JPS5968979A - Manufacture of photoelectric conversion element film - Google Patents

Manufacture of photoelectric conversion element film

Info

Publication number
JPS5968979A
JPS5968979A JP57180207A JP18020782A JPS5968979A JP S5968979 A JPS5968979 A JP S5968979A JP 57180207 A JP57180207 A JP 57180207A JP 18020782 A JP18020782 A JP 18020782A JP S5968979 A JPS5968979 A JP S5968979A
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
conversion element
band width
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57180207A
Other languages
Japanese (ja)
Inventor
Koshiro Mori
森 幸四郎
Masatoshi Kitagawa
雅俊 北川
Shinichiro Ishihara
伸一郎 石原
Masaharu Ono
大野 雅晴
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57180207A priority Critical patent/JPS5968979A/en
Publication of JPS5968979A publication Critical patent/JPS5968979A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photoelectric conversion element by simply adjusting an optical forbidden band width by a method wherein a substrate is continuously transferred in a vacuum vessel from the high temperature side down to the low temperature side. CONSTITUTION:A heater wire 2 is arranged in the vacuum vessel 1 by making winding density different, and thus the temperature of the substrate 3 can be continuously varied. The substrates 3 transfer to the low temperature side on a chain belt 6 by the rotation of gears 5, a raw material gas is introduced 7 to the vacuum vessel 1 during this time, a fixed voltage is impressed on the substrate 3 and the lower electrode 4 from a power source 8, and then thin film Si's are deposited by normal plasma CVD method. When the substrate temperature is high, the amount of contained H in the thin film Si becomes large, and accordingly the optical forbidden band width is small. This constitution enables to set the forbidden band width at an arbitrary value from a small value B2 to a large value B1, and thus to easily form a photoelectric conversion element layer of a fixed forbidden band width while the substrate is made to come in from the T5 side and to successively transfer; therefore the photoelectric conversion efficiency can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜ゲルマニウムや薄膜シリコン等の光電変換
素子膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a photoelectric conversion element film such as a thin germanium film or a thin silicon film.

従来例の構成とその問題点 従来、真空中で基板を連続的て移動させ、薄膜シリコン
を堆積させる製法については、種々知られている。この
場合、薄膜の光学的禁止帯幅を調節するに際し、基板温
度を変えねばならなかったので工程が複雑であった。
Conventional Structures and Problems There are various known manufacturing methods in which a thin film of silicon is deposited by continuously moving a substrate in a vacuum. In this case, the process was complicated because the substrate temperature had to be changed when adjusting the optical bandgap width of the thin film.

発明の目的 光電変換素子の光学的禁止帯幅を簡易に調整できる製造
法を得ることを目的とする。
OBJECTS OF THE INVENTION It is an object of the invention to provide a manufacturing method that allows easy adjustment of the optical forbidden width of a photoelectric conversion element.

発明の構成 光電変換膜を形成する際に基板を連続的に移動させ、か
つ基板温度を基板の進行方向に漸次、温の要部断面図を
示す一実施例である。真空容器1内疋ヒータ線2の巻数
密度が異なるように配置され、この配置により基板3の
温度を連続的に変化させることが可能である。基板は矢
印の方向すなわち温度の高い方から低い方へ移動する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an embodiment showing a cross-sectional view of a main part of the structure of the invention, in which a substrate is continuously moved during formation of a photoelectric conversion film, and the temperature of the substrate is gradually increased in the direction of movement of the substrate. The heater wires 2 in the vacuum vessel 1 are arranged so that the number of turns density is different, and this arrangement allows the temperature of the substrate 3 to be changed continuously. The substrate moves in the direction of the arrow, ie from the higher temperature side to the lower temperature side.

そして基板3は歯車6の回転によってチェーンベルト6
上に載せて連続的に移動させることが可能である。
Then, the base plate 3 is rotated by the chain belt 6 by the rotation of the gear 6.
It can be placed on top and moved continuously.

そして基板3を移動させながら薄膜シリコンは次のよう
な方法で堆積させる。原料ガスを真空容器(以下反応炉
と記載する)中にガス導入ロアから導入する。ガスの種
類はS i層4. S i F 4. G e H4゜
B2. Ar 、 CH4,PH3,B2H6等の混合
物であって第1図において下部電極4と上部電極である
基板3捷たは基板ホールダ(図示しない)間にDC電圧
脣たは高周波電圧またはこれらの重畳電圧を電源8から
印加するという通常のプラズマCVD法により基板上に
堆積させる。
Then, while moving the substrate 3, thin film silicon is deposited by the following method. Raw material gas is introduced into a vacuum container (hereinafter referred to as a reactor) from a gas introduction lower. Type of gas is Si layer 4. S i F 4. G e H4゜B2. A mixture of Ar, CH4, PH3, B2H6, etc., and a DC voltage, a high frequency voltage, or a superimposed voltage thereof is applied between the lower electrode 4 and the upper electrode in FIG. The film is deposited on the substrate by a normal plasma CVD method in which a voltage is applied from a power source 8.

第2図に基板上に堆積した薄膜シリコンの断面図を示す
。透明電極10を形成した透明絶縁性基板9上に上記堆
積法だより薄膜シリコン11の9層11.1層12、n
層13を順次堆積し、そしてさらにアルミニウム、チタ
ン、ニンケル等の金属電極14を形成している。使用す
る基板は透明な絶縁性基板9以外にもステンレスやアル
ミニウム等も使用可能である。
FIG. 2 shows a cross-sectional view of a thin film of silicon deposited on a substrate. On the transparent insulating substrate 9 on which the transparent electrode 10 is formed, 9 layers 11.1 layers 12, n of thin film silicon 11 are deposited by the above deposition method.
Layers 13 are deposited in sequence, and metal electrodes 14 of aluminum, titanium, nickel, etc. are formed. In addition to the transparent insulating substrate 9, stainless steel, aluminum, etc. can also be used as the substrate.

光電変換は、光15を透明絶縁性基板9側から照射して
、主に1層12で行われ、外部に電気出力を取り出す。
Photoelectric conversion is performed mainly in one layer 12 by irradiating light 15 from the transparent insulating substrate 9 side, and electrical output is taken out to the outside.

一般に光学的禁止帯幅が定まれば、最も吸収し易い光の
波長も定まり、ある膜の光学的禁止帯幅がブロードであ
れば吸収効率も向上する。したがって光電変換膜形成に
あたって、任意の光学的禁止帯幅を容易に得ることが重
要な問題となる。
Generally, when the optical bandgap is determined, the wavelength of light that is most easily absorbed is also determined, and if the optical bandgap of a certain film is broad, the absorption efficiency will be improved. Therefore, in forming a photoelectric conversion film, it is an important issue to easily obtain an arbitrary optical band gap.

第3図は反応炉1中でプラズマCVDにより薄膜シリコ
ンを堆積する際だ基板温度をT5(高温側)から順次T
。(低温側)−1:で変化させることが可能なことを示
している。堆積した薄膜シリコンは基板温度が高温の場
合は薄膜シリコンの含有水素量が多いので光学的禁止帯
幅を小(B2)から大(B1)−1:で任意の値を得る
ことが可能である。
Figure 3 shows the distinct substrate temperatures at which thin film silicon is deposited by plasma CVD in reactor 1, starting from T5 (high temperature side).
. (Low temperature side) -1: It shows that it is possible to change. When the substrate temperature is high, the deposited thin film silicon contains a large amount of hydrogen, so it is possible to obtain an optical band gap of any value from small (B2) to large (B1) - 1: .

T5側から基板を進入させて順次移動させながらたとえ
ばi層を形成するとある領域をもった光学的禁止帯幅の
層を形成でき、太陽電池を形成したとき光吸収率を向上
できる。
If, for example, an i-layer is formed by entering the substrate from the T5 side and moving it sequentially, a layer with a certain region and an optical forbidden width can be formed, and the light absorption rate can be improved when a solar cell is formed.

発明の効果 薄膜の光学的禁止帯幅を任意に変化させることができ、
簡単に光学的禁止帯幅を持つ光電変換素子層を形成でき
、この薄膜シリコンを使った太陽電池は太陽光スペクト
ルをよく吸収し光電変換効率を向上させることができる
Effects of the invention The optical bandgap width of the thin film can be changed arbitrarily,
A photoelectric conversion element layer with an optical band gap can be easily formed, and solar cells using this thin film silicon can absorb sunlight spectrum well and improve photoelectric conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造法におけるプラズマc
vn装置の構成図、第2図は太陽電池の構造を示す図、
第3図は基板温度と光学的禁止帯幅の関係を示す図であ
る。 1・・・・・・真空容器、2・・・・・・ヒータ、3・
・・・・・基板、4・・・・・・下部電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第2図 7 第 3 FM 基以渇屋’c(什たB俗)
FIG. 1 shows plasma c in a manufacturing method according to an embodiment of the present invention.
The configuration diagram of the vn device, Figure 2 is a diagram showing the structure of the solar cell,
FIG. 3 is a diagram showing the relationship between substrate temperature and optical bandgap width. 1... Vacuum container, 2... Heater, 3.
. . . Substrate, 4 . . . Lower electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 7 3rd FM Motoiya'c (Kita B Zoku)

Claims (1)

【特許請求の範囲】 (1)基板を連続的に移動させる機能と、基板温度を前
記移動方向に温度勾配を持たせる機能を有する真空容器
中を前記基板を高温側から低温側へ移動さぜながら光電
変換膜を堆積させる光電変換素子膜の製造法。 第1項記載の光電変換素子膜の製造法。 (3)プラズマCVD法によりp−1−n型構造を有す
る薄膜シリコン光電変換素子を形成させる特許請求の範
囲第2項記載の光電変換素子膜の製造法0
[Scope of Claims] (1) The substrate is moved from a high temperature side to a low temperature side in a vacuum container that has a function of continuously moving the substrate and a function of making the substrate temperature have a temperature gradient in the movement direction. A method for manufacturing a photoelectric conversion element film in which a photoelectric conversion film is deposited. 2. A method for producing a photoelectric conversion element film according to item 1. (3) Method 0 for producing a photoelectric conversion element film according to claim 2, in which a thin film silicon photoelectric conversion element having a p-1-n type structure is formed by a plasma CVD method.
JP57180207A 1982-10-13 1982-10-13 Manufacture of photoelectric conversion element film Pending JPS5968979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180207A JPS5968979A (en) 1982-10-13 1982-10-13 Manufacture of photoelectric conversion element film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180207A JPS5968979A (en) 1982-10-13 1982-10-13 Manufacture of photoelectric conversion element film

Publications (1)

Publication Number Publication Date
JPS5968979A true JPS5968979A (en) 1984-04-19

Family

ID=16079268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180207A Pending JPS5968979A (en) 1982-10-13 1982-10-13 Manufacture of photoelectric conversion element film

Country Status (1)

Country Link
JP (1) JPS5968979A (en)

Similar Documents

Publication Publication Date Title
US4758527A (en) Method of making semiconductor photo-electrically-sensitive device
US4113531A (en) Process for fabricating polycrystalline inp-cds solar cells
JPS61287176A (en) Substrate and photovoltaic device having the same
JPH03174778A (en) Laminar amorphous semiconductor device
US5043772A (en) Semiconductor photo-electrically-sensitive device
US6043105A (en) Method for manufacturing semiconductor sensitive devices
JPS61234534A (en) Fabrication of silicon nitride coating
US4344984A (en) Process for producing a layer containing silicon
US5139970A (en) Electric device and manufacturing method of the same
JPS5968979A (en) Manufacture of photoelectric conversion element film
ES8200512A1 (en) Method of manufacturing a layer containig silicon with an hybrid structure between an amorphous and a polycrystalline form, and solar cell containig such a layer.
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
JPS571272A (en) Manufacture of amorphous silicon solar cell
JPH03284882A (en) Semiconductor thin film and manufacture thereof
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPH02260666A (en) Manufacture of amorphous solar cell
JPS63274184A (en) Photoelectric transducer and manufacture thereof
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPH04192373A (en) Photovoltaic element
JPS5916326A (en) Manufacture of thin film
JP2966908B2 (en) Photoelectric conversion element
JPH02177372A (en) Photoelectric conversion device
JPS61232685A (en) Amorphous silicon solar battery and manufacture thereof
JPH07263728A (en) Manufacture of thin film solar cell
JPS6216510A (en) Formation of semiconductor thin film