JPS5824451Y2 - Jiyo Hatsurei Yakusouchi - Google Patents

Jiyo Hatsurei Yakusouchi

Info

Publication number
JPS5824451Y2
JPS5824451Y2 JP12393274U JP12393274U JPS5824451Y2 JP S5824451 Y2 JPS5824451 Y2 JP S5824451Y2 JP 12393274 U JP12393274 U JP 12393274U JP 12393274 U JP12393274 U JP 12393274U JP S5824451 Y2 JPS5824451 Y2 JP S5824451Y2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
container
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12393274U
Other languages
Japanese (ja)
Other versions
JPS5150443U (en
Inventor
倚男 細川
正人 渋谷
幹治 小島
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP12393274U priority Critical patent/JPS5824451Y2/en
Publication of JPS5150443U publication Critical patent/JPS5150443U/ja
Application granted granted Critical
Publication of JPS5824451Y2 publication Critical patent/JPS5824451Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は冷却効率が良好で圧力容器を必要としない蒸
発冷却装置に関する。
[Detailed Description of the Invention] This invention relates to an evaporative cooling device that has good cooling efficiency and does not require a pressure vessel.

たとえば電気自動車の制御用半導体素子を冷却するため
に、冷媒を循環させる蒸発冷却装置が知られている。
For example, evaporative cooling devices are known that circulate refrigerant to cool semiconductor elements for controlling electric vehicles.

ところでこの種装置においてその冷媒の循環系内に冷媒
以外の不凝縮性ガス、たとえば空気が混入すると、冷媒
の凝縮効率を低下させ、その循環作用を阻害するという
ことは、従来の研究結果から判明していることである。
However, it has been found from the results of previous research that if a non-condensable gas other than the refrigerant, such as air, gets mixed into the refrigerant circulation system of this type of device, the condensation efficiency of the refrigerant decreases and its circulation is inhibited. This is what we are doing.

これに対しては、〒般に容器内の空気を抜いて、冷媒を
充填する方法、つまり真空(密封)圧力容器を使用して
いる。
For this purpose, a method is generally used in which air is removed from the container and then filled with refrigerant, that is, a vacuum (sealed) pressure container is used.

これの具体的な一例としては第3図のようなものがある
A specific example of this is shown in FIG.

この装置は、密閉容器9、発熱体3(半導体など)、冷
媒液2、熱絶縁パイプ10、凝縮器4、等圧保持ベロ1
1.からなる。
This device includes a closed container 9, a heating element 3 (semiconductor, etc.), a refrigerant liquid 2, a heat insulating pipe 10, a condenser 4, and an isobaric holding tongue 1.
1. Consisting of

この装置は発熱体3、により冷媒液2が気化し、その蒸
気12が熱絶縁パイプ10を経て凝縮器4で液化され、
再び熱絶縁パイプ10をとおって容器9に戻る循環作用
によって冷却を行っている。
In this device, a refrigerant liquid 2 is vaporized by a heating element 3, and the vapor 12 is liquefied in a condenser 4 through a thermally insulated pipe 10.
Cooling is effected by the circulation that returns to the container 9 through the thermally insulated pipe 10.

等圧保持ベロ11は発生蒸気12による系内の昇圧を抑
えるためのものである。
The equal pressure maintaining tongue 11 is for suppressing the pressure increase in the system due to the generated steam 12.

この装置の不具合点は以下の如くである。The disadvantages of this device are as follows.

(,1)冷却系を密閉し、真空容器(耐圧容器)としな
ければならない。
(,1) The cooling system must be sealed and made into a vacuum container (pressure-resistant container).

この結果は装置が複雑化し、形状・重量・価格・維持取
扱などの面からその価値は半減してしまう。
As a result, the equipment becomes more complex, and its value is halved in terms of shape, weight, price, maintenance, and handling.

とくに可搬・小型・軽量が要求される電気自動車用など
には採用できない。
In particular, it cannot be used in electric vehicles, which require portability, small size, and light weight.

(2)仮に、この装置で空気(不凝縮性気体)を混入さ
せた場合は、蒸気と凝縮液が同一通路であること、凝縮
器が垂直上方にあることさらにその上に等圧保持ベロを
設置していること、これらのため発生蒸気と空気と凝縮
液の三者が凝縮器下部の流入部分で混在し、空気と発生
蒸気の分離ができず、凝縮性能が低下し、場合によって
は全く凝縮できないこともあることが実験の結果判明し
た。
(2) If air (non-condensable gas) is mixed in with this device, make sure that the steam and condensate are in the same passage, that the condenser is vertically above it, and that there is an isobaric tongue above it. Because of this, the generated steam, air, and condensate coexist in the inflow section at the bottom of the condenser, making it impossible to separate air and generated steam, reducing condensing performance, and in some cases, reducing the condensate completely. Experiments have revealed that there are cases in which condensation is not possible.

これの改良案として、真空度を高めない即ち、高度の圧
力容器を要求せず従って、ある程度の空気の漏れを考慮
して、容量の定まったニアリザーバを備えたものがある
As an improvement to this, there is a method that does not increase the degree of vacuum, that is, does not require a high pressure vessel, and therefore has a near reservoir with a fixed capacity in consideration of some air leakage.

これは、最初容器内(循環系内)を低真空にして使用し
、時間とともに、徐々にピンホール等から侵入する空気
をニアリザーバ内に貯めてしまうことによって循環作用
を阻害しないようにするものである。
This is done by initially creating a low vacuum inside the container (inside the circulation system), and over time, the air that enters through pinholes etc. is stored in the near reservoir to prevent the circulation from being obstructed. be.

これの欠点は、低真空ではあっても圧力容器であり前記
圧力容器としての欠点を皆無にしたものではないことと
、長時間たてば、ニアリザーバが容積が常に一定である
から空気で充満しその機能を果さなくなってしまうこと
である。
The disadvantages of this are that even though it is a low vacuum, it is a pressure vessel and does not eliminate all the disadvantages of a pressure vessel, and over a long period of time, the near reservoir fills with air because its volume is always constant. This means that it no longer fulfills its function.

このために、装置全体の重量が増加し、価格が高価にな
り、特に電気自動車の制御素子の冷却などのように移動
機器には不適当であった。
This increases the overall weight of the device and makes it expensive, making it particularly unsuitable for mobile equipment such as cooling control elements of electric vehicles.

この考案は、上記のような種々の不具合点を解消するも
ので、その目的とするところは、積極的に冷却系内に空
気の存在を認めること、および、その空気を循環路より
追い出す機能をもたせること、によって、冷却装置の信
頼性向上と、小型軽量化を狙ったことである。
This invention is intended to solve the various problems mentioned above, and its purpose is to actively recognize the presence of air in the cooling system and to provide a function to expel that air from the circulation path. The aim was to improve the reliability of the cooling device and make it smaller and lighter.

以下この考案の一実施例を図面を参照して説明する。An embodiment of this invention will be described below with reference to the drawings.

図中1は冷媒2、たとえばフロンR−118を貯留する
容器、3は容器1内の冷媒2に浸漬した冷却すべき発熱
体である。
In the figure, 1 is a container for storing a refrigerant 2, such as Freon R-118, and 3 is a heating element to be cooled, which is immersed in the refrigerant 2 in the container 1.

そして4は気化された冷媒の熱をその外部の空気、水等
と熱交換を行い、上記冷媒を再び液化する凝縮器で、冷
媒の流入側が流出側よりも高くなるように傾斜させ、か
つ容器1の上方に配置している。
4 is a condenser that exchanges the heat of the vaporized refrigerant with the outside air, water, etc., and liquefies the refrigerant again; the condenser is tilted so that the inflow side of the refrigerant is higher than the outflow side; It is placed above 1.

そして5は前記容器1の上部と前記凝縮器4の冷媒流入
側とを連通させる蒸気管、6は上記凝縮器4の流出側と
、前記容器1の低部とを連通させる凝縮液管でこの蒸気
管5および凝縮液管6を介して容器1と凝縮器4との間
で冷媒を回流させる冷媒循環系7を形成している。
5 is a steam pipe that communicates the upper part of the container 1 with the refrigerant inlet side of the condenser 4, and 6 is a condensate pipe that communicates the outlet side of the condenser 4 with the lower part of the container 1. A refrigerant circulation system 7 is formed in which refrigerant circulates between the container 1 and the condenser 4 via the steam pipe 5 and the condensate pipe 6.

さらに8は前記凝縮器4の運転時、最も冷媒蒸気圧の低
圧の部位、すなわち凝縮器4の下端部の冷媒流出側に連
通し、かつ容器の液面より上方に配設したニアリザーバ
である。
Further, reference numeral 8 denotes a near reservoir that communicates with the region where the refrigerant vapor pressure is lowest during operation of the condenser 4, that is, the refrigerant outlet side of the lower end of the condenser 4, and is disposed above the liquid level of the container.

このニアリザーバ8は弾性材料による柔軟な袋で前記冷
媒循環系7内の圧力の変化に応じて、その内容積を増減
し、外気圧と循環系7内の冷媒圧力とがバランスするよ
うにしている。
This near reservoir 8 is a flexible bag made of an elastic material, and its internal volume increases or decreases according to changes in the pressure within the refrigerant circulation system 7, so that the external pressure and the refrigerant pressure within the circulation system 7 are balanced. .

このような構成であれば発熱体3が発熱すると、発熱体
3と、その周囲の冷媒2との間で熱の授受が行われ冷媒
2は加熱されて蒸発し、発熱体3は冷却される。
With this configuration, when the heating element 3 generates heat, heat is exchanged between the heating element 3 and the refrigerant 2 around it, the refrigerant 2 is heated and evaporated, and the heating element 3 is cooled. .

そして気相化された冷媒2は容器1内に充満し容器1内
の不凝縮性ガス、たとえば空気を押し上げつつ蒸気管5
を通って凝縮器4に入る。
Then, the vaporized refrigerant 2 fills the container 1 and pushes up the non-condensable gas, such as air, inside the container 1, while pushing up the steam pipe 5.
and enters the condenser 4.

さらに凝縮器内の空気をも共に押し下げていく。It also pushes down the air inside the condenser.

したがって循環系7内の空気は冷媒2の蒸気圧によって
ニアリザーバ8内に押し込められてしまう。
Therefore, the air in the circulation system 7 is forced into the near reservoir 8 by the vapor pressure of the refrigerant 2.

また循環系7内の圧力の上昇に応じてニアリザーバ8は
膨張する。
Further, as the pressure within the circulation system 7 increases, the near reservoir 8 expands.

そして凝縮器4内の気相の冷媒2はその熱を外部へ放出
して凝縮し、再び液化され自重によって凝縮液管6から
容器1内へ流下する。
Then, the gas phase refrigerant 2 in the condenser 4 emits its heat to the outside, condenses, becomes liquefied again, and flows down into the container 1 from the condensate pipe 6 due to its own weight.

この凝縮器1内の圧力分布は流入側、すなわち上端部が
最も高く、気相の冷媒が液化している流出側、すなわち
下端部では略大気圧程度まで低下する。
The pressure distribution inside the condenser 1 is highest on the inflow side, that is, the upper end, and decreases to approximately atmospheric pressure on the outflow side, that is, the lower end, where the gas phase refrigerant is liquefied.

一方、装置の運転を停止すると冷媒2は液化されて、容
器1内に貯留され、循環系7内の圧力が低下するととも
にニアリザーバ8が縮少し、そこに押し込められていた
空気が積極的に循環系7内の空気を満たす。
On the other hand, when the operation of the device is stopped, the refrigerant 2 is liquefied and stored in the container 1, and as the pressure in the circulation system 7 decreases, the near reservoir 8 contracts, and the air that was forced there is actively circulated. Fill the system 7 with air.

したがって、循環系7の圧力は略々大気圧に保たれる。Therefore, the pressure in the circulation system 7 is maintained at approximately atmospheric pressure.

しかして運転中は循環系7は冷媒2で満たされ、不凝縮
性ガスが混入するようなことがないので凝縮器4は高効
率で気相の冷媒2を液化でき、またその循環作用を阻げ
られるようなこともない。
During operation, the circulation system 7 is filled with the refrigerant 2, and no non-condensable gas is mixed in. Therefore, the condenser 4 can liquefy the gas phase refrigerant 2 with high efficiency, and can also prevent its circulation. There's nothing like being let down.

そして、循環系7内の圧力に応じてニアリザーバ8の体
積が増減し、その内圧を略々大気圧に維持するので循環
系7を格別耐圧構造による必要もなく、それによって、
重量を軽減し、構造を簡単なものにすることができる。
The volume of the near reservoir 8 increases or decreases depending on the pressure within the circulation system 7, and the internal pressure is maintained at approximately atmospheric pressure, so there is no need for the circulation system 7 to have a special pressure-resistant structure, and thereby,
The weight can be reduced and the structure can be simplified.

また、運転停止中も循環系7内は略々大気圧に維持され
るから特別な圧力容器にする必要がないとともに外部の
気体たとえば空気の系内への侵入を防ぐことができるも
のである。
Further, since the inside of the circulation system 7 is maintained at approximately atmospheric pressure even during the shutdown, there is no need for a special pressure vessel, and it is possible to prevent external gases such as air from entering the system.

またニアリザーバ8の内容積を循環系7の内容積よりも
大きくしておけば凝縮器4の凝縮能力以上の気相の冷媒
が流入しても液化しきれない冷媒2を一時的にニアリザ
ーバ8内に収容することができる。
Furthermore, if the inner volume of the near reservoir 8 is made larger than the inner volume of the circulation system 7, even if a gas phase refrigerant that exceeds the condensing capacity of the condenser 4 flows in, the refrigerant 2 that cannot be liquefied will be temporarily stored in the near reservoir 8. can be accommodated.

したがって短時間、装置の冷却能力を増大させ、過負荷
運転を行うことができる。
Therefore, the cooling capacity of the device can be increased and overload operation can be performed for a short time.

なお、この考案は前記実施例に限定されるものではなく
、たとえば冷媒としてはフロンR−112等の各種フロ
ン系冷媒あるいは四塩化炭素、トリクレン等も使用でき
る。
Note that this invention is not limited to the above-mentioned embodiments; for example, various fluorocarbon-based refrigerants such as Freon R-112, carbon tetrachloride, trichlene, etc. can also be used as the refrigerant.

また、ニアリザーバ8は前記以外弾性ベローズ式、ビニ
ール袋やゴム風船にしてもよい。
In addition, the near reservoir 8 may be of an elastic bellows type, a plastic bag, or a rubber balloon.

さらに前記実施例では凝縮器4を傾斜して配置し、ニア
リザーバ8をその下端部に装着したが、このようなもの
に限定しないのは勿論で、要は凝縮器4内の最も冷媒蒸
気圧の低い部位に連通ずるようにニアリザーバ8を装着
すればよい。
Furthermore, in the embodiment described above, the condenser 4 is arranged at an angle and the near reservoir 8 is attached to the lower end thereof, but it is of course not limited to this. The near reservoir 8 may be installed so that it communicates with the lower part.

また凝縮器4を垂直に配置したり、あるいはその下端部
から冷媒蒸気を流入させるようにしてもよい。
Further, the condenser 4 may be arranged vertically, or the refrigerant vapor may be introduced from its lower end.

さらにこの考案の用途は電気自動車の制御用半導体の冷
却に適するが、それ以外の小型、軽量を要求される各種
の冷却装置に応用することができる。
Furthermore, although this invention is suitable for cooling semiconductors for controlling electric vehicles, it can also be applied to various other cooling devices that require small size and light weight.

以上詳述したようにこの考案は冷媒を用いて発熱体を冷
却する冷却器において、その凝縮器の冷媒蒸気圧の最も
低圧の部位にその蒸気圧に応じて内部容積を増減するニ
アリザーバを設けるようにしたので冷却効率が良好で格
別圧力容器を必要とせず小型、軽量で廉価な蒸発冷却装
置を提供できる。
As detailed above, this idea is to provide a near reservoir in the condenser where the vapor pressure of the refrigerant is lowest, which increases or decreases the internal volume according to the vapor pressure, in a cooler that cools a heating element using a refrigerant. This makes it possible to provide a small, lightweight, and inexpensive evaporative cooling device that has good cooling efficiency and does not require a special pressure vessel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す概略構成図、第2図
は同実施例の斜視図、第3図は従来装置の一例の概略図
である。 1・・・・・・容器、2・・・・・・冷媒、3・・・・
・・発熱体、4・・・・・・凝縮器、7・・・・・・循
環系、8・・・・・・ニアリザーバ、9・・・・・・密
封容器、10・・・・・・熱絶縁パイプ
FIG. 1 is a schematic diagram showing an embodiment of this invention, FIG. 2 is a perspective view of the same embodiment, and FIG. 3 is a schematic diagram of an example of a conventional device. 1... Container, 2... Refrigerant, 3...
... Heating element, 4 ... Condenser, 7 ... Circulation system, 8 ... Near reservoir, 9 ... Sealed container, 10 ...・Thermal insulation pipe

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒を貯留し、この冷媒を気化させて発熱体を冷却する
容器と、気化した冷媒を液化する傾斜配置した、凝縮器
と、前記容器内で気化した冷媒を蒸気管をとおして、前
記凝縮器へ送り、この凝縮器で液化した冷媒を、凝縮液
管をとおして前記容器へ送る循環系と、前記凝縮器の運
転時、最も冷媒蒸気圧の低圧の部位に装着され、前記循
環系内の不凝縮性気体を収容し、よって同系内の圧力を
ほぼ大気圧に維持するようにその体積が増減するニアリ
ザーバとからなる蒸発冷却装置。
a container for storing a refrigerant and vaporizing the refrigerant to cool the heating element; a condenser arranged at an angle for liquefying the vaporized refrigerant; and a condenser for passing the vaporized refrigerant in the container through a steam pipe to the condenser. and a circulation system that sends the refrigerant liquefied in this condenser to the container through a condensate pipe. An evaporative cooling device comprising a near reservoir whose volume increases or decreases to contain a noncondensable gas and thus maintain the pressure within the system at approximately atmospheric pressure.
JP12393274U 1974-10-16 1974-10-16 Jiyo Hatsurei Yakusouchi Expired JPS5824451Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12393274U JPS5824451Y2 (en) 1974-10-16 1974-10-16 Jiyo Hatsurei Yakusouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12393274U JPS5824451Y2 (en) 1974-10-16 1974-10-16 Jiyo Hatsurei Yakusouchi

Publications (2)

Publication Number Publication Date
JPS5150443U JPS5150443U (en) 1976-04-16
JPS5824451Y2 true JPS5824451Y2 (en) 1983-05-25

Family

ID=28371617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12393274U Expired JPS5824451Y2 (en) 1974-10-16 1974-10-16 Jiyo Hatsurei Yakusouchi

Country Status (1)

Country Link
JP (1) JPS5824451Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784547A (en) * 1980-11-14 1982-05-26 Hitachi Ltd Manufacture of cathode-ray tube
JPS59111229A (en) * 1982-12-16 1984-06-27 Mitsubishi Electric Corp Method for manufacturing cathode ray tube
GB2549946A (en) * 2016-05-03 2017-11-08 Bitfury Group Ltd Immersion cooling

Also Published As

Publication number Publication date
JPS5150443U (en) 1976-04-16

Similar Documents

Publication Publication Date Title
US2350348A (en) Heat transfer device
US3024298A (en) Evaporative-gravity cooling systems
US5195577A (en) Cooling device for power semiconductor switching elements
JP2019207032A (en) Apparatus temperature control device
JPS5824451Y2 (en) Jiyo Hatsurei Yakusouchi
US4096707A (en) Portable refrigeration machine
US4340111A (en) Evaporative cooling of containers in a pressure vessel
WO2019147563A1 (en) Liquid nitrogen-based cooling system
US20080104964A1 (en) Air-conditioning apparatus and method
US3851497A (en) Tiltable air-cooled absorption refrigeration apparatus of the inert gas type
KR102266937B1 (en) System for heat exchange of refrigerant by using circulation of liquid medium
JP3732893B2 (en) Control method of absorption chiller / heater
JPH0428983A (en) Evaporative cooler
JP2002372397A (en) Cooling system
JPH0792295B2 (en) Cold storage device
EP0826937B1 (en) Cooling unit
JPH0451740B2 (en)
US2946206A (en) Refrigerator employing secondary refrigeration system
JPH07158911A (en) Cold heat accumulating tank and cooler equipped therewith
JPS583358Y2 (en) Boiling cooling device
JPS6034040B2 (en) Boiling cooling device
US11719449B2 (en) Systems for refrigerating an enclosure
JPS6032334B2 (en) transformer
JPS58210462A (en) Absorption cold heat machine
JP2005283023A (en) Stirling cooler