes supercooled during the freezing process, which then causes a rapid temperature rise, resulting in the thermal shock caused by this sudden temperature change. It has a serious defect in that blood and cells die due to this.

そこで、凝固点温度まで冷却した緩衝液につ
き、その細胞等が配在されていない個所を冷却し
て、当該個所から凝固を成長させ、細胞等に対す
る熱衝撃を回避しようとする凍結方法も提案され
ているが、そのための装置としては緩衝液の温度
に外気による影響を与えて凝固が行なわれなかつ
たり、また操作が煩雑であるため自動制御が困難
となり、実用性に乏しいものとなつている。
Therefore, a freezing method has been proposed in which a buffer solution that has been cooled to the freezing point temperature is used to cool areas where cells, etc. are not located, and to grow clots from those areas, thereby avoiding thermal shock to cells, etc. However, devices for this purpose are impractical because the outside air affects the temperature of the buffer solution, preventing coagulation, and the operation is complicated, making automatic control difficult.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記血液や細胞等の凍結にあつては、一度に多
種多量のものを処理でき、その取扱いも簡便なも
のとなし、さらに前記収納管をLN2の如き冷媒中
に直接浸漬して冷却したり、さらにこれを取り出
すといつた厄介な操作を排することで、さらにそ
の取扱いを容易にすると共に、温度制御も行ない
易くして、前記の急激な温度上昇による血液や細
胞等の斃死を確実に回避できるものを提供しよう
とするのが、その目的である。
In the case of freezing blood and cells, etc., it is possible to process a large number of different types at once, and the handling is simple. Furthermore, the storage tube can be directly immersed in a refrigerant such as LN 2 to cool it. Furthermore, by eliminating the troublesome operations involved in taking it out, it is easier to handle it, and it is also easier to control the temperature, ensuring that blood and cells do not die due to the sudden temperature rise mentioned above. Its purpose is to provide something that can be avoided.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、上記の目的を達成するため、収納管
内の緩衝液中に血液、細胞等の被凍結物を収容し
て起立状態に保持する収納部が、断熱筐体内に区
画形成された凍結室内に収脱自在なるよう配置さ
れ、当該収納部が載置されて収納管の底面が当接
する冷却ブロツクには、液化ガス冷媒をオンオフ
制御することにより、当該ブロツクを温度調整自
在となし、上記凍結室に隣接の冷却室には、前記
液化ガス冷媒を導入して加温することにより、当
該冷媒をガス化する熱交換器と、当該ガス化によ
り所望の温度としたガス冷媒を、上記冷却室内に
噴出するノズルと、同室内に供与されたガス冷媒
を、前記凍結室内に送気するフアンを設けてなる
血液、細胞等の凍結装置。
In order to achieve the above-mentioned purpose, the present invention has a storage section that stores objects to be frozen, such as blood and cells, in a buffer solution in a storage tube and holds them in an upright state, in a freezing chamber that is partitioned into a heat-insulating casing. The cooling block, on which the storage section is placed and in contact with the bottom of the storage tube, is able to freely adjust the temperature of the block by controlling the liquefied gas refrigerant on and off. A cooling chamber adjacent to the chamber includes a heat exchanger that gasifies the refrigerant by introducing and heating the liquefied gas refrigerant, and a gas refrigerant brought to a desired temperature by the gasification into the cooling chamber. A freezing device for freezing blood, cells, etc., which is provided with a nozzle that spouts air into the freezing chamber, and a fan that blows gas refrigerant supplied into the same chamber into the freezing chamber.

〔作用〕[Effect]

収納管内の緩衝液につき、下位の緩衝液と、被
凍結物が存する上位の緩衝液とを、夫々冷却ブロ
ツクとガス冷媒とにより降温制御でき、これによ
つて下端の緩衝液に結晶の核を形成した後、これ
をそれより上位にある緩衝液に成長させることが
でき、かくして熱衝撃を回避した血液、細胞等の
被凍結の凍結を行うことが可能となり、かつ該被
凍結物が投入された収納管を収納部に起立させた
状態にて断熱筐体に出入すればよいから収納管を
液体冷媒中に浸漬することなしに、降温制御が可
能であり、温度制御の自動化も簡易かつ高精度に
実施することができる。
Regarding the buffer solution in the storage tube, the temperature of the lower buffer solution and the upper buffer solution containing the material to be frozen can be controlled by cooling blocks and gas refrigerants, respectively, and this allows crystal nuclei to be formed in the lower buffer solution. After being formed, it can be grown into a buffer solution above it, thus making it possible to freeze blood, cells, etc. to be frozen while avoiding thermal shock, and when the material to be frozen is input. Since the storage tube can be moved in and out of the insulated casing while standing upright in the storage section, it is possible to control the temperature drop without immersing the storage tube in liquid refrigerant, and automation of temperature control is also simple and highly efficient. It can be carried out with precision.

〔実施例〕〔Example〕

次に、本考案を図示の一実施例について説示す
ると、Aが血液、細胞等を凍結する装置であり、
被凍結物を収納した状態で所定位置に支持する収
納支持部1と、該被凍結物を所定条件で凍結する
降温制御部2とから構成され、かつ上記収納冷却
支持部1は被凍結物が起立状態の収納管内に収納
された収納部3と、該収納部3を載置自在とした
冷却支持部4とから構成され、上記降温制御部2
は上記被凍結部を凍結させる凍結用部5と、該冷
却用部5の温度条件を制御する制御部6とから構
成され、さらに、上記凍結部5は気相冷却部7と
冷却支持部4を冷却するためのブロツク冷却部8
とからなつている。
Next, the present invention will be explained with reference to an illustrated embodiment. A is a device for freezing blood, cells, etc.;
It is composed of a storage support section 1 that supports the frozen object in a predetermined position while it is stored therein, and a temperature drop control section 2 that freezes the frozen object under predetermined conditions. It is composed of a storage section 3 stored in a storage tube in an upright state, and a cooling support section 4 on which the storage section 3 can be freely placed, and the temperature drop control section 2
is composed of a freezing section 5 that freezes the frozen section, and a control section 6 that controls the temperature conditions of the cooling section 5. Furthermore, the freezing section 5 includes a gas phase cooling section 7 and a cooling support section 4. block cooling section 8 for cooling the
It is made up of.

上記収納部3は、有底筒状とした複数本の収納
管31が起立支持台34に挿入位置されたもの
で、同管31には、例えばジメチルスルオキシド
(DMSO)がブドウ糖、グリセリン、クエン酸ナ
トリウムが蒸留水に溶解されている緩衝液32を
収容し、該緩衝液32中に、Tセル、Bセル、リ
ンパ球等の血液や、ワクチン、ガン細胞等の細胞
その他の被凍結物33を投入する。
In the storage section 3, a plurality of storage tubes 31 each having a cylindrical shape with a bottom are inserted into an upright support 34. A buffer solution 32 in which sodium chloride is dissolved in distilled water is contained, and in the buffer solution 32, blood such as T cells, B cells, lymphocytes, cells such as vaccines, cancer cells, and other objects to be frozen 33 are stored. Insert.

そして、この際当該被凍結物33は、熱衝撃を
回避するため、上記緩衝液32の中程下位に浮遊
させてあり、起立支持台34の載置基板35に開
口された底孔36を収納管31を支承すると共
に、この際同管31の底面が、少しだけ下方へ突
出する寸法に形成されている。
At this time, in order to avoid thermal shock, the object to be frozen 33 is suspended in the middle lower part of the buffer solution 32, and is accommodated in the bottom hole 36 opened in the mounting substrate 35 of the upright support 34. The tube 31 is supported, and at this time, the bottom surface of the tube 31 is dimensioned to protrude slightly downward.

次に前記冷却支持部4は、第2図に示す如く周
壁41の外側に断熱材42を周設してなる断熱筐
体43の内部底位置にあつて、上記起立支持台3
4を載置自在とした冷却基台44を具有し、当該
基台44は、下面側の断熱材45と冷却ブロツク
46とからなり、上記冷却ブロツク46上に起立
支持台34を載置したとき、前記の通り底孔36
から突出している収納管31の底面が冷却ブロツ
ク46の上面に当接することになるのであり、ま
たこの際起立支持台34の載置基板35は他部材
との氷結を避けるためテフロン等のプラスチツク
材により形成するのがよい。
Next, as shown in FIG. 2, the cooling support part 4 is located at the inner bottom position of the heat insulating casing 43, which has a heat insulating material 42 provided around the outside of the peripheral wall 41.
The cooling base 44 has a cooling base 44 on which a cooling device 4 can be freely placed, and the base 44 is composed of a heat insulating material 45 on the lower surface side and a cooling block 46, and when the standing support base 34 is placed on the cooling block 46, , as described above, the bottom hole 36
The bottom surface of the storage tube 31 protruding from the cooling block 46 comes into contact with the top surface of the cooling block 46, and at this time, the mounting substrate 35 of the upright support 34 is made of a plastic material such as Teflon to avoid freezing with other components. It is preferable to form it by

上記冷却ブロツク46は、銅などにより形成さ
れ、これに前記ブロツク冷却部8が付設されてい
るが、図示例では冷却ブロツク46内に設けられ
た蛇行状り冷却路47に、冷媒入路81と冷媒出
路82を連結し、冷媒入路81の電磁弁83の開
成によつて、当該冷却路47にLN2等の液化ガス
冷媒が流過するが、この際冷媒出路82に設けた
ニードルバルブ84を調整することで、当該冷媒
の冷却路47における滞留時間を加減し、これに
よつて冷却ブロツク46の温度を調整し得るよう
になつており、当該冷媒は冷媒タンク51の供給
パイプ52から分流されるようになつている。
The cooling block 46 is made of copper or the like, and the block cooling section 8 is attached thereto. In the illustrated example, a meandering cooling path 47 provided in the cooling block 46 is connected to a refrigerant inlet path 81. By connecting the refrigerant outlet path 82 and opening the solenoid valve 83 of the refrigerant inlet path 81, a liquefied gas refrigerant such as LN 2 flows through the cooling path 47. At this time, the needle valve 84 provided in the refrigerant outlet path 82 is opened. By adjusting the refrigerant, the residence time of the refrigerant in the cooling path 47 can be adjusted, thereby adjusting the temperature of the cooling block 46, and the refrigerant is diverted from the supply pipe 52 of the refrigerant tank 51. It is becoming more and more common.

さらに、前記凍結部5の気相冷却部7には、上
記断熱筐体43の外部に設置された前記冷媒タン
ク51の供給パイプ52から分岐された流入パイ
プ71に、熱交換器72が連結されると共に、同
器72からノズル74を設けたガスパイプ73が
突出している。
Furthermore, a heat exchanger 72 is connected to the gas phase cooling section 7 of the freezing section 5 to an inflow pipe 71 branched from the supply pipe 52 of the refrigerant tank 51 installed outside the heat insulating casing 43. At the same time, a gas pipe 73 having a nozzle 74 protrudes from the container 72.

さらに、第2図に明示の如く前記断熱筐体43
の内部は所定間隔を有して縦設された区画板5
3,54により、前記冷却ブロツク46が配設さ
れている凍結室55と、これに隣接され、上記区
画板53の通気口53′により連通している冷却
室56およびさらに同室56に隣接すると共に熱
交換器72等が装備される装備室57とに区画さ
れている。
Furthermore, as clearly shown in FIG.
The inside of the partition board 5 is vertically arranged at a predetermined interval.
3 and 54, a freezing chamber 55 in which the cooling block 46 is disposed, a cooling chamber 56 adjacent to this and communicating through the vent 53' of the partition plate 53, and further adjacent to the freezing chamber 55 and It is divided into an equipment room 57 in which a heat exchanger 72 and the like are installed.

従つて、上記ガス冷却部7により、冷媒タンク
51から給送された液化ガスが、熱交換器72に
よりガス化され、ガスパイプ73の先端に設けた
ノズル74から噴出され、これがノズル74の前
方位置に斜交状にて設けられた拡散板77に衝当
して冷気室56に拡散するが、当該拡散ガスは装
備室57内に設けられたモーター75により駆動
されるフアン76によつて、前記の通気口53′
から凍結室55内に進入し、これが収納部3にお
ける緩衝液32を冷却することとなる。
Therefore, the liquefied gas supplied from the refrigerant tank 51 by the gas cooling unit 7 is gasified by the heat exchanger 72 and ejected from the nozzle 74 provided at the tip of the gas pipe 73. The diffused gas collides with a diffusion plate 77 provided in an oblique manner and diffuses into the cold air chamber 56, but the diffused gas is diffused into the cold air chamber 56 by a fan 76 driven by a motor 75 provided in the equipment chamber 57. vent 53'
The liquid then enters the freezing chamber 55, which cools the buffer solution 32 in the storage section 3.

さらに制御部6は、レコーダー61′を付した
コントローラー61を具備し、これに凍結室55
の雰囲気温度を感知する雰囲気温度センサー62
と、前記冷却ブロツク46の温度を感知するブロ
ツク温度センサー63とが夫々接続され、上記各
温度センサー62,63からの入力により、当該
コントローラー61が前記熱交換器72と電磁弁
83の夫々の熱源温度、開閉を制御し、凍結室5
5と冷却ブロツク46の各温度を夫々所望温度に
調整できるようになつている。
Furthermore, the control unit 6 includes a controller 61 equipped with a recorder 61', which is connected to a freezing chamber 55.
Ambient temperature sensor 62 that senses the ambient temperature of
and a block temperature sensor 63 that senses the temperature of the cooling block 46 are connected to each other, and in response to inputs from the temperature sensors 62 and 63, the controller 61 controls the heat sources of the heat exchanger 72 and the solenoid valve 83. Control temperature, opening and closing, freezing chamber 5
5 and cooling block 46 can be adjusted to desired temperatures.

次に、その用法について説明する。 Next, its usage will be explained.

先ず、外部に取り出した起立支持台34には緩
衝液32を収容した収納管31を挿入立置し、こ
れらの緩衝液32中には、過所に血液や細胞等の
被凍結物33を配しておく。
First, the storage tube 31 containing the buffer solution 32 is inserted into the standing support stand 34 taken out to the outside, and the storage tube 31 containing the buffer solution 32 is placed in the buffer solution 32 at a certain point. I'll keep it.

つゞいて、この起立支持台34を断熱筐体43
内に入れて、冷却ブロツク46上におくことで、
収納管31の底面を同ブロツク46に当接させ
る。
Then, this standing support stand 34 is attached to a heat insulating casing 43.
By placing it inside the cooling block 46,
The bottom surface of the storage tube 31 is brought into contact with the same block 46.

さらに、熱交換器72の図示しない電気ヒータ
に通電すると共に、電磁弁83を励磁して開成さ
せることで、ノズル74から前記の如く当該交換
器72により気化させた冷媒ガスを噴出させ、同
時に同上ブロツク46の冷却路50には液化冷媒
をそのまま流過させ、これによつて冷却された冷
却ブロツク46により収納管31を介して上記緩
衝液32の下端部を冷却するのと一緒に、該緩衝
液32の上部は冷却室56から凍結室55に送ら
れる冷媒ガスにより冷却する。
Further, by energizing the electric heater (not shown) of the heat exchanger 72 and energizing the solenoid valve 83 to open it, the refrigerant gas vaporized by the exchanger 72 as described above is ejected from the nozzle 74, and at the same time The liquefied refrigerant is passed through the cooling path 50 of the block 46 as it is, and the cooling block 46 cooled by this cools the lower end of the buffer solution 32 through the storage pipe 31. The upper part of the liquid 32 is cooled by refrigerant gas sent from the cooling chamber 56 to the freezing chamber 55.

この際、被凍結物33の凍結は、次のようにし
て行われる。
At this time, the object to be frozen 33 is frozen in the following manner.

まず、前記コントローラー61による熱交換器
72および電磁弁83の制御によつて、凍結室5
6と冷却ブロツク46を所要温度に調整すること
で、第4図の第1時間帯aに示す如く、冷却ブロ
ツク46を同図の実線イに示すように、収納管3
1,31……に収容されている緩衝液32が、そ
の凝固点に達する迄降温させ、当該温度に保持さ
せる。
First, by controlling the heat exchanger 72 and solenoid valve 83 by the controller 61, the freezing chamber 5
By adjusting the temperature of the cooling block 6 and the cooling block 46 to the required temperature, as shown in the first time period a of FIG.
The temperature of the buffer solution 32 contained in 1, 31, . . . is lowered until it reaches its freezing point, and the temperature is maintained at that temperature.

また、これと同時に同図の実線ロのように、冷
却室56から凍結室55に送られる冷媒ガスを降
温させていくが、当該降温温度は冷却ブロツク4
6の第1時間帯aにおける最終時点にあつて、凝
固点よりも約5℃程度高温となるよう制御する。
At the same time, the temperature of the refrigerant gas sent from the cooling chamber 56 to the freezing chamber 55 is lowered, as shown by the solid line B in the figure.
At the final point in the first time period a of No. 6, the temperature is controlled to be about 5° C. higher than the freezing point.

次に、第2時間帯bにあつては、上記凝固点に
保持されていた冷却ブロツク46を、−35℃程度
となるまで降温させるが、このとき凍結室55が
前記の降温を続け、上記の如く同上ブロツク46
が−35℃に達した時点で、凝固点となるように制
御する。
Next, in the second time period b, the temperature of the cooling block 46 that has been maintained at the freezing point is lowered to about -35°C, but at this time, the temperature of the freezing chamber 55 continues to decrease as described above, and the temperature of the freezing chamber 55 continues to decrease as described above. Same as above block 46
The freezing point is controlled when the temperature reaches -35°C.

さて、上記の通り冷却ブロツク46を降温制御
すれば、同ブロツク46に載置されている収納管
31の下端部の緩衝液32も、第4図のイ′に示
す通り降温し、第2時間帯bにあつて、当該部分
の緩衝液32が一部過冷却を起こして結晶の核が
形成され、以後当該結晶が上方へ向け成長してい
くこととなる。
Now, if the temperature of the cooling block 46 is controlled to decrease as described above, the temperature of the buffer solution 32 at the lower end of the storage tube 31 placed on the cooling block 46 will also decrease as shown in FIG. In band b, part of the buffer solution 32 in this area is supercooled to form a crystal nucleus, and thereafter the crystal will grow upward.

次に、第3時間帯cにあつては、収納管31内
の緩衝液32を、すべて凍結してしまうため、凍
結室55および冷却ブロツク46が恒温状態に保
持されるよう制御するのであり、さらに第4時間
帯域dと第5時間帯域eでは、凍結室55だけを
図示の如く最終凍結温度まで降温制御することに
なるが、このような一連の降温制御により、被凍
結物近傍の緩衝液温度は、同図の二点鎖線ロ′に
示す如く、凍結室55の降温状態ロとは、位相の
ずれた降温となるから、過冷却現象を生ずること
なく、被凍結物33が凍結される。
Next, in the third time period c, the buffer solution 32 in the storage tube 31 is completely frozen, so the freezing chamber 55 and the cooling block 46 are controlled to be maintained at a constant temperature. Furthermore, in the fourth time zone d and the fifth time zone e, only the freezing chamber 55 is controlled to be lowered in temperature to the final freezing temperature as shown in the figure. As shown by the two-dot chain line B' in the figure, the temperature decreases out of phase with the temperature decrease state B of the freezing chamber 55, so the object 33 to be frozen is frozen without causing any supercooling phenomenon. .

〔考案の効果〕[Effect of idea]

冷却ブロツクと冷却室からのガス冷媒とによ
り、収納管内の緩衝液につき、夫々降温制御可能
としたから、下端の緩衝液に結晶核を形成した
後、これをそれより上位の緩衝液に成長させるこ
とができ、血液や細胞等の凍結時の過冷却による
温度急上昇の影響を与えることがないから、当該
血液や細胞等の斃死を回避でき、かくして生存率
の高い凍結を行ない得ることとなる。
By using the cooling block and the gas refrigerant from the cooling chamber, it is possible to control the temperature drop of each of the buffer solutions in the storage tube, so after crystal nuclei are formed in the lower end buffer solution, these are allowed to grow in the upper buffer solution. Since there is no effect of temperature rise due to supercooling during freezing of blood, cells, etc., death of the blood, cells, etc. can be avoided, and thus freezing with a high survival rate can be performed.

また、収納管を液体冷媒中に浸漬することな
く、上記の下端は冷却ブロツクで、上端側はガス
冷媒で降温制御することにより、血液や細胞等が
凍結可能となるから、取扱いも至便で、温度制御
の自動化につき、その精度を簡易に高めることが
できる。
In addition, blood and cells can be frozen by controlling the temperature drop with a cooling block at the lower end and a gas refrigerant at the upper end without immersing the storage tube in liquid refrigerant, making handling convenient. By automating temperature control, its accuracy can be easily increased.

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案に係る装置の一実施例を示し、第1
図は装置全体の正面説明図、第2図は同横断平面
図、第3図は第2図の−線に沿う断面図、第
4図は同装置の稼動状況を示す各部の温度制御経
過図表である。 3……収納部、31……収納管、32……緩衝
液、33……被凍結物、43……断熱筐体、46
……冷却ブロツク、55……凍結室、56……冷
却室、72……熱交換器、74……ノズル、76
……フアン。
The figure shows one embodiment of the device according to the present invention.
The figure is a front explanatory view of the entire device, Figure 2 is a cross-sectional plan view of the same, Figure 3 is a sectional view taken along the - line in Figure 2, and Figure 4 is a temperature control progress chart of each part showing the operating status of the device. It is. 3...Storage section, 31...Storage tube, 32...Buffer solution, 33...Frozen object, 43...Insulated casing, 46
... Cooling block, 55 ... Freezing chamber, 56 ... Cooling room, 72 ... Heat exchanger, 74 ... Nozzle, 76
...Juan.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 収納管内の緩衝液中に血液、細胞等の被凍結物
を収容して起立状態に保持する収納部が、断熱筐
体内に区画形成された凍結室内に収脱自在なるよ
う配置され、当該収納部が載置されて収納管の底
面が当接する冷却ブロツクには、液化ガス冷媒を
オンオフ制御することにより、当該ブロツクを温
度調整自在となし、上記凍結室に隣接の冷却室に
は、前記液化ガス冷媒を導入して加温することに
より、当該冷媒をガス化する熱交換器と、当該ガ
ス化により所望の温度としたガス冷媒を、上記冷
却室内に噴出するノズルと、同室内に供与された
ガス冷媒を、前記凍結室内に送気するフアンを設
けてなる血液、細胞等の凍結装置。
A storage section that stores objects to be frozen such as blood and cells in a buffer solution in a storage tube and holds them in an upright state is arranged so as to be removable within a freezing chamber defined in a heat-insulating casing. The temperature of the cooling block is controlled by turning on and off the liquefied gas refrigerant, and the cooling chamber adjacent to the freezing chamber is equipped with the liquefied gas. a heat exchanger that gasifies the refrigerant by introducing and heating the refrigerant; a nozzle that spouts the gas refrigerant to a desired temperature through the gasification into the cooling chamber; A freezing device for blood, cells, etc., which is provided with a fan that blows a gas refrigerant into the freezing chamber.
JP1984147232U 1984-09-28 1984-09-28 Expired JPH0118561Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984147232U JPH0118561Y2 (en) 1984-09-28 1984-09-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984147232U JPH0118561Y2 (en) 1984-09-28 1984-09-28

Publications (2)

Publication Number Publication Date
JPS6164101U JPS6164101U (en) 1986-05-01
JPH0118561Y2 true JPH0118561Y2 (en) 1989-05-31

Family

ID=30705463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984147232U Expired JPH0118561Y2 (en) 1984-09-28 1984-09-28

Country Status (1)

Country Link
JP (1) JPH0118561Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698179B2 (en) * 1992-02-21 1994-12-07 サンデン株式会社 Liquid-cooled cooling case article holding device
JP5870153B2 (en) * 2014-04-24 2016-02-24 大陽日酸株式会社 Supercooling freezing apparatus and method
JP5870152B2 (en) * 2014-04-24 2016-02-24 大陽日酸株式会社 Supercooling freezing apparatus and method

Also Published As

Publication number Publication date
JPS6164101U (en) 1986-05-01

Similar Documents

Publication Publication Date Title
CA1197467A (en) Method of freezing fertilized ova, spermatozoa or the like and apparatus therefor
JPS6048481B2 (en) Low-temperature freezing method and device for biological materials
JPS6056B2 (en) Freezing equipment for fertilized eggs, sperm, etc.
JP5043199B2 (en) Method and system for freezing biological material at a controlled rate
US10788250B2 (en) Ice making assemblies and methods for making clear ice
CA1307932C (en) Thermal storage unit with coil extension during melt
JPH0118561Y2 (en)
JPS60161901A (en) Device for freezing biological product in straw
JPH0422621B2 (en)
US4757692A (en) Embryo freezer
JPH0121923Y2 (en)
US4783973A (en) Apparatus for freezing by means of a cryogenic liquid biological products placed in straws
US2835477A (en) Temperature control apparatus and method
JPH02200601A (en) Freezer of zygote, sperm or the like
JPH02300101A (en) Ice inoculation and ice inoculator in freeze storage apparatus for biological sample
US3893308A (en) Freezing apparatus particularly useful for freezing spermatozoa
US2095847A (en) Refrigerating apparatus
RU2777651C1 (en) Cryogenic concentrator for freezing liquid media
SU989272A1 (en) Unit for freezing animal embryons
JPS6324903Y2 (en)
SU1097875A1 (en) Device for freezing living biological objects
JPS5827555A (en) Freezing of fertilized egg and sperm
US2560488A (en) Combination soda fountain and ice-cream cabinet
JP2756999B2 (en) Heating and cooling device for thermal analysis samples
SU1753365A1 (en) Installation for thermal cycling of articles