JPH02300101A - Ice inoculation and ice inoculator in freeze storage apparatus for biological sample - Google Patents

Ice inoculation and ice inoculator in freeze storage apparatus for biological sample

Info

Publication number
JPH02300101A
JPH02300101A JP12011489A JP12011489A JPH02300101A JP H02300101 A JPH02300101 A JP H02300101A JP 12011489 A JP12011489 A JP 12011489A JP 12011489 A JP12011489 A JP 12011489A JP H02300101 A JPH02300101 A JP H02300101A
Authority
JP
Japan
Prior art keywords
ice
planting
refrigerator
biological sample
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12011489A
Other languages
Japanese (ja)
Inventor
Hiroshi Iga
伊賀 弘
Hidekazu Yasui
安井 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP12011489A priority Critical patent/JPH02300101A/en
Publication of JPH02300101A publication Critical patent/JPH02300101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To provide the title ice inoculation method and ice inoculator so designed that within a freeze storage apparatus made up of vapor phase and liquid phase sections, a biological sample-stored vessel is immersed in the liquid phase section with its upper end part exposed to the vapor phase section, and the vapor phase section is cooled to bring a storage liquid projected into the vapor phase section to a supercooling state followed by freezing a storage liquid enveloping a sample. CONSTITUTION:Within a freeze storage apparatus 1 made up of (A) a liquid phase section 12 with brine and (B) a vapor phase section 13, straws 6a and tubes 6b each holding both biological sample A and storage liquid B are placed so as to project their upper end parts into the vapor phase section. The apparatus 1 is additionally equipped with a circulating unit 3 for brine circulation, a refrigeration machine 2 and a ice inoculator 4, and when ice inoculation becomes necessary to prevent the biological samples A in the straws and/or tubes from supercooling, a coolant is made to flow from an ice-inoculating coolant channel 42 via an ice-inoculating chiller 41 into the refrigeration machine. The storage liquid near the upper end part is brought to a supercooling state due to rapid fall in the temperature of the vapor phase section, and with this storage liquid as nucleus, a storage liquid enveloping the samples A is frozen in a state free from supercooling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は動植物の細胞、胚、受精卵等の生物試料を凍結
保存するための装置における植氷方法および植氷装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ice planting method and an ice planting apparatus in an apparatus for cryopreserving biological samples such as animal and plant cells, embryos, and fertilized eggs.

〔従来の技術〕[Conventional technology]

生物試料を凍結保存する装置には種々のタイプのものが
あるが、その一つに該試料を試料保存液とともにチュー
ブ、ストロ−等と称される容器に収容し、該容器の試料
収容部分を液相部に漬け、該液相部を冷凍機により冷却
するものがある。
There are various types of devices for cryopreserving biological samples, one of which is to store the sample together with a sample preservation solution in a container called a tube, straw, etc. Some products are soaked in a liquid phase and the liquid phase is cooled by a refrigerator.

このような装置において生物試料を凍結保存する場合の
問題として、試料および保存液を単に冷却するだけでは
、試料凍結過程において過冷却が生じ、該過冷却後の凍
結による急激な温度上昇によって試料の健全な生存率が
低下するという問題がある。
A problem with cryopreservation of biological samples in such devices is that simply cooling the sample and preservation solution will cause supercooling during the sample freezing process, and the sudden temperature rise due to freezing after supercooling will cause the sample to deteriorate. There is a problem that the healthy survival rate decreases.

このよ・)な過冷却を防止するために一般には植氷が行
われるが、該植氷方法には、■容器に機械的に振動、衝
撃を与える、■液体窒素で冷却したニードルを保存液に
漬ける、■液体窒素で冷却したピンセットを容器外壁に
接触させる、■凍結保存装置の気相部に出ている容器部
分に液体窒素通路を設けた植氷プレートを接触させる、
■凍結保存装置の気相部に出ている部分にペルチェ効果
を利用した冷却素子搭載の植氷プレートを接触させる、
といった方法が知られている。
In order to prevent such supercooling, ice planting is generally performed, but the ice planting method includes: (1) mechanically vibrating and impacting the container; (2) placing a needle cooled with liquid nitrogen in a storage solution. ■Place tweezers cooled with liquid nitrogen in contact with the outer wall of the container;■Place an ice planting plate with a liquid nitrogen passage in contact with the part of the container that is exposed to the gas phase of the cryopreservation device.
■Place an ice planting plate equipped with a cooling element that utilizes the Peltier effect in contact with the part of the cryopreservation device that is exposed to the gas phase.
Such methods are known.

[発明が解決しようとする課題] しかし、前記振動や衝撃を与える方法では、該振動や衝
撃を与える手間を要するうえ、全ての容器について6育
実、均一な植氷の保証がない。
[Problems to be Solved by the Invention] However, in the method of applying vibration or impact, it is time-consuming to apply the vibration or impact, and there is no guarantee that all containers will have six seeds or uniform ice planting.

また、前記冷却したニードルやピンセットを使用する方
法では、個々の容器につきそれぞれ植氷作業を実施しな
ければならないので手間を要するとともに植氷作業の始
めと終わりとで時間差が生じ、試料の凍結伏態にばらつ
きが生じる。さらに、植氷にあたり、凍結保存装置の容
器収容室をいちいち開放しなければならず、そのため該
室内温度が上昇して速やかに試料を凍結させることがで
きない。
In addition, with the method using cooled needles or tweezers, it is time-consuming to apply ice to each container, and there is a time lag between the start and end of the ice application, resulting in the freezing of the sample. There will be variations in the status. Furthermore, when planting ice, it is necessary to open the container storage chamber of the cryopreservation device one by one, which causes the room temperature to rise, making it impossible to quickly freeze the sample.

液体窒素を流す植氷プレートの場合には、全ての容器に
つき同時に植氷作業を開始できる利点があるが、液体窒
素が高価につくとともに該液体窒素の管理が傾わしい。
In the case of an ice-planting plate that flows liquid nitrogen, there is an advantage that the ice-planting operation can be started for all containers at the same time, but liquid nitrogen is expensive and the management of the liquid nitrogen is difficult.

ペルチェ効果による冷却素子を採用した植氷プレートの
場合には、該冷却素子が高価につく。
In the case of an ice planting plate that employs a cooling element based on the Peltier effect, the cooling element is expensive.

そこで本発明は、生物試料保存容器をその上端部を気相
部に露出させて液相部に漬け、該液相部を冷凍機にて冷
却する生物試料凍結保存装置において、容器収容室を一
々開ける必要なくして、収容容器の全てにつきばらつき
のないように一斉に且つ前車確実安価に植氷を行うこと
ができる植氷方法および該方法を実施する植氷装置を1
1供することを目的とする。
Therefore, the present invention provides a biological sample cryopreservation apparatus in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator. An ice planting method that can reliably and inexpensively plant ice on all the containers in front without any dispersion without having to open them, and an ice planting device that implements the method.
The purpose is to serve one person.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記冷凍機は最低温度到達時の負荷に対応で
きる能力を持っており、植氷を要する付近の温度ではこ
れが過大な能力となっており、従って植氷時に該冷凍能
力の一部を植氷に振り向けることができ、それによって
前記目的を達成できることに着目し、完成されたもので
ある。
In the present invention, the refrigerator has the ability to cope with the load when the lowest temperature is reached, and this capacity becomes excessive at temperatures around which ice planting is required, so that part of the freezing capacity is used during ice planting. It was completed by focusing on the fact that the above purpose could be achieved by directing the water to the planting of ice.

すなわち本発明は、生物試料保存容器をその上端部を気
相部に露出させて液相部に漬け、該液相部を冷凍機にて
冷却する生物試料凍結保存装置における植氷方法におい
て、少なくとも前記容器に植氷を要する時期に、前記気
相部において、前記容器に111記冷凍機の冷凍能力の
一部を作用させて植氷することを特徴とする植氷方法を
提供するものである。
That is, the present invention provides an ice planting method for a biological sample cryopreservation apparatus in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator. The present invention provides an ice planting method, characterized in that, at a time when the container requires ice planting, ice is planted by applying a part of the refrigerating capacity of the 111th refrigerator to the container in the gas phase section. .

また、本発明は前記方法を実施する装置として、生物試
料保存容器をその上端部を気相部に露出させて液相部に
漬け、該液相部を冷凍機にて冷却する生物試料凍結保存
装置における植氷装置であって、前記気相部に設けられ
た植氷用冷却器と、前記冷凍機の冷媒の一部を少なくと
も植氷時に膨張機構を介して前記植氷用冷却器へ流すた
めの該冷却器と冷凍機とを接続する植氷用冷媒回路とを
備えたことを特徴とする植氷装置、および生物試料保存
容器をその上端部を気相部に露出させて液相部に漬け、
該液相部を冷凍機にて冷却する生物試料凍結保存装置に
おける植氷装置であって、前記容器を支持するラックに
該容器上端部に接するように設けられた植氷部材と、前
記容器ラックを所定位置に配置したとき、前記植氷部材
が接するように前記気相部に設けられた植氷用冷却器と
、前記冷凍機の冷媒の一部を少なくとも植氷時に膨張機
構を介して前記植氷用冷却器に流すための該冷却器と冷
凍機とを接続する植氷用冷媒回路とを備えたことを特徴
とする植氷装置を提供するものである。
Furthermore, the present invention provides an apparatus for carrying out the above-mentioned method for biological sample cryopreservation in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator. An ice-planting device in the apparatus, comprising an ice-planting cooler provided in the gas phase section, and a part of the refrigerant of the refrigerator flowing through an expansion mechanism to the ice-planting cooler at least during ice planting. An ice planting device comprising: an ice planting refrigerant circuit that connects the cooler and a refrigerator; Pickled in
An ice-planting device for a biological sample cryopreservation device that cools the liquid phase part with a refrigerator, the ice-planting member being provided on a rack that supports the container so as to be in contact with the upper end of the container, and the container rack. When the ice-planting member is placed in a predetermined position, the ice-planting cooler is provided in the gas phase section so that the ice-planting member comes into contact with the ice-planting member, and at least a part of the refrigerant of the refrigerator is supplied to the ice-planting member through an expansion mechanism during ice-planting. The present invention provides an ice-planting device characterized by comprising an ice-planting refrigerant circuit that connects the ice-planting cooler and a refrigerator for flowing ice to the ice-planting cooler.

〔作 用) 本発明方法によると、植氷を必要とする時期には、冷凍
機の冷凍能力の一部が試料保存容器内の保存液に植氷す
るために振り向けられる。
[Function] According to the method of the present invention, at a time when planting ice is required, a part of the freezing capacity of the refrigerator is allocated to planting ice in the preservation solution in the sample storage container.

本発明による一つの植氷装置によると、植氷を必要とす
る時期には、冷凍機の凝縮器を出たあとの冷媒の一部が
植氷用冷媒回路により凍結保存装置中の植氷用冷却器に
流され、それによって該気相部が液相部より低温に冷却
され、試料保存容器内の保存液上部に植氷される。
According to one ice-planting device according to the present invention, when ice-planting is required, a part of the refrigerant after leaving the condenser of the refrigerator is transferred to the ice-planting refrigerant circuit in the cryopreservation device. The sample is passed through a cooler, whereby the gas phase is cooled to a lower temperature than the liquid phase, and ice is planted on top of the storage solution in the sample storage container.

また、本発明のもう一つの植氷装置によると、植氷を必
要とする時期には、冷凍機の凝縮器を出たあとの冷媒の
一部が植氷用冷媒回路により凍結保存装置の植氷用冷却
器に流され、それによって該冷却器に接する植氷部材が
冷却され、さらに該部材に接する容器の保存液上部に植
氷される。
According to another ice planting device of the present invention, at the time when ice planting is required, part of the refrigerant after leaving the condenser of the refrigerator is transferred to the freezing storage device by the ice planting refrigerant circuit. The ice is poured into an ice cooler, thereby cooling the ice planting member in contact with the ice cooler, and then planting ice on the upper part of the storage solution in the container that is in contact with the ice cooling member.

〔実 施 例] 以下、本発明の実施例を図面を参照して説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例装置を備えた凍結保存装置1
を示している。
FIG. 1 shows a cryopreservation apparatus 1 equipped with an embodiment of the present invention.
It shows.

該凍結保存装置1はMllにより気密に閉じることがで
きる箱体10の中にブラインを入れて液相部12を提供
するとともに該液相部の上方に気相部13を設け、液相
部12を冷凍機2により所定温度まで冷却できるように
したものである。
The cryopreservation apparatus 1 includes a box body 10 that can be airtightly closed by Mll, which contains brine to provide a liquid phase portion 12, and a gas phase portion 13 provided above the liquid phase portion. can be cooled down to a predetermined temperature by a refrigerator 2.

液相部12のブラインは循環ユニット3によって箱体l
の外へ引き出され、所定温度に冷却されたのち再び箱体
l内へ戻される。
The brine in the liquid phase part 12 is transferred to the box l by the circulation unit 3.
After being pulled out of the box and cooled to a predetermined temperature, it is returned to the inside of the box l.

該循環ユニント3は冷却室31、箱体lの底部と冷却室
31の底部を接続する配管32、冷却室31の上部に設
けたポンプユニット33、該ポンプユニット33と箱体
lの液相部を接続する配管34とからなっている。
The circulation unit 3 includes a cooling chamber 31, a pipe 32 connecting the bottom of the box l and the bottom of the cooling chamber 31, a pump unit 33 provided at the top of the cooling chamber 31, and a liquid phase part between the pump unit 33 and the box l. It consists of a pipe 34 that connects the.

冷凍機2は圧縮機2L凝縮器22および前記循環ユニッ
トの冷却室31に設置した冷却管からなる冷却器23お
よびこれらを接続する配管24を備えており、凝縮器2
2と冷却器23とを結ぶ配管には膨張機構25が接続さ
れているとともに、該膨張機構と凝縮器との間には電磁
開閉弁SV2が接続され、該膨張機構と冷却器23との
間には逆止弁CV2が接続されている。
The refrigerator 2 is equipped with a compressor 2L condenser 22, a cooler 23 consisting of a cooling pipe installed in the cooling chamber 31 of the circulation unit, and piping 24 connecting these.
An expansion mechanism 25 is connected to the pipe connecting the expansion mechanism 2 and the cooler 23, and an electromagnetic on-off valve SV2 is connected between the expansion mechanism and the condenser. A check valve CV2 is connected to.

なお循環ユニットの冷却室31にはブラインの温度調節
用ヒータ35が内蔵されている。
Note that the cooling chamber 31 of the circulation unit has a built-in heater 35 for controlling the temperature of the brine.

このヒータは箱体1内の液相部に設置したセンサ36か
らの液温信号に基づき、プログラム温度コントローラ5
1からの制御のもとにオン・オフされる。該コントロー
ラ51は操作部52に接続されている。
This heater is operated by a program temperature controller 5 based on a liquid temperature signal from a sensor 36 installed in the liquid phase part inside the box body 1.
It is turned on and off under control from 1. The controller 51 is connected to an operating section 52.

なお前記圧縮機21、凝縮器用ファン221、ポンプユ
ニット33、電磁弁SV2および気相部13の撹拌装置
14も該操作部52に接続されており、該操作部からの
指令に基づいて運転される。
Note that the compressor 21, condenser fan 221, pump unit 33, solenoid valve SV2, and stirring device 14 of the gas phase section 13 are also connected to the operating section 52, and are operated based on instructions from the operating section. .

この凍結保存装置に付設された植氷装置は次のように構
成されている。
The ice planting device attached to this cryopreservation device is configured as follows.

すなわち該植氷装置4は箱体1内の気相部に設置された
冷却管からなる植氷用冷却器41と、冷却器41および
前記冷凍機2とを接続する植氷用冷媒回路42とを備え
ている。冷媒回路42は冷凍機の凝縮器22を出た冷媒
の一部を冷却器41へ導く配管421、冷却器4Iを出
た冷媒を冷凍機の冷却器23側へ戻す配管422を備え
ており、配管421には凝縮器に近い方に電磁開閉弁S
■1が、冷却器に近い方に膨張機構423がそれぞれ接
続されており、配管422には逆止弁CVIが接続され
ている。弁SVIは操作部52によりオン・オフされる
That is, the ice-planting device 4 includes an ice-planting cooler 41 consisting of a cooling pipe installed in the gas phase inside the box 1, and an ice-planting refrigerant circuit 42 that connects the cooler 41 and the refrigerator 2. It is equipped with The refrigerant circuit 42 includes a pipe 421 that guides a part of the refrigerant that has exited the condenser 22 of the refrigerator to the cooler 41, and a pipe 422 that returns the refrigerant that has exited the cooler 4I to the cooler 23 side of the refrigerator. In the pipe 421, there is an electromagnetic on-off valve S near the condenser.
(1) An expansion mechanism 423 is connected to the side closer to the cooler, and a check valve CVI is connected to the pipe 422. Valve SVI is turned on and off by operating section 52.

この凍結保存装置lによると、箱体1内のブラインは箱
体1とW!環ユニット3の冷却室31との間を循環し、
その間に冷却室31において冷21!機の冷却器23に
より冷却されるとともにヒータ35により所定温度に調
節される。かくして箱体l内の液相部は生物試料を凍結
保存するのに適当な温度に維持される。
According to this cryopreservation device 1, the brine in the box 1 is contained in the box 1 and W! circulates between the cooling chamber 31 of the ring unit 3,
Meanwhile, in the cooling chamber 31, it is cold 21! It is cooled by the cooler 23 of the machine and adjusted to a predetermined temperature by the heater 35. In this way, the liquid phase inside the box 1 is maintained at a temperature suitable for cryopreserving biological samples.

液相部には生物試料Aと保存液Bを収容したストロ−6
aやチューブ6bがラックRに支持されてブライン中に
漬けられている。ストロ−6aおよびチューブ6bはそ
の上端部が気相部に出ており、該ストロ−内の保存液は
ストロ−上端部にまで達している。
In the liquid phase part, there is a straw 6 containing biological sample A and storage solution B.
A and tube 6b are supported by a rack R and soaked in brine. The upper ends of the straw 6a and the tube 6b come out into the gas phase, and the storage solution within the straw reaches the upper end of the straw.

なお冷凍機2の作動中は電磁開閉弁SV2は開かれたま
まである。
Note that while the refrigerator 2 is in operation, the electromagnetic on-off valve SV2 remains open.

植氷装置4による植氷は次のようにして行う。The ice planting by the ice planting device 4 is carried out as follows.

ストロ−やチューブ内の生物試料Aの過冷却を防止する
ために植氷が必要な時期になると、またはその前から植
氷用冷媒回路42における電磁弁SVlを開き、凝縮器
22を出た冷媒の一部を膨張機構423、植氷用冷却器
41を通して冷凍機本体回路へ戻るように流す。
In order to prevent overcooling of the biological sample A in the straw or tube, the solenoid valve SVl in the ice-planting refrigerant circuit 42 is opened at or before the time when ice-planting is required, and the refrigerant leaving the condenser 22 is A part of the ice is passed through the expansion mechanism 423 and the ice planting cooler 41 and returned to the refrigerator main circuit.

従って箱体1内の気相部13は冷却器41の冷却作用に
より液相部12よりも速やかに温度降下する。かくして
該気相部13に突出したストロ−6aやチューブ6b上
端部に近い保存液を急激な温度降下勾配で冷却し、過冷
却状態にしたのち、植氷する。該植氷後はこれを核にし
て、ストロ−およびチューブ内の試料Aを包む保存液が
過冷却のない状態、または過冷却があったとしても無視
できる程度の過冷却状態で凍結される。
Therefore, the temperature of the gas phase portion 13 within the box body 1 drops more quickly than that of the liquid phase portion 12 due to the cooling action of the cooler 41. In this way, the storage liquid near the upper end of the straw 6a and the tube 6b protruding into the gas phase part 13 is cooled with a rapid temperature drop gradient, brought to a supercooled state, and then ice is planted. After the ice is planted, using this as a core, the storage solution surrounding the straw and sample A in the tube is frozen in a state where there is no supercooling, or even if there is supercooling, the supercooling state is negligible.

かくしてストロ−6aやチューブ6b内の試料Δは過冷
却によるダメージを受けることなく凍結保存される。
In this way, the sample Δ in the straw 6a and the tube 6b can be frozen and preserved without being damaged by supercooling.

試料凍結過程における液相部および気相部の温度降下状
態を例示すると、第2図および第3図のようになる。
An example of the state of temperature drop in the liquid phase and gas phase during the sample freezing process is shown in FIGS. 2 and 3.

第2図および第3図においてラインL1は液相部12に
よって冷却された試料保存容器内の試料Aを取り巻く保
存液の温度降下状態を示し、破線で示すラインL2は試
料保存容器内の試料保存液のうち最上部分の温度降下状
態を示している。またラインL3は気相部の温度降下状
態を示している。
In FIGS. 2 and 3, line L1 indicates the temperature drop state of the preservation solution surrounding sample A in the sample storage container cooled by the liquid phase section 12, and line L2 shown by a broken line indicates the temperature drop of the preservation solution in the sample storage container. It shows the state of temperature drop in the uppermost part of the liquid. Moreover, line L3 shows the state of temperature drop in the gas phase portion.

ラインL1におけるポイン1−Llaは容器内保存液B
のうち生物試料Aを取り巻く部分の凍結開始点を示して
いる。またラインL2における点L2aは植氷点を示し
ている。
Point 1-Lla on line L1 is storage solution B in the container.
The freezing start point of the part surrounding biological sample A is shown. Further, a point L2a on the line L2 indicates the freezing point.

第2図に示す温度プログラムパターンは冷凍機に十分な
冷凍能力があるため、植氷を必要とするときのみならず
、その後も引き続き植氷用冷媒回路に冷凍機冷媒の一部
を流し続けている場合を示しており、第3図の温度プロ
グラムパターンは冷凍機の冷凍能力がブラインの低温時
においてあまり余裕がないために、試料凍結が完了した
時点で植氷用冷媒用回路における電磁弁SVIを閉じて
植氷装置を停止させた場合を示している。
The temperature program pattern shown in Figure 2 is based on the fact that the refrigerator has sufficient refrigerating capacity, so a portion of the refrigerator refrigerant continues to flow through the ice-planting refrigerant circuit not only when ice-planting is required, but also thereafter. The temperature program pattern in Figure 3 shows a case where the freezing capacity of the refrigerator does not have much margin when the brine is at a low temperature. The figure shows the case where the ice planting device is stopped by closing.

第4図は第1図に示す装置の変形例を示すもので、この
装置では第1図装置中のブライン循環ユニット3が省略
され、冷凍機の冷却器23およびヒータ35は直接液相
部12に配置されている。
FIG. 4 shows a modification of the apparatus shown in FIG. 1. In this apparatus, the brine circulation unit 3 in the apparatus shown in FIG. It is located in

第5図は本発明の他の実施例植氷装置6を備えた凍結保
存装置を示している。
FIG. 5 shows a cryopreservation device equipped with an ice planting device 6 according to another embodiment of the present invention.

この凍結保存装置6の基本的構成は、第1図に示す装置
と変わりがなく、第1図と同じ符号で示している部分は
第1図における装置部品と同一のものである。この凍結
保存装置に付設されている植氷装置6は、保存装置の箱
体1内の液相部12の直上且つ箱体内壁に沿って設けた
植氷用冷却器61、該冷却器と冷凍a1とを接続する植
氷用冷媒回路62および冷却器61に対し接離する植氷
プレート63を備えている。
The basic structure of this cryopreservation apparatus 6 is the same as the apparatus shown in FIG. 1, and parts indicated by the same reference numerals as in FIG. 1 are the same as the apparatus parts in FIG. The ice-planting device 6 attached to this cryopreservation device consists of an ice-planting cooler 61 installed directly above the liquid phase portion 12 in the box 1 of the storage device and along the wall of the box, and It is provided with an ice planting refrigerant circuit 62 connected to a1 and an ice planting plate 63 that comes into contact with and separates from the cooler 61.

植氷用冷媒回路62は冷凍機の凝縮器22を出た冷媒の
一部を電磁開閉弁SVIおよび膨張機構621を介して
冷却器61へ導く配管622と、冷却器61を出る冷媒
を冷凍機の冷却器23側へ戻す配管623を備えており
、配管623には逆止弁CVIが接続されている。
The ice-planting refrigerant circuit 62 includes a pipe 622 that guides a part of the refrigerant leaving the condenser 22 of the refrigerator to the cooler 61 via the electromagnetic on-off valve SVI and an expansion mechanism 621, and a pipe 622 that leads the refrigerant leaving the cooler 61 to the refrigerator 61. The piping 623 returns to the cooler 23 side, and a check valve CVI is connected to the piping 623.

植氷プレート63は熱伝導性良好な材料(例えば銅、ア
ルミニウム、真ちゅう等)から作られており、生物試料
および保存液を収容する容器(本例の場合はストロ−6
aが示されている)を多数本支持する容器ラック7の上
端部に設けられている。該容器ラックをストロ−6aが
上端部を残して液相部12に漬かるように箱体l内の所
定位置に配置すると、丁度植氷プレート63の周辺部が
冷却器61に接する。
The ice planting plate 63 is made of a material with good thermal conductivity (e.g. copper, aluminum, brass, etc.), and is made of a container (in this example, a straw 6) that holds the biological sample and preservation solution.
It is provided at the upper end of a container rack 7 that supports a large number of containers (indicated by a). When the container rack is placed in a predetermined position within the box l so that the straw 6a is immersed in the liquid phase portion 12 with the upper end remaining, the peripheral portion of the ice-planting plate 63 comes into contact with the cooler 61.

容器ラック7は第6図および第7図に示すように、上中
下段の3枚のプレート71.72および73を複数の縦
部材74にて所定間隔に連結固定したもので、上段およ
び中段のプレート71.72にはストローを挿入する多
数の孔70が設けられており、また上段プレー1−71
には把手75が固設されている。植氷プレート63は、
上段プレート71の下面に設けられており、該プレート
も前記ストロ−貫通孔70に対応するストロ−貫通孔6
31を備えており、ここに通されたストロ−が該植氷プ
レートに接することができる程度の孔径に形成されてい
る。
As shown in FIGS. 6 and 7, the container rack 7 is made up of three plates 71, 72 and 73 in the upper, middle and lower tiers connected and fixed at predetermined intervals by a plurality of vertical members 74. The plates 71, 72 are provided with a number of holes 70 into which straws are inserted, and the upper plates 1-71
A handle 75 is fixedly attached to the handle. The planting ice plate 63 is
It is provided on the lower surface of the upper plate 71, and the plate also has straw through holes 6 corresponding to the straw through holes 70.
31, and the hole diameter is formed to such an extent that a straw passed through this can come into contact with the ice planting plate.

該植氷プレート63はストロ−に接すべきストロ−貫通
孔631の内面および前記冷却器61に接すべき部分6
32を残して断熱剤633により囲まれている。
The ice planting plate 63 has an inner surface of the straw through hole 631 which should be in contact with the straw and a portion 6 which should be in contact with the cooler 61.
All but 32 are surrounded by a heat insulating material 633.

第5図に示す凍結保存装置の動作は、第1図に示す凍結
保存装置1と同様であるから、ここではその説明を省略
する。第5図に示す植氷装置6を用いて植氷を行う方法
は次の通りである。
Since the operation of the cryopreservation apparatus shown in FIG. 5 is similar to that of the cryopreservation apparatus 1 shown in FIG. 1, the explanation thereof will be omitted here. The method of planting ice using the ice planting device 6 shown in FIG. 5 is as follows.

すなわち、植氷が必要な時間になると、またはその前か
ら、植氷用冷媒回路62における電磁弁SVIを開いて
冷凍機の凝縮器を出た冷媒の一部を膨張機構621を介
して冷却器61へ流す、このようにして冷却2S61に
より植氷プレート63を冷却し、さらに該植氷プレート
63にて各ストロ−6aの上端部を液相部より速やかに
温度降下させ、それによって各ストロ−6a内の保存液
上端部に植氷する。この植氷装置による植氷パターンは
例えば第2図および第3図に示すようなパターンとする
ことができ、ストロ−下部の試料Aの凍結パターンも第
2図および第3図にM似のものとすることができる。
That is, at or before the time when ice-planting is required, the solenoid valve SVI in the ice-planting refrigerant circuit 62 is opened and a part of the refrigerant that has exited the condenser of the refrigerator is transferred to the cooler via the expansion mechanism 621. In this way, the ice-planting plate 63 is cooled by the cooling 2S61, and the temperature of the upper end of each straw 6a is lowered more quickly than the liquid phase part by the ice-planting plate 63, whereby each straw Plant ice at the upper end of the storage solution in 6a. The ice planting pattern by this ice planting device can be, for example, the pattern shown in Figures 2 and 3, and the freezing pattern of sample A at the bottom of the straw is also similar to M shown in Figures 2 and 3. It can be done.

なおこの植氷装置における植氷プレート63は、ストロ
−6aをラック7とともに箱体lから取り出す際、−緒
に取り出される。
Note that the ice planting plate 63 in this ice planting device is taken out together with the straw 6a when the straw 6a is taken out from the box l together with the rack 7.

なお本発明は前記実施例に限定されるものではなく、他
にも様々な態様で実施できることは勿論である。
Note that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that it can be implemented in various other ways.

〔発明の効果〕〔Effect of the invention〕

本発明によると、生物試料保存容器をその上端部を気相
部に露出させて液相部に漬け、該液相部を冷凍機にて冷
却する生物試料凍結保存装置において、容器収容室を一
々開ける必要なくして、収容容器の全てにつきばらつき
のないように一斉に且つ簡単確実安価に植氷を行うこと
ができる植氷方法および該方法を実施する植氷装置を提
供することができる。
According to the present invention, in a biological sample cryopreservation apparatus in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator, each container storage chamber is It is possible to provide an ice planting method that can simply, reliably, and inexpensively plant ice in all storage containers at the same time without having to open them, and an ice planting device that implements the method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例植氷装置とこれを備えた凍結
保存装置例を示す図、第2図および第3図はそれぞれ第
1図に示す植氷装置および凍結保存装置を用いて植氷お
よび試料凍結を行う場合の温度降下パターン例を示す線
図、第4図は第1図に示す装置の変形例を示す図、第5
図は本発明の他の実施例植氷装置とこれを付設した凍結
保存装置例を示す図、第6図は容器ラックの平面図、第
7図は容器ラックおよび植氷プレートの断面図である。 l・・・凍結保存装置 12・・・液相部 13・・・気相部 2・・・冷凍機 4・・・植氷装置 41・・・植氷用冷却器 42・・・植氷用冷媒回路 6・・・植氷装置 61・・・植氷用冷却器 62・・・植氷用冷媒回路 63・・・植氷プレート 6a・・・ストロ− 6b・・・チューブ 7・・・容器ラック。
FIG. 1 is a diagram showing an example of an ice planting device according to the present invention and an example of a cryopreservation device equipped with the same, and FIGS. A diagram showing an example of a temperature drop pattern when planting ice and freezing a sample; FIG. 4 is a diagram showing a modification of the apparatus shown in FIG. 1; FIG.
The figure shows an ice planting device according to another embodiment of the present invention and an example of a cryopreservation device attached thereto, FIG. 6 is a plan view of a container rack, and FIG. 7 is a sectional view of a container rack and an ice planting plate. . l... Cryopreservation device 12... Liquid phase section 13... Gas phase section 2... Freezer 4... Ice planting device 41... Ice planting cooler 42... For ice planting Refrigerant circuit 6... Ice planting device 61... Ice planting cooler 62... Ice planting refrigerant circuit 63... Ice planting plate 6a... Straw 6b... Tube 7... Container rack.

Claims (3)

【特許請求の範囲】[Claims] (1)生物試料保存容器をその上端部を気相部に露出さ
せて液相部に漬け、該液相部を冷凍機にて冷却する生物
試料凍結保存装置における植氷方法において、少なくと
も前記容器に植氷を要する時期に、前記気相部において
、前記容器に前記冷凍機の冷凍能力の一部を作用させて
植氷することを特徴とする植氷方法。
(1) In an ice-planting method for a biological sample cryopreservation apparatus in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator, at least the container An ice-planting method, characterized in that, at a time when ice-planting is required, a part of the refrigerating capacity of the refrigerator is applied to the container in the gas phase section to plant ice.
(2)生物試料保存容器をその上端部を気相部に露出さ
せて液相部に漬け、該液相部を冷凍機にて冷却する生物
試料凍結保存装置における植氷装置であって、前記気相
部に設けられた植氷用冷却器と、前記冷凍機の冷媒の一
部を少なくとも植氷時に膨張機構を介して前記植氷用冷
却器へ流すための該冷却器と冷凍機とを接続する植氷用
冷媒回路とを備えたことを特徴とする植氷装置。
(2) An ice-planting device for a biological sample cryopreservation apparatus in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator, comprising: An ice-planting cooler provided in a gas phase part, and a refrigerator and a refrigerator for flowing at least a part of the refrigerant of the refrigerator to the ice-planting cooler through an expansion mechanism during ice planting. An ice planting device characterized by comprising a connected ice planting refrigerant circuit.
(3)生物試料保存容器をその上端部を気相部に露出さ
せて液相部に漬け、該液相部を冷凍機にて冷却する生物
試料凍結保存装置における植氷装置であって、前記容器
を支持するラックに該容器上端部に接するように設けら
れた植氷部材と、前記容器ラックを所定位置に配置した
とき、前記植氷部材が接するように前記気相部に設けら
れた植氷用冷却器と、前記冷凍機の冷媒の一部を少なく
とも植氷時に膨張機構を介して前記植氷用冷却器に流す
ための該冷却器と冷凍機とを接続する植氷用冷媒回路と
を備えたことを特徴とする植氷装置。
(3) An ice-planting device for a biological sample cryopreservation apparatus in which a biological sample storage container is immersed in a liquid phase with its upper end exposed to a gas phase, and the liquid phase is cooled with a refrigerator, comprising: An ice planting member is provided on a rack that supports containers so as to be in contact with the upper end of the container, and an ice planting member is provided in the gas phase portion so that the ice planting member is in contact with the container rack when the container rack is placed at a predetermined position. an ice cooler; and an ice-planting refrigerant circuit connecting the ice-planting cooler and the refrigerator for flowing at least a part of the refrigerant of the freezer to the ice-planting cooler via an expansion mechanism during ice planting. An ice planting device characterized by comprising:
JP12011489A 1989-05-12 1989-05-12 Ice inoculation and ice inoculator in freeze storage apparatus for biological sample Pending JPH02300101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12011489A JPH02300101A (en) 1989-05-12 1989-05-12 Ice inoculation and ice inoculator in freeze storage apparatus for biological sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12011489A JPH02300101A (en) 1989-05-12 1989-05-12 Ice inoculation and ice inoculator in freeze storage apparatus for biological sample

Publications (1)

Publication Number Publication Date
JPH02300101A true JPH02300101A (en) 1990-12-12

Family

ID=14778292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12011489A Pending JPH02300101A (en) 1989-05-12 1989-05-12 Ice inoculation and ice inoculator in freeze storage apparatus for biological sample

Country Status (1)

Country Link
JP (1) JPH02300101A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020587A (en) * 2002-08-31 2004-03-09 윤철종 Rapid freezing apparatus for living body tissue
KR100603890B1 (en) * 2004-07-29 2006-07-24 코아스템(주) automatic cell freezing apparatus
JP2014065736A (en) * 1995-01-30 2014-04-17 Organogenesis Inc Method and package design for cryopreservation and storage of cultured tissue equivalents
WO2017130858A1 (en) * 2016-01-26 2017-08-03 伸和コントロールズ株式会社 Temperature control system, temperature control device, and refrigeration device
US10330556B2 (en) 2015-06-05 2019-06-25 Shinwa Controls Co., Ltd. Environmental testing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739839A (en) * 1979-08-02 1982-03-05 Daburiyuu Bureiku Jiyosefu Surgical instrument
JPS6268553A (en) * 1985-09-17 1987-03-28 ア−サ− シ− ノツクス ジユニア Wet type crusher

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739839A (en) * 1979-08-02 1982-03-05 Daburiyuu Bureiku Jiyosefu Surgical instrument
JPS6268553A (en) * 1985-09-17 1987-03-28 ア−サ− シ− ノツクス ジユニア Wet type crusher

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065736A (en) * 1995-01-30 2014-04-17 Organogenesis Inc Method and package design for cryopreservation and storage of cultured tissue equivalents
KR20040020587A (en) * 2002-08-31 2004-03-09 윤철종 Rapid freezing apparatus for living body tissue
KR100603890B1 (en) * 2004-07-29 2006-07-24 코아스템(주) automatic cell freezing apparatus
US10330556B2 (en) 2015-06-05 2019-06-25 Shinwa Controls Co., Ltd. Environmental testing device
WO2017130858A1 (en) * 2016-01-26 2017-08-03 伸和コントロールズ株式会社 Temperature control system, temperature control device, and refrigeration device
US10656110B2 (en) 2016-01-26 2020-05-19 Shinwa Controls Co., Ltd. Temperature control system, temperature control device and refrigeration device

Similar Documents

Publication Publication Date Title
JP5806486B2 (en) Freezer and method using liquid cryogen refrigerant
CA1197467A (en) Method of freezing fertilized ova, spermatozoa or the like and apparatus therefor
US2572508A (en) Ice maker and bottle cooler
GB2240165A (en) Cell preservation system
US3080725A (en) Method and apparatus for controlled rate cooling and warming of biological substances
CA2571539A1 (en) A method and apparatus for controlling heat transfer for a fluid immersed vessel
US4580409A (en) Device for freezing biological products contained in straws
US4831845A (en) Temperature testing device provided with sample-receiving chamber from which a specimen is easily detachable and in which temperature is controllable
JPH02300101A (en) Ice inoculation and ice inoculator in freeze storage apparatus for biological sample
JPH0121923Y2 (en)
US20230026532A1 (en) Ice maker and refrigerator having same
JPH02200601A (en) Freezer of zygote, sperm or the like
US3036443A (en) Freezing apparatus
JPH0118561Y2 (en)
US2000440A (en) Refrigerating apparatus
US2039334A (en) Refrigerator
JP2889654B2 (en) Ice plant freezing equipment
JPS6144134Y2 (en)
JP2018071843A (en) Mammal embryo freezing device
US2560488A (en) Combination soda fountain and ice-cream cabinet
JPS6259583B2 (en)
JP2659567B2 (en) Thermal storage refrigeration system
JP2009036416A (en) Refrigerator
US1825664A (en) Refrigerating apparatus
US1892346A (en) Refrigerating apparatus