JPS5968647A - Fatigue testing device - Google Patents

Fatigue testing device

Info

Publication number
JPS5968647A
JPS5968647A JP17944882A JP17944882A JPS5968647A JP S5968647 A JPS5968647 A JP S5968647A JP 17944882 A JP17944882 A JP 17944882A JP 17944882 A JP17944882 A JP 17944882A JP S5968647 A JPS5968647 A JP S5968647A
Authority
JP
Japan
Prior art keywords
test piece
output end
displacement
output
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17944882A
Other languages
Japanese (ja)
Inventor
Takao Fujita
藤田 孝夫
Koji Sakurai
宏治 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17944882A priority Critical patent/JPS5968647A/en
Publication of JPS5968647A publication Critical patent/JPS5968647A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/38Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by electromagnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To give a wide-range load with a simple structure to perform measurement, by generating the repeated load given to a test piece by an electromagnetic driving mechanism. CONSTITUTION:One end 1A of an expanding and contracting test piece 1 is fixed to a fixed base 2, and the other end 1B is attached to an output end 4 of an electromagnetic driving mechanism 3. An oscillator 5 is provided in the driving mechanism 3, and an output of the oscillator 5 is amplified in an amplifier 6 and is supplied to a coil 7, and a diaphragm of a speaker 8 is vibrated by the supplied exciting current of the coil 7. The output end 4 attached as one body together with the diaphragm is moved back and forth in accordance with the exciting current, and this motion is allowed to act upon the test piece 1, and the displacement of the output end 4 is detected by a displacement measurer 9.

Description

【発明の詳細な説明】 本発明は疲労試験装置に関するものであり、特に試験片
として金属板等の薄板材料の疲労試験を実施するだめの
装置である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fatigue testing apparatus, and particularly to an apparatus for carrying out fatigue tests on thin plate materials such as metal plates as test pieces.

電力用太陽電池装置は、所望出力を取り出すために通常
は複数個の太陽電池素子が直列及び並列に電気的接続1
−で利用されている。処でこのような太陽電池素子間を
電気的接続するために金属板からなるインターコネクタ
が用いられる。
In a power solar cell device, a plurality of solar cell elements are usually electrically connected in series and parallel to obtain a desired output.
- It is used in In order to electrically connect such solar cell elements, interconnectors made of metal plates are used.

太陽電池が人工衛星の電源として用いられる場合、太陽
電池をはじめ上記インターコネクタは宇宙環境において
温度差+100℃〜−150℃程度の広い範囲に晒され
ることになる。このような環境下では太陽電池素子を接
続[2ている特にインターコネクタには伸縮又は折曲げ
負荷が繰り返し川ることになり、インターコネクタは疲
労破壊を起こすことにもなる。インターコネクタの疲労
破壊は太陽電池装置の機能を損うことになり、太陽電池
を電源としている機器に大きな影響を及ぼし、機器は所
期の目的を達成し得ない事態に到る。
When a solar cell is used as a power source for an artificial satellite, the interconnector including the solar cell will be exposed to a wide temperature range of about +100° C. to -150° C. in the space environment. Under such an environment, the interconnectors that connect the solar cell elements are subject to repeated expansion/contraction or bending loads, which may cause fatigue failure of the interconnectors. Fatigue failure of the interconnector impairs the functionality of the solar cell device, and has a major impact on equipment that uses solar cells as a power source, leading to a situation where the equipment cannot achieve its intended purpose.

上記のような事態の発生を防ぐためには、インターコネ
クタのだめの金属板に予め伸縮又は折曲げの予想される
負荷を与えて疲労試験を行ない、必要な耐久性があるこ
とを事前に確認する必要がある。そのだめの試験方法の
一つとして温度サイクルによる伸縮試験が考えられるが
、時間と費用の点から問題があり、一般には加速試験方
法が行われる。
In order to prevent the above situation from occurring, it is necessary to conduct a fatigue test in advance by subjecting the metal plate of the interconnector to a load that is expected to cause expansion, contraction, or bending, and to confirm in advance that it has the necessary durability. There is. One possible alternative test method would be an expansion/contraction test using temperature cycles, but this poses problems in terms of time and cost, so accelerated testing methods are generally used.

従来から金属片に繰り返し負荷をliえて疲労試験する
装置として0:1、機械的に負荷を作り出して与える方
法が採られている。例えばカム等でモータの回転律動を
直線往復運動に変え、且つ必要なストロークに調節する
機構を用いて被試験片の伸縮又は折曲げ疲労試験を行っ
ている。しかし上記従)1:、の機わ](的に負荷を発
生させる疲労試験装置では次のような欠点がある。
BACKGROUND ART Conventionally, a method of mechanically creating and applying a 0:1 load has been used as a device for fatigue testing by repeatedly applying a load to a metal piece. For example, a stretching or bending fatigue test is performed on a test piece using a mechanism that uses a cam or the like to convert the rotational rhythm of a motor into a linear reciprocating motion and adjusts the stroke to a required stroke. However, the fatigue test equipment that generates a load according to (1) above has the following drawbacks.

イ)試験に必要な伸縮ストロークは通常数ミラ1コンか
ら数ミリメートルの広い領域に及んでおり、特に小さい
領域(例えば100μm以下)′C′はカム等の機械的
外制御によって得るととが非常に困難で、精度が著しく
損われる。
b) The extension/contraction stroke required for the test usually covers a wide area ranging from several millimeters to several millimeters, and it is extremely difficult to obtain a particularly small area (for example, 100 μm or less) 'C' by external mechanical control such as a cam. is difficult, and accuracy is significantly compromised.

口)カム等の機械的な負荷発生機構では、伸縮ストロー
クの広い領域を一つの装置でカッく−することは雛かし
7く、伸縮ストロークを変化させるためには所望ストロ
ークに応じて高精度にカム等の要素をその都度作製して
取り換えねばならず、装置が非常に高価外ものになる0 本発明は一ヒ記従来装信の欠点を除去し、電磁駆動機構
を利用して往復運動を発生させるれとによって伸縮又は
折曲げストロークを広い範囲に亘って、且つ連続的に変
化させ得る薄板材料の疲労試験装置を1ガ供するもので
ある。以下に実施例を挙げて本発明の詳細な説明する。
In a mechanical load generating mechanism such as a cam, it is difficult to cut a wide range of expansion and contraction strokes with one device, and in order to change the expansion and contraction stroke, high precision is required according to the desired stroke. Since elements such as cams must be manufactured and replaced each time, the device becomes extremely expensive. The present invention provides a one-gauge fatigue testing device for thin plate materials that can continuously change the expansion/contraction or bending stroke over a wide range depending on the amount of force generated. The present invention will be explained in detail by giving examples below.

図において1は伸縮試験片で、例えば人工衛星搭載用の
太陽電池素子間を電気的に1妥続するための金居片であ
り、従って実際に接続部に供される形態に加工されてい
る。該試験片1の一端IAけ固定台2に固定されている
のに対して、他端IBは電磁駆動機構3の出力端4に取
付けられている。
In the figure, 1 is a stretchable test piece, for example, a metal plate for electrically connecting solar cell elements mounted on an artificial satellite, and is therefore processed into a form that will actually be used as a connection part. . One end IA of the test piece 1 is fixed to a fixing base 2, while the other end IB is attached to an output end 4 of an electromagnetic drive mechanism 3.

該電磁駆動機構3ば、上記試験片1に伸縮や折曲げ等の
負荷を所望の周期及び振幅で与えるだめの機構で、例え
ば正弦波を発生する発振器5が設けられ、該発振器5の
出力は増幅器6を介して増幅された後コイル7に供給さ
れる。コイル7如°供給された励磁電流により、いわゆ
るスピーカー8の振動板を振動させ、該振動板と一体的
に取り付けられた上記出力端4を、励磁電流の波形及び
振幅に対応しだス)o−りで往復運動させる。ただし出
力端4にid試験片1が取付けられているプこめ、変換
に」゛って取り出された往復運動が試験片1に作用し、
試験片1が増刊けられていることによる出力端4の変位
が検出される。該出力端4の変位を測定するために変位
測定器9が設けられ、出力端4の変位が検出されて次段
の伸縮回数記録計10に入力され、伸縮試1験の繰返し
回数が1測される。
The electromagnetic drive mechanism 3 is a mechanism for applying a load such as stretching or bending to the test piece 1 at a desired period and amplitude, and is provided with an oscillator 5 that generates, for example, a sine wave, and the output of the oscillator 5 is The signal is amplified via an amplifier 6 and then supplied to a coil 7. The excitation current supplied to the coil 7 vibrates the so-called diaphragm of the speaker 8, and the output end 4, which is integrally attached to the diaphragm, responds to the waveform and amplitude of the excitation current. - to make a reciprocating motion. However, since the ID test piece 1 is attached to the output end 4, the reciprocating motion taken out due to the conversion acts on the test piece 1.
The displacement of the output end 4 due to the addition of the test piece 1 is detected. A displacement measuring device 9 is provided to measure the displacement of the output end 4, and the displacement of the output end 4 is detected and inputted to the next stage expansion/contraction number recorder 10, so that the number of repetitions of one expansion/contraction test is one measurement. be done.

試験片1が疲労により破断或いは破断に至らない寸でも
欠陥等が生じた場合には出力端4で検出される変位届が
変化し、試験片の異常を検知することができ、試験片1
の疲労試験に対する特性を知ることができる。
If the test piece 1 breaks due to fatigue, or if a defect occurs even if it does not break, the displacement signal detected at the output end 4 changes, making it possible to detect an abnormality in the test piece.
You can learn about the characteristics of fatigue tests.

上記電磁駆動機構によれば、コイル7に供給する励磁電
流の波形及び振幅を制御することにより、試、験片1に
旬勢するストロークの調整が可能で、しかも連続的に変
化させることができ、伸縮の速度(単位時間当りのスト
ローク数)も励磁電流の周波数を変更することによって
容易1(連続的に設定し得る。上記本発明による疲労試
験装置は、実施例に示しだインターコネクタの試験に限
られるものてはなく、同様の薄板月利の評価にも適用す
ることができる。
According to the electromagnetic drive mechanism described above, by controlling the waveform and amplitude of the excitation current supplied to the coil 7, it is possible to adjust the stroke that affects the test specimen 1, and it is also possible to change it continuously. The speed of expansion and contraction (the number of strokes per unit time) can also be easily set (continuously) by changing the frequency of the excitation current. The method is not limited to , and can also be applied to the evaluation of similar thin sheet monthly interest rates.

以上本発明によれば、薄板月利の疲労試験を行なうだめ
の装置において、試験片に匂える轡返しの負荷を電磁駆
動機構によって作り出すことにより、簡単な構造で広い
範囲に亘る負荷を−りえてI!111定を行うことがで
き、測定条件変更のだめの機構が従来装置に比べて著し
く簡略化されろと共に高い精度の試験結果を得ることが
でき、実益の大きい試験装置を得ることができる。
As described above, according to the present invention, in an apparatus for performing a fatigue test on a thin plate, a load over a wide range can be changed with a simple structure by creating a reciprocating load on a test piece using an electromagnetic drive mechanism. Tei! 111 constant, the mechanism for changing measurement conditions is significantly simplified compared to conventional devices, and highly accurate test results can be obtained, making it possible to obtain a test device that is highly profitable.

【図面の簡単な説明】[Brief explanation of drawings]

同姓二本発明による一実施例を示すブO−)り図である 1、試験片 2゛固定 3 電磁駆動機構4 出力端 
5°発搗器 6.増幅器 7 コイル 8゛スピーカー
1. Test piece 2. Fixed 3. Electromagnetic drive mechanism 4. Output end
5° pounder 6. Amplifier 7 Coil 8゛Speaker

Claims (1)

【特許請求の範囲】[Claims] ■)所望周波数の出力信号を形成する発振器と、該発振
器出力を位置変位出力に変換する電磁変換器と、該電磁
変換器に結合され、且つ一端が周定された被試験片の他
端を電磁変換器の位置変位出力に対応して変位させる被
試験片保持具と、該試験片保持具の変位を検出する変位
測定器とを備えてなる疲労試験装置。
(2) An oscillator that forms an output signal of a desired frequency, an electromagnetic transducer that converts the oscillator output into a position displacement output, and a test piece that is coupled to the electromagnetic transducer and has one end circumferentially circumferentially connected to the other end of the test piece. A fatigue testing device comprising a test piece holder that is displaced in response to a positional displacement output of an electromagnetic transducer, and a displacement measuring device that detects the displacement of the test piece holder.
JP17944882A 1982-10-13 1982-10-13 Fatigue testing device Pending JPS5968647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17944882A JPS5968647A (en) 1982-10-13 1982-10-13 Fatigue testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17944882A JPS5968647A (en) 1982-10-13 1982-10-13 Fatigue testing device

Publications (1)

Publication Number Publication Date
JPS5968647A true JPS5968647A (en) 1984-04-18

Family

ID=16066032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17944882A Pending JPS5968647A (en) 1982-10-13 1982-10-13 Fatigue testing device

Country Status (1)

Country Link
JP (1) JPS5968647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215036A (en) * 1990-09-28 1992-08-05 Shinken:Kk Fatigue testing method by optional wave impact force and fatigue testing machine therefor
CN103323354A (en) * 2013-04-10 2013-09-25 浙江工业大学 High-precision dynamic-loading fatigue test apparatus
JP2021065060A (en) * 2019-10-16 2021-04-22 株式会社カネカ Durability test method for electrical connections of solar cell modules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215036A (en) * 1990-09-28 1992-08-05 Shinken:Kk Fatigue testing method by optional wave impact force and fatigue testing machine therefor
CN103323354A (en) * 2013-04-10 2013-09-25 浙江工业大学 High-precision dynamic-loading fatigue test apparatus
JP2021065060A (en) * 2019-10-16 2021-04-22 株式会社カネカ Durability test method for electrical connections of solar cell modules

Similar Documents

Publication Publication Date Title
JP3224778U (en) Dual beam interference calibration device for laser vibrometer and its calibration method
CA2119781C (en) A device for determining the size and charge of colloidal particles
US6508132B1 (en) Dynamic load cell apparatus
KR0170544B1 (en) Non-destructive examination device
CN114034942B (en) High-flux measurement method for piezoelectric coefficient of piezoelectric film
JP2008029111A (en) Actuator device with sensor function and viscoelasticity measuring device
CN108827804A (en) A kind of resonant mode fatigue tester dynamic load error online compensation method
JPS5968647A (en) Fatigue testing device
JP2002243604A (en) Ultrasonic fatigue tester
RU152648U1 (en) TWO CHANNEL ACCELEROMETER
CN208860566U (en) Shallow spherical surface shell vibration detection control device
US2362467A (en) Excitation of vibration in structural members
CN208818338U (en) High-temperature vibrating sensor calibrating system
JP3430660B2 (en) Strength reliability evaluation test equipment
Scheeper et al. Development of a modal analysis accelerometer based on a tunneling displacement transducer
US3016735A (en) Structural bond evaluation
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
WO2009057535A1 (en) Method for inspecting electromechanical characteristic of electromechanical conversion element
JP2723611B2 (en) Torsional dynamic characteristics tester
CN110057391B (en) Device and method for testing sensing performance of shear type piezoelectric sensor
CN114858061B (en) Method and device for testing radial displacement of micro piezoelectric ceramic tube
JP2001165765A (en) Vibration distribution measuring apparatus
CN118795240A (en) Test probe, system, storage medium and terminal for testing piezoelectric coefficient
SU661300A1 (en) Viscosimeter
RU2274676C2 (en) Device to check the depth of vacuum deposited coatings