WO2009057535A1 - Method for inspecting electromechanical characteristic of electromechanical conversion element - Google Patents

Method for inspecting electromechanical characteristic of electromechanical conversion element Download PDF

Info

Publication number
WO2009057535A1
WO2009057535A1 PCT/JP2008/069399 JP2008069399W WO2009057535A1 WO 2009057535 A1 WO2009057535 A1 WO 2009057535A1 JP 2008069399 W JP2008069399 W JP 2008069399W WO 2009057535 A1 WO2009057535 A1 WO 2009057535A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromechanical
value
frequency
max
characteristic
Prior art date
Application number
PCT/JP2008/069399
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Tani
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2009539042A priority Critical patent/JP5225284B2/en
Publication of WO2009057535A1 publication Critical patent/WO2009057535A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/22Measuring piezoelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2023Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention is a piezoelectric or electrostrictive actuator, super-standing
  • Electromechanical transducers such as piezoelectric elements and electrostrictive elements that are used in electromechanical transducers such as sine wave motors and piezoelectric lances and that generate mechanical distortion when a voltage waveform is applied.
  • the present invention relates to an electromechanical property inspection method for inspecting the quality of the electromechanical property. Background technology
  • an electromechanical transducer element used in an electromechanical transducer such as a piezoelectric or electrostrictive actuator, an ultrasonic motor, and a piezoelectric transformer, which generates mechanical vibration when a voltage waveform is applied.
  • An electromechanical transducer such as an element and an electrostrictive element (hereinafter simply referred to as “element J”) preferably has a large cross G admittance at the electromechanical resonance frequency of the element.
  • Japanese Laid-Open Patent Publication No. 2000-0 4 6 9 4 3 discloses a vibrator for an ultrasonic motor.
  • This vibrating body is a vibrating body in which a substantially rectangular flat plate-like metal plate and a substantially rectangular flat plate-like piezoelectric element are bonded together, and its longitudinal vibration and bending vibration are used.
  • Japanese Laid-Open Patent Publication No. 20 0 4 — 2 6 6 9 4 3 discloses that a frequency range in which the AC impedance becomes smaller than a predetermined value by adjusting the vertical / horizontal dimension ratio of the vibrator. It is disclosed that a wide range of "" is provided and "super-standing" is provided.
  • a small AC impedance is synonymous with a large AC admittance. Therefore, in general, whether or not the electromechanical characteristics of such an electromechanical transducer element are good or bad is measured by measuring the AC amplitude in the frequency range including the resonance frequency of the element.
  • the AC code at the resonance frequency,,, and the conductance, and the AC impedance, which is the reciprocal thereof, and the AC To K, AC conductance that is the real part of the conductance, etc. Is used.
  • Japanese Laid-Open Patent Publication No. 2 0 3 — 1 6 8 8 3 2 discloses a method for detecting a piezoelectric balance in which an input electrode and an output electrode are arranged on a rectangular plate-shaped piezoelectric element.
  • the AC conductance at the resonance frequency of the piezoelectric element is measured in order to estimate the temperature rise when the piezoelectric transformer is continuously driven.
  • EMAS-6100 Electro Testing Method for Piezoelectric Ceramic Vibrators
  • the frequency characteristics of the admittance are measured, and the electrical equivalent circuit constants (C 0, C l, R l, L 1) of the vibrator and the vibration of the vibrator are measured based on the frequency characteristic data obtained by the measurement.
  • a method for calculating the sharpness Q is disclosed.
  • Japanese Patent Laid-Open No. 10-1 1566 48 discloses an AC add and a balance circle by a least square method to obtain a piezoelectric vibrator such as a crystal vibrator. Discloses a method for accurately calculating equivalent circuit constants.
  • electromechanical transducers such as piezoelectric or electrostriction actuators, super-stand-wave sensors, and piezoelectric transformers.
  • the measured value of the electromechanical characteristic value of a single element fluctuates relatively large from measurement to measurement.
  • the measured value of the mechanical property value of the device changes relatively greatly before and after the device is incorporated into the electromechanical conversion device.
  • the correspondence between the measured value of the electromechanical characteristic value in the single element and the characteristic of the electromechanical conversion device after the element is incorporated is not good.
  • the electromechanical conversion element is incorporated in the fc '53 ⁇ 4 mechanical conversion device, it is driven to vibrate at the resonance frequency (or a frequency near the resonance frequency) of the electromechanical conversion element.
  • the electromechanical conversion element is used as an element (quasi-statically driven element) that brings about a substantially static displacement after being incorporated in the electromechanical conversion device.
  • the electromechanical conversion element is applied with a voltage waveform that changes over a period of time much longer than the resonance period, and is used as an element for causing mechanical displacement at that time.
  • Japanese Laid-Open Patent Publication No. 2 0 0 6 — 3 4 3 2 2 2 discloses a method for inspecting the electromechanical characteristic (displacement characteristic) of such a quasi-statically driven electromechanical transducer. . Specifically, it is disclosed in Japanese Patent Application Laid-Open No. 2000-063 1 3 4 3 2 2
  • the electromechanical conversion element disclosed in No. 2 is a piezoelectric element that is used as an actuator while being bonded to a support member. According to the disclosed inspection method, it is in a single state (the state of the heel bonded to the support member)
  • the displacement characteristics (piezoelectric characteristics) of the piezoelectric element are estimated.
  • the conventional inspection method has not only the electromechanical characteristics of “electromechanical transducers used in a mode of being vibrated at a resonance frequency” but also “electromechanical transducers used quasi-statically”. Electromechanical properties, and
  • the present invention has been made in order to cope with such problems in the prior art, and includes the present invention, an ultrasonic motor, a lance liquid ejecting apparatus, and a switch.
  • Electromechanical transducers such as ⁇ piezoelectric elements and electrostrictive elements that are displaced by a voltage that has a predetermined waveform and is applied with a voltage that has a predetermined waveform.
  • Provide an inspection method electro-mechanical mechanical characteristic inspection method for electromechanical transducers
  • the electromechanical transducer is an element that is used in a state where it is vibrated at a vibration frequency.
  • Mechanical converter The characteristic value of the unit's built-in electromechanical transducer element is not “repetitive measurement repeatability”. The holding state when holding the element with a jig or the like during characteristic inspection
  • the present inventor makes the electrical measurement probe in the case where the electrical measurement probe is brought into contact with the electrode arranged on the electromechanical conversion element to perform the characteristic inspection. Since this also affects the vibration of the electromechanical transducer, we thought that the variation in measured values of the characteristic inspection would be even more pronounced.
  • the present inventor has a good correspondence relationship between the characteristic inspection measurement value of the electromechanical conversion element alone before being incorporated into the electromechanical conversion apparatus and the various characteristics of the electromechanical conversion apparatus after incorporating the element. The reason for this was thought to be that the element holding state at the time of the characteristic inspection of the element alone was different from the element holding state after being incorporated into the electromechanical conversion device.
  • Y max and resonance sharpness Q (Q value) vary relatively from measurement to measurement.
  • the present inventor measured the frequency characteristics of AC element and S pattern of a single element for several elements, and also measured the vibration displacement of the element and the ultrasonic motor incorporating the element. I measured the rotational speed.
  • the inventor makes the case where the electromechanical conversion element is an element used to cause a quasi-static displacement, and the electromechanical conversion element is vibrated at a frequency different from the resonance frequency.
  • the inspection method according to the present invention based on such knowledge is “applied to an electromechanical conversion device” and “a voltage (voltage waveform) having a predetermined waveform (at least a pair of) electrodes is applied.
  • a voltage (voltage waveform) having a predetermined waveform (at least a pair of) electrodes is applied.
  • a first step for holding the electromechanical transducer by a holding jig
  • the electrode of the electromechanical conversion element is electrically connected to an AC permeance measuring device, and “in the frequency range J including the resonance frequency of the electromechanical conversion element, the AC admittance between the electrodes”.
  • step 4 use value A max Z Q in step 4 naturally includes “use value Q / A max J.” Also, in step 1
  • “Holding” includes placing an electromechanical transducer on the top of a base or the like.
  • the characteristic inspection method it is unique to each element and varies from measurement to measurement.
  • the electromechanical characteristics of the electromechanical transducer are inspected based on the “value A maxZ Q”, which has a small deviation. Therefore, it is possible to determine whether the electromechanical characteristics (vibration characteristics or displacement characteristics) of the electromechanical conversion element are good and accurate with high repeatability.
  • the value A max / Q is a “measured value of the electromechanical characteristics unique to the element” that shows a good correspondence with the electromechanical conversion characteristics of the electromechanical conversion device after the element is assembled. Before assembling the element into the electromechanical conversion device, it is possible to accurately inspect the electromechanical characteristics when the element is incorporated into the device.
  • the resonance frequency when measuring the AC admittance characteristics in the second step is selected as described below.
  • an electromechanical transducer has a plurality of resonance modes.
  • an electromechanical transducer has a plurality of resonance frequencies ⁇ and vibrates at a resonance frequency. It vibrates in a different vibration form from the vibrating field. Therefore, it is desirable that the resonance frequency is selected as follows according to the wave number used after the electromechanical conversion element is incorporated into the electromechanical conversion device.
  • the resonance frequency at the time of measuring the above-mentioned AC ADD and MUT characteristics is the drive resonance frequency.
  • the resonance frequency when measuring the above AC impedance characteristics is ⁇ the vibration form is similar
  • the resonance frequency of the resonance mode that is, the resonance frequency closest to the drive frequency when the electromechanical transducer is actually used.
  • the resonance frequency when measuring the above-mentioned AC admittance characteristics is the resonance mode with a similar ⁇ vibration form.
  • Resonance frequency i.e., the resonance frequency closest to the drive frequency when the electromechanical transducer is actually used
  • the vibration form at the lowest vibration frequency is most similar to the vibration form at the time of quasi-static drive.
  • the AC admittance frequency characteristic data “Electrical characteristic value” obtained based on this includes “AC admittance J, ⁇ AC inductance”, “AC impedance phase”, etc.-
  • the peak value of the inductance is used as “the maximum electrical characteristic value at the resonance frequency (maximum value of the electrical characteristic value) A max”
  • the value A max ZQ and the element are converted to electromechanical conversion.
  • 3 ⁇ 4 flow conductance is particularly preferred as the electrical characteristic value, i.e., the peak value A max of the electrical characteristic value adopts the peak value G max of the AC conductance. This is particularly preferred.
  • the peak value G max of the AC conductance is used as the ⁇ maximum electrical characteristic value at the resonance frequency '', the peak value G max of the AC conductance is rounded to the AC admittance circle. It is preferable to obtain the diameter 1 / R 1 by calculating it. This is because “repetitive measurement reproducibility” is further improved.
  • the electromechanical conversion element to which the electromechanical characteristic inspection method of the present invention is applied may be an element that generates a mechanical change ⁇ U 3 ⁇ 4 ”when a voltage having a predetermined waveform is applied ⁇
  • the principle of generating the mechanical displacement is not limited
  • electromechanical transducer elements such as 0 can include piezoelectric elements, electrostrictive elements, magnetostrictive elements, and the like.
  • the electromechanical conversion element is a single plate type, a laminated type, or a piezoelectric film formed on a substrate, and a device that functions as a child (a bimorph type actuator has a diaphragm structure, etc.) It may be.
  • the electromechanical conversion characteristics of the electromechanical conversion element can be obtained by measuring the vibration displacement frequency characteristics of the element instead of the AC admittance frequency characteristics. Furthermore, the present inventor also determines whether or not the vibration displacement frequency characteristic of the electromechanical transducer element is good or bad, as in the case of the good or bad judgment of the AC admittance frequency characteristic. using the value D max / Q D divided by Q D as an evaluation index value for quality determination of the elements, without having to go affected holding state of the device during measurement, accurately quality determination element I have learned that I can do it.
  • “Applies to electromechanical converters and has a predetermined waveform eg A method for inspecting electromechanical characteristics of an electromechanical transducer J that generates mechanical displacement (for example, mechanical vibration) by applying a voltage having a vibration waveform) via an electrode,
  • the electrode of the electromechanical transducer is electrically connected to a frequency characteristic measuring instrument. —,. 6th step (vibration displacement characteristic measurement step) to measure displacement frequency characteristic data,
  • the seventh step for obtaining the peak value D max of the vibration displacement amplitude and the resonance sharpness Q D that are maximum at the resonance frequency.
  • An electromechanical property inspection method including the above is provided.
  • use value D max / Q D in the eighth step naturally includes “use value Q D / D maxj”.
  • This inspection method can also determine the quality of the electromechanical characteristics of the element with high accuracy and high repeatability.
  • FIG. 1 is a four-side view showing an example of an electromechanical transducer to which an electromechanical characteristic inspection method according to the present invention is applied.
  • A is a plan view (top view), and
  • B) is a front view thereof.
  • C is the back view and
  • D is the side view.
  • FIG. 2 is a perspective view showing a laminated structure of the electromechanical transducer shown in FIG.
  • Fig. 3 is a trihedral view showing the first example of the holding jig for the electromechanical transducer shown in Fig. 1, where (A) is a plan view (top view) and (B) is a front view thereof. (C) is a side view of the holding jig in a state in which the connecting portion is removed.
  • Fig. 4 is a trihedral view showing a second example of the holding jig for the electromechanical transducer shown in Fig. 1.
  • A) is a plan view (top view)
  • (B) is a front view thereof.
  • (C) is a side view of the holding jig in a state in which the connecting portion is removed.
  • FIG. 5 is a flowchart showing the flow of the electromechanical characteristic inspection method for an electromechanical transducer according to the present invention.
  • Fig. 6 is a graph showing the measurement results of the frequency characteristics of the ado and mitance for the electromechanical transducer (first ele- ment).
  • A shows the ad, and the frequency with respect to the frequency. This is a plotted graph, and
  • B is a graph plotting the phase of the gain with respect to the frequency.
  • Fig. 7 is a graph showing the results of frequency characteristics measurement of the ado and the inductance for the electromechanical transducer (first element).
  • A plots the inductance with respect to the frequency.
  • B is a graph plotting susceptance versus frequency, and
  • C is a graph plotting conductance and susceptance on the horizontal and vertical axes, respectively.
  • Fig. 8 is a graph showing the measurement results of the frequency characteristics of the electromechanical transducer (second element).
  • A plots the ad, ⁇ , and V stance against the frequency.
  • B is a graph plotting the phases of K,, and T for three wave numbers.
  • Fig. 9 is a graph showing the results of measurement of the harmonic frequency characteristics of the ADD and MIT terminals for the electromechanical transducer (second element).
  • A plots the inductance with respect to the frequency.
  • B is a graph with susceptance plotted against frequency, and
  • C is plotted with conductance and susceptance on the horizontal and vertical axes, respectively.
  • FIG. 10 is an electrical equivalent circuit diagram of the electromechanical transducer (first element).
  • Fig. 11 is an electrical equivalent circuit diagram of the electromechanical transducer (second element).
  • Fig. 12 is a block diagram showing an example of a measurement system for frequency characteristics of vibration displacement of an electromechanical transducer.
  • FIG. 13 is a schematic diagram showing an example of a method for measuring the frequency characteristics of the vibration displacement of the electromechanical transducer.
  • Fig. 14 is a graph showing an example of the frequency characteristics measurement result of vibration displacement for an electromechanical transducer.
  • A is a graph plotting displacement (amplitude) against frequency.
  • B is a graph plotting the phase of displacement against frequency.
  • Fig. 15 is a graph showing an example of the measurement results of frequency characteristics of vibration displacement for electromechanical transducers.
  • (A) and (B) are shown in Fig. 14 (A) and (B).
  • (C) is a graph plotting the “cosine component of vibration displacement” and “sine component of vibration displacement” converted based on the measured data for frequency f. The graph plots the “component” and “sine component of vibration displacement” on the horizontal and vertical axes, respectively.
  • FIG. 16 is a front view of the ultrasonic motor showing an example of the ultrasonic motor to which the electromechanical transducer shown in FIG. 1 is applied.
  • Figure 17 shows an example of a correlation plot between the resonance intensity of the admittance of the electromechanical transducer and each characteristic peak value.
  • A shows the resonance sharpness and the peak of admittance.
  • B is the peak value of resonance sharpness and conductance,
  • C is the maximum / minimum difference between resonance sharpness and susceptance,
  • D is the resonance sharpness and diameter of the admittance circle, This is a plotted graph.
  • Fig. 18 shows an example of a correlation plot between each characteristic peak value of the admittance of the electromechanical transducer and the square of the measured displacement characteristic.
  • A shows the peak value of the conductance and
  • B is the square of the admittance circle and the square of the measured displacement characteristics,
  • C is the conductance peak value divided by the resonance sharpness and the measured displacement characteristics.
  • D is a graph plotting the value obtained by dividing the diameter of the admittance circle by the resonance sharpness and the square of the measured displacement characteristics.
  • Figure 19 shows an example of a correlation plot between the measured admittance characteristics of an electromechanical transducer and the rotational speed characteristics of an ultrasonic motor.
  • A is the conductance peak value and rotation speed.
  • B is the diameter of the admittance circle and the square of the rotational speed
  • C is the value obtained by dividing the conductance peak value by the resonance sharpness and the square of the rotational speed
  • D is a graph plotting the value obtained by dividing the diameter of the admittance circle by the resonance sharpness and the square of the rotational speed.
  • FIG. 20 shows another example to which the electromechanical property inspection method according to the present invention is applied.
  • FIG. 3 is a three-plane view showing an example of an aeration machine conversion element, in which (A) is a plan view (top view), (B) is a front view thereof, and (C) is a side view thereof.
  • FIG. 21 is a perspective view showing the laminated structure of the electromechanical transducer shown in FIG.
  • Fig. 22 is a four-sided view showing an example of the holding jig for the electromechanical transducer shown in Fig. 20.
  • (A) is a plan view (top view), and (B) is a front view thereof.
  • (C) is a rear view thereof, and (D) is a side view of the holding jig in a state in which a connecting portion is removed.
  • FIG. 23 is a schematic diagram showing an example of a method for measuring the displacement (quasi-static displacement characteristic data) of the electromechanical transducer shown in FIG.
  • Fig. 24 is a block diagram showing an example of a measurement system for measuring the displacement (quasi-static displacement characteristic data) of the electromechanical transducer shown in Fig. 20.
  • FIG. 25 is a graph showing the relationship between the ⁇ -ad and diameter of the electromechanical transducer element shown in Fig. 20 and the square of the displacement amount.
  • (B) in Fig. 25 is the value obtained by dividing the diameter of the circle of the electro-mechanical circle by the resonance sharpness of the electromechanical transducer shown in Fig. 20 and 2 of the ⁇ displacement. This graph plots the relationship with the multiplier J.
  • FIG. 26 is a perspective view of “another electromechanical transducer” in a state where the support portion and the vibration portion are separated.
  • Fig. 27 is a cross-sectional view of the electromechanical conversion element cut along the plane along line 1-1 in Fig. 26.
  • Figure 28 is a cross-sectional view of the electromechanical converter and the child cut along the plane 2–2 shown in Figure 26.
  • FIG. 29 shows the holding jig and its holding jig used when measuring the "alternating current frequency, mitten frequency characteristic data" of the electromechanical transducer shown in Figs. 26 to 28.
  • FIG. 6 is a diagram showing a state in which the electromechanical conversion element is not held by.
  • Fig. 30 shows the holding jig used to measure the "quasi-static displacement characteristics data" of the electromechanical transducer shown in Figs. 26 to 28, and the electromechanical conversion by the holding jig. It is the figure which showed the holding
  • Fig. 31 shows the drive voltage applied to the electromechanical transducer and the measured displacement when measuring the quasi-static displacement characteristics data of the electromechanical transducer shown in Figs. 26 to 28. It is the time chart shown. (A) in Fig. 3 2 represents the addition of the electromechanical transducer elements shown in Figs. 26 to 28,
  • FIG. 3 is a graph showing the relationship between the diameter of the circle of circles and the square of the displacement amount.
  • (B) in Fig. 3 2 is the "ad” of the electromechanical transducer shown in Figs. 26 to 28. This is a graph showing the relationship between the value obtained by dividing the diameter of the missance circle by the resonance sharpness and the displacement amount.
  • the electromechanical property inspection method according to the present invention can be applied to electromechanical transducers of various designs.
  • an electric electrode electrode terminal
  • an electric measurement probe for example, a needle-like measurement terminal
  • FIG. 1 and FIG. 2 are examples of such an electromechanical transducer element.
  • FIG. 1 is a four-sided view showing the external appearance of the electromechanical transducer 10
  • FIG. 2 is an exploded perspective view showing the shell structure of the electromechanical transducer 10.
  • the electromechanical transducer 1 0 has two types of internal electrodes 1 4 a and 1
  • the upper electrode (electrode) 1 1 a and 1 1 are on the top surface of the element 10, the side electrodes 1 2 a and 1 2 b are on the side surface, and the lower electrodes 1 3 a and 1 3 b are on the bottom surface.
  • the formed upper electrode 11a, inner electrode 14a and lower electrode 13a are electrically connected to each other by a side electrode 12a.
  • the upper electrode 1 1 b and the inner electrode 14 b and the lower electrode 13 b are electrically connected to each other by the side electrode 12 b.
  • the element 10 When a voltage is applied between the upper electrode 1 1 a and the upper electrode 1 1 b, the element 10 extends in the thickness direction (height H direction) by the inverse piezoelectric effect, and the length direction (L direction and The machine deforms to shrink in the (W direction).
  • the frequency characteristics of the AC,,, and V impedances between the upper electrode 1 1 a and the upper electrode 1 1 Measures the electromechanical characteristic values such as resonance frequency and resonance sharpness (Q value), AC conductance G, and AC sustainability B in the length direction and thickness direction. can do.
  • holding jigs of various designs can be used.
  • holding the electromechanical conversion element affects the vibration state of the electromechanical conversion element. Therefore, in order to reduce the influence on the vibration state, a holding jig with less contact with the electromechanical transducer is preferred.
  • the holding jig 20 shown in FIG. 3 is a first example of such a holding jig.
  • This holding jig 20 has two measuring terminals (electrical measuring probes) 2 that are in contact with the two electrodes 1 1 a ⁇ 1 1 b arranged on the same plane (upper surface) of the electromechanical transducer 10.
  • 1 a ⁇ 2 1 b a support member 2 2 that supports the electromechanical conversion element 10 in contact with the surface (bottom surface) facing the electrode 1 la, 1 lb mounting surface, and the measurement terminal 2 1 a ⁇
  • the connecting part 2 5 a ⁇ 2 5 b is provided.
  • the holding jig 20 uses these materials to hold the electromechanical transducer 10 and from the electrodes 1 1 a and 1 1 b via the measurement terminals 2 1 a and 2 1 b. It is configured to take out two electrical wires. That is, an electrical wiring connected to an electrical measuring instrument to be described later is connected to the end of the measuring terminals 2 l a ⁇ 2 l b on the side not contacting the element 10.
  • the holding jig 20 ′ shown in FIG. 4 is a second example of a jig that can hold the element 10 so as to reduce the influence of the element 10 on the vibration state.
  • the holding jig 20 ′ includes a support member 2 2 of the holding jig 20 and a pedestal 2 6 in place of the support member holding portion 2 4.
  • the holding jig 20 ′ is configured to support the entire surface (lower surface) facing the arrangement surface (upper surface) of the electrode 1 la ⁇ 1 lb of the element 10 by the pedestal 26. This is different from the holding jig 20 only in the point.
  • FIG. 5 shows the flow of the steps (steps) of the “electromechanical characteristics inspection method for electromechanical transducers” according to the embodiment of the present invention.
  • this electromechanical characteristic inspection method first, in step 1, the electromechanical conversion element 10 is held by a holding jig, and in step 2, the electrode of the electromechanical conversion element 10 is connected to the AC admittance. Electrically connected to the meter
  • the holding method of the electromechanical conversion element 10 in step 1 is not particularly limited, and a holding method according to the prior art can be applied. However, in order not to greatly affect the vibration state of the electromechanical transducer 10, a holding jig with little contact with the element 10, such as the holding jig 20 and 2 0 ′ described above, may be used. It is preferable to use and hold element 10.
  • the method for measuring the frequency characteristics of the AC admittance of the electromechanical transducer 10 in step 2 above is not particularly limited.
  • a frequency characteristic measuring instrument such as a network analyzer or impedance analyzer is used. Any conventional method may be used.
  • FIG. 6 and FIG. Figures 8 and 9 show the measurement results of the frequency characteristics of the AC admittance.
  • the first element has one resonance peak within the measurement frequency range.
  • the second element has two resonance peaks within the measurement frequency range.
  • AC admittance characteristics are expressed by a set of data composed of the amplitude and phase of the admittance. It can also be expressed by a set of data consisting of conductance, which is the cosine component of admittance, and susceptance, which is the sine component. Both of these data can be converted to each other.
  • Fig. 7 is a graph plotting the result of converting the data of the amplitude and phase of the admittance shown in Fig. 6 into the data of conductance and susceptance.
  • Fig. 9 is a graph plotting the data shown in Fig. 8 in the same way.
  • the AC admittance characteristics near the resonance frequency of the electromechanical transducer can be expressed by an electrical equivalent circuit. Examples of circuit diagrams of such an equivalent circuit are shown in Figs. 10 and 11.
  • FIG. 10 is an equivalent circuit diagram of the first element having only one resonance peak
  • FIG. 11 is an equivalent circuit diagram of the second element having two resonance peaks.
  • the method for calculating “characteristic peak value A max and resonance sharpness Q” from the measurement data of the frequency characteristics of the AC admittance is not particularly limited. Any technique may be used. As the characteristic peak value A ma, the peak value of the AC admittance, the peak value of the AC conductance, the peak value of the AC impedance phase, and the like can be suitably used. In particular, it is preferable to use the peak value of the AC conductance as the characteristic peak value A max. This is because the correspondence between the value obtained by dividing the peak value of the AC conductance by the resonance sharpness and the characteristics of the electromechanical conversion device after the electromechanical conversion element is assembled is particularly good. It is.
  • the peak value G max of the AC conductance G is used as the characteristic peak value A max
  • the following values can be used as the calculation method for the peak value G max. .
  • the AC admittance circle diameter 1 Z R 1 is used as the peak value G max of the AC conductance G, repeated measurement reproducibility is further improved.
  • the diameter 1 Z R 1 of the AC admittance circle can be calculated (obtained) by a known calculation method such as “Fitting a circle to the circle plot data” or the least square method.
  • the resonance frequency f 0 is set to the peak half-value width of the AC conductance G (AC
  • the inductance G is divided by the difference between two frequencies f 1 and f 2 (f 2-f 1, f 2> f 1)) at which the peak value G max is half (0.5 G max).
  • the method can be used.
  • the frequency characteristic measurement data is usually discrete data for each predetermined frequency step. Therefore, interpolation calculation (frequency data capture) is performed on the values between the wave number steps, and the resonance frequency f 0 and peak half-value width (f It is preferable to calculate the Q value using 2-f 1) and to increase the resolution of the Q value.
  • a max / Q The value obtained by dividing the characteristic peak value A max by the resonance sharpness Q.
  • a max / Q as the evaluation index value to determine the quality of the electromechanical transducer (characteristic quality). This means that pass / fail is judged according to whether A max / Q is within a predetermined range. That is, if the value A max / Q is within the predetermined range, the electromechanical conversion element is determined to be a good element, and if the value A max / Q is not within the predetermined range, the electromechanical conversion element is not good. It is determined that Normally, the larger the value A max / Q, the greater the electromechanical conversion efficiency. Therefore, it can be determined that the element has more favorable characteristics as the value A max / Q increases. Therefore, it is only necessary to set a lower limit value for the value A max / Q, and to determine that the electromechanical transducer having the value A max / Q equal to or higher than the lower limit value has good characteristics.
  • an upper limit value may be further set for the value A max / Q, and the electromechanical transducer having the value A max / Q equal to or lower than the upper limit value may be determined to have good characteristics. . That is, not only the lower limit value but also the upper limit value for the value A max / Q can be added to the pass / fail judgment condition of the electromechanical transducer.
  • the electromechanical transducer is an element having a “parasitic resonance” that is different from the “main resonance” used for the original application, the parasitic resonance may May adversely affect
  • Such an electromechanical transducer has an AC admittance characteristic having resonance peak points at two locations as shown in FIGS. 8 and 9, and has a value for each of the main resonance and the parasitic resonance. Calculate A max / Q
  • the quality of the electromechanical transducer can be determined more appropriately.
  • the value of the main resonance A An element in which max / Q is equal to or higher than a predetermined lower limit value and the parasitic resonance value A maxZ Q is equal to or lower than a predetermined upper limit value may be determined as a non-defective product.
  • the value A maxZ Q (or the reciprocal value Q no A max) obtained by dividing the characteristic peak value A max by the resonance sharpness Q is used as the performance index value
  • the value A max / Q shows a strong correlation with the performance of the device even if it is held in a state different from that during measurement. From these facts, if the value A max / Q is used as the performance index value, the quality of the single electromechanical element to be incorporated into the electromechanical conversion device can be judged well.
  • the measured value of the characteristic peak value A max and the measured value of the resonance sharpness Q fluctuate depending on the state where the electromechanical transducer is held, whereas the characteristic peak value A max
  • the value A max / Q which is obtained by dividing the measured value by the measured value of the resonance sharpness Q, is not easily affected by the holding state of the electromechanical conversion, and shows the original electromechanical conversion performance of the electromechanical conversion element. It is believed that there is.
  • vibration displacement vibration displacement characteristics, amplitude characteristics
  • the vibration displacement characteristics can be measured, for example, by using a laser Doppler vibrometer and a frequency characteristic measuring instrument.
  • Fig. 12 shows an example of a block diagram of the vibration displacement measurement system
  • Fig. 13 shows an example of the vibration displacement measurement method.
  • the frequency sweep signal V out from the frequency characteristic measuring device 3 1 is applied to the electromechanical transducer 10 as the voltage Vin through the power amplifier 3 2 and at the same time Measure the vibration speed of 1 0 with the laser Doppler vibrometer 3 3 (obtain the vibration speed signal S v) and measure the applied voltage V in and the vibration speed signal SV with the frequency characteristic measuring instrument 3 1 By doing so, the vibration displacement characteristics of element 10 are measured by frequency sweep.
  • the broken line LB represents the laser beam.
  • the electromechanical transducer 10 when the electromechanical transducer 10 is held by a holding jig similar to the holding jig 20 shown in FIG. 3, the upper electrode of the element 10 ( Electrode terminal) While probing 1 1 a ⁇ 1 1 b (ie, while measuring terminal 2 1 a ⁇ 2 1 b is in contact with electrode 1 la ⁇ 1 lb) Longitudinal direction of element 1 0 (up and down on the page) Direction, L direction) The speed is measured by a laser Doppler vibrometer 3 3.
  • a contact member 4 1 that contacts the rotor of an ultrasonic motor described later is provided on the surface of the element 10 facing the laser Doppler vibrometer 33.
  • a broken line LB represents a laser beam.
  • Figures 14 and 15 show examples of the measurement results (vibration displacement frequency characteristic data) of the electromechanical transducer measured in this way.
  • Fig. 14 (A) is a graph plotting the vibration displacement (amplitude D) against the frequency f
  • Fig. 14 (B) shows the phase 0 D of the vibration displacement against the frequency f. This is a plotted graph.
  • (A) and (B) in Fig. 15 are "cosine component of vibration displacement (amplitude D)" and “vibration displacement” converted based on the data shown in (A) and (B) in Fig. 14 (Amplitude) D plot of “sine component of D” with respect to frequency f. (C) in Fig.
  • the peak value (maximum value) of the amplitude D is the same as when determining the pass / fail of the AC admittance. and this use of Dmax and an evaluation index value the value D max / Q D divided by resonance sharpness Q D are preferred. This is because, according to experiments by the inventor, it has been found that the value D max / Q D is not easily affected by the holding state of the element at the time of measurement.
  • the resonance sharpness Q D is the resonance frequency fn of the amplitude D and the peak half-value width of the sine component of the amplitude D (f 2-f 1, f 2> f 1, that is, the sine component of the amplitude D is It can be obtained by dividing by the half value of the peak V ma (the difference between the two frequencies f 1 and f 2, which is 0.5 V max) (see (B) in Fig. 15).
  • the peak value D max of the amplitude D and the resonance sharpness Q D are the circle fitting and frequency points by the least square method, as in the case of calculating the characteristic peak value Amax of the AC admittance and the resonance sharpness Q. It is desirable to obtain this value using a method that uses interpolation calculation between the two. As a result, the peak value D max and the resonance sharpness Q D with higher accuracy and better repeatability can be obtained.
  • a voltage having a predetermined vibration waveform is applied to the electromechanical conversion device via the electrodes 1 1 a and 1 1 b.
  • the electrodes 1 1 a ⁇ 1 1 b of the electromechanical transducer 10 are electrically connected to a frequency characteristic measuring device 3 1, and the electrode 1 has a frequency range including the resonance frequency of the electromechanical transducer 10.
  • the electromechanical transducer element 1 using the value D max / Q D obtained by dividing the peak value D max of the amplitude acquired in the seventh step by the resonance sharpness Q D acquired in the seventh step.
  • an ultrasonic motor 40 as shown in Fig. 16 can be cited.
  • the electromechanical transducer 10 used for the ultrasonic motor 40 has a contact member 4 1 attached to its tip. Then, the ultrasonic motor 40 transmits the contact member 41 fixed to the element 10 to the shaft.
  • This ultrasonic motor 40 is a so-called “woodpecker type ultrasonic motor”.
  • a drive signal that is, a voltage having a predetermined vibration waveform
  • the electromechanical conversion element 10 is long. Generate direction stretching vibration.
  • the contact member 4 1 pushes the rotor 4 3 obliquely, and as a result, the rotor 4 3 rotates.
  • the electromechanical transducer 10 as shown in FIGS. 1 and 2 is held by using a holding jig 20 as shown in FIG. 3 and disposed on the surface of the element 10. Connected to the upper electrode 1 1 a 1 1 b to the measuring terminal 2 1 a 2 1 b Measured data showing AC admittance characteristics of element 10
  • the element 10 used in this measurement is an element in which a PZT piezoelectric body having a thickness of about 60 m is laminated via the electrodes 14 a and 14 b described above, and its length is L is 5 mm, width W is 1.5 mm, and thickness H is 1.5 mm.
  • Tables 1 and 2 show the 10 measurement results obtained in this way.
  • Table 1 was obtained without using circular fitting and frequency data interpolation from the frequency characteristic measurement data for each AC admittance (i.e., without interpolation calculation).
  • “Resonance sharpness Q (Q ⁇ )”, “AC admittance peak value Ymax”, “Conductance peak value G maxj and“ susceptance B ” The difference between the maximum value B 2 and the minimum value B 1 (B 2-B 1) ”.
  • Table 2 shows how to perform circular fitting and frequency data interpolation from “frequency characteristics measurement data for each AC admittance”, which is the same as the data shown in Table 1.
  • 2 is a list of “resonance sharpness Q (Q value)” and “admittance circle diameter 1 / R 1” calculated by the above.
  • Tables 1 and 2 list the average, standard deviation, and variation ratio of the 10 measurements.
  • the fluctuation ratio is a value obtained by dividing the standard deviation by the average value.
  • the fluctuation ratio is a value that indicates the relative degree of repeated measurement variation.
  • AC admittance peak value Y max, conductance peak value G max, maximum susceptance difference (B 2-B 1) and admittance The four measured values of the diameter circle 1 ZR 1 have a variation ratio of about 24%.
  • the fluctuation ratio of the value obtained by dividing each of the four measured values by the Q value is about 3 to 6%, which is relatively small. From this, the value obtained by dividing each of the four measured values by the Q value (Y max / Q, G max / Q, (B 2-B 1) no Q, 1 / (Q ⁇ R 1)) is It is understood that the reproducibility of repeated measurement is good.
  • Figure 17 is a graph based on the data shown in Tables 1 and 2, and is a correlation plot between the Q value and the peak value Y max of the AC admittance. .
  • Figure 17 shows that the Q value and the peak value Y max of AC admittance are approximately proportional.
  • the (D) force in Fig. 17 shows the Q value calculated using circular fitting and frequency data interpolation. It is understood that there is a very high correlation (clear proportionality) with the diameter 1 / R l of the admittance circle.
  • Each element 10 is an element in which a PZT piezoelectric body having a thickness of about 60 m is laminated through the above-mentioned electrodes 14 a and 14 b, and its length L is 5 mm, ⁇ W is 1.5 mm and thickness H is 1.5 mm.
  • the measured values obtained from the AC admittance frequency characteristic data of 10 elements 10 without using circular fitting and frequency data interpolation that is, without performing interpolation calculation.
  • the conductance peak value G max and the resonance sharpness Q are obtained, and the diameter of the admittance circle 1 ZR 1 and the resonance sharpness are further obtained by using circular and frequency data capture. Degree Q was calculated.
  • the diameter D max of the displacement circle and the resonance sharpness Q D were calculated from the frequency characteristic data of the displacement (vibration displacement frequency characteristic data) using circular fitting and frequency data interpolation.
  • the conductance peak value G max and the admittance circle diameter 1 ZR 1 have a correlation coefficient of about 40% with the square of the measured displacement characteristics D max / Q D Low, displacement characteristics measured value D max / Q D is not good correlation with the square of D.
  • the conductance peak value G max and the admittance circle diameter 1 ZR 1 are each divided by the resonance sharpness Q (G max / Q, 1 / (Q ⁇ R 1)) Has a correlation coefficient with the square of the displacement characteristic measured value D max / Q D of about 75 to 90%, and the correlation with the square of the displacement characteristic measured value D maxZ Q D is good.
  • the value (1 / (Q-R 1)) has a correlation coefficient of 90% or more, and the correlation with the displacement characteristics is very high, as can be seen from (D) in Fig. 18. It turns out to be good.
  • the conductance peak value G max and the admittance circle diameter 1 ZR 1 are as low as about 56% of the correlation with the square of the rotational speed of the ultrasonic motor. The correlation with the square of the rotation speed of the ultrasonic motor is not good.
  • the conductance peak value G max and the diameter 1 ZR 1 of the admittance circle are divided by the resonance degree Q (G max / Q, 1 / (Q-R 1 )) Has a correlation coefficient with the square of the rotational speed of the ultrasonic motor, which is about 80 to 95%, and has a good correlation with the square of the rotational speed of the ultrasonic motor.
  • the value (1 / (Q ⁇ R 1)) has a correlation coefficient of 95% or more, and as can be seen from (D) in Fig. 19, the correlation with the ultrasonic motor characteristics is high. It turns out to be very good.
  • the electromechanical characteristic inspection method according to the present invention can also be applied to the evaluation of the displacement characteristics of a quasi-statically driven electromechanical transducer.
  • Quasi-statically driven An electromechanical transducer that can be used is a voltage waveform that alternates at a very low frequency compared to the lowest resonance frequency of the device, or a very long time compared to the lowest resonance frequency of the device. An element that is displaced when a voltage waveform is applied and when the voltage is applied.
  • FIGS. 20 and 21 The electromechanical transducer element 100 shown in FIGS. 20 and 21 is an example of such an “electromechanical transducer element driven quasi-statically”.
  • FIG. 20 is a trihedral view showing the external appearance of the electromechanical transducer element 100
  • FIG. 21 is an exploded perspective view showing the laminated structure of the electromechanical transducer element 100.
  • the electromechanical transducer 100 is formed by stacking a plurality of layered PZT piezoelectric bodies 100 a sandwiched between two kinds of film-like internal electrodes 10 4 a and 10 4 b. It is a laminated piezoelectric element. Side electrodes 1 0 2 a and 1 0 2 b are formed on the side surfaces of the element 1 0 0.
  • the plurality of internal electrodes 10 04a are electrically connected to each other by side electrodes 10202a.
  • the plurality of internal electrodes 10 4 b are electrically connected to each other by side electrodes 10 0 2 b.
  • the element 1 0 0 When a voltage is applied between the side electrode 1 0 2 a and the side electrode 1 0 2 b, the element 1 0 0 extends in the thickness direction (height H direction) due to the inverse piezoelectric effect, and the length direction It deforms so that it shrinks in the L direction and the W direction (that is, it generates mechanical displacement). Therefore, by measuring the “frequency characteristics of AC admittance” between the side electrode 10 2 a and the side electrode 10 2 b with a network analyzer, the length direction and thickness Electromechanical characteristic values such as longitudinal resonance frequency, resonance sharpness (Q value), AC conductance G and AC susceptance B can be measured.
  • the holding jig 20 0 shown in FIG. 22 is an example of a holding jig that holds the element 10 0 0 when the electromechanical characteristic value of the element 1 0 0 is measured.
  • the holding jig 20 0 is composed of a measurement terminal (electric measurement probe) 2 0 la that contacts the side electrode 1 0 2 a of the electromechanical transducer 1 100 and the side electrode 1 0 of the electromechanical transducer 1 0 0. 2 b Measuring terminal (electrical measuring probe) that contacts b 2 0 1 b and.
  • the holding jig 20 0 includes a measuring terminal holding unit 20 3 for holding the measuring terminal 2 0 1 a, a measuring terminal holding unit 2 0 4 for holding the measuring terminal 2 0 1 b, and a measuring terminal holding unit.
  • 2 0 5 a and 2 0 5 b are provided for mechanically connecting 2 0 3 and the measurement terminal holding portion 2 0 4.
  • the holding jig 2 0 0 uses these members to make an electromechanical conversion element 1 Hold 0 0 as shown in Fig. 2 2 and measure terminal 2 O la
  • An electrical wiring extending to the electrical measuring instrument is connected to the end of the 0 1 b that does not contact the element 1 0 0.
  • the holding jig 20 0 is connected to the electromechanical transducer 10 0 between the measurement terminals 2 0 1 a and 2 0 1 b.
  • the measuring terminal 2 0 1 a and the measuring terminal 2 0 1 b are bent (bent) in opposite directions to each other (that is, the side electrodes 1 0 2 a ⁇ 1). 0 2 b) and contact at an acute angle.
  • the process flow (step) is the same as that of the above-described embodiment, and follows the flow shown in FIG.
  • the turtle 1 ⁇ 4 mechanical conversion element 100 0 is an element that is quasi-statically driven after being incorporated in the electromechanical conversion device
  • the electromechanical conversion element 10 0 Vibration transducer when incorporated into a mechanical conversion device and actually driven Vibration measurement similar to J is obtained.
  • the resonance form at the lowest resonance frequency of the electromechanical transducer element 100 is most similar to the vibration form at the time of actual driving of the electromechanical transducer element 100 Therefore, the characteristic peak value (maximum characteristic value) A max and resonance sharpness Q in Step 3 and Step 4 are the characteristic peak value and resonance at the lowest resonance frequency of the electromechanical transducer 100. Sharpness.
  • Example 4 the following measurement was performed.
  • Electromechanical transducer elements 100 as shown in Fig. 20 and Fig. 21 were prepared. Each of the electromechanical transducer elements 100 has a thickness of about 2 0 111? This is an element in which two piezoelectric elements are stacked via electrodes 104 and 10 4 b. The length L is 1.2 mm, the width W is 1.2 mm, and the thickness H is 1. O mm.
  • Each of the 10 electromechanical transducer elements 100 was held in turn using a holding jig 2 00 shown in FIG. At this time, as shown in FIG. 22, the side electrode disposed on the side surface of the electromechanical transducer 100. Measurement terminals 2 0 1 a ⁇ 2 0 1 b were brought into contact with 1 0 2 a ⁇ 1 0 2 b, respectively.
  • the values of the characteristic peak value A max and resonance sharpness Q of each of the 10 elements 100 were obtained.
  • the characteristic peak value Amax, the resonance sharpness Q, etc. are the values at about 1 MHz for the “lowest resonance frequency” of the electromechanical transducer 100.
  • each of the 10 electromechanical transducers 100 was held in order. That is, the electromechanical conversion element 1 0 0 is arranged on the top of the base 2 0 8, and the voltage application terminals 2 0 9 a 2 0 9 b are brought into contact with the side electrodes 1 0 2 a 1 0 2 b, respectively. .
  • the output V out of the signal generator 2 1 0 is connected to the “drive voltage via the power amplifier 2 1 2 and voltage application terminal 2 0 9 a”.
  • V in 1 is marked on the side electrode 10 2 a.
  • Voltage application terminal 2 0 9 b is grounded.
  • the drive voltage Vin l is input to the oscilloscope 2 1 4.
  • the laser Doppler displacement meter 2 1 6 measures the displacement of the electromechanical transducer 10 0 using the laser beam L B (converts it into an electrical signal V in 2).
  • the measured displacement (electrical signal Vin2) is input to the oscilloscope.
  • the drive voltage V in 1 has a frequency of 2 kHz and amplitude (maximum voltage and minimum voltage). Is the sine wave voltage of 6 V.
  • the quasi-static displacement characteristics data of the electromechanical transducer 100 were obtained by observing the electrical signal (output voltage) V in 2 from the Doppler displacement meter with an oscilloscope 2 14. That is, the amplitude of the waveform of the output voltage V in 2 was measured, and the measured amplitude was obtained as quasi-static displacement characteristic data (displacement amount D).
  • the “resonance frequency with the lowest frequency” of the electromechanical transducer 100 is about 1 MHz. Therefore, when the electromechanical transducer 10 0 is driven by a sinusoidal drive voltage Vin l with a frequency of 2 kHz, the electromechanical transducer 1 0 0 is “sufficiently compared to the lowest resonance frequency”. Driven at “low frequency”. As a result, the amount of displacement D when the electromechanical transducer 100 is driven by the drive voltage Vin l is the same as a static voltage (for example, a voltage that is generated only once and has elapsed over time). The voltage changes to a trapezoidal shape, and the difference between the maximum voltage value and the minimum voltage value is 6 V) is approximately equal to the displacement amount when applied to the electromechanical transducer 100.
  • a static voltage for example, a voltage that is generated only once and has elapsed over time.
  • the diameter 1 / R 1 of the admittance circle has a low correlation coefficient of about 60% with the square of the displacement D, and the correlation with the square of the displacement D Is not good.
  • the diameter of the admittance circle is 1
  • the value 1 Z (Q ⁇ R 1) obtained by dividing R 1 by the resonance sharpness Q has a correlation coefficient of 90% or more with the square of the displacement D and the square of the displacement D It can be seen that the correlation is very good. This can be understood from the comparison between (A) and (B) in Fig. 25. That is, the square of the displacement D and the value 1 / (Q
  • FIGS. 26 to 28 show other electromechanical transducers 30 0 that are driven quasi-statically.
  • the electromechanical characteristic inspection method according to the present invention can also be applied to this electromechanical transducer element 300.
  • the electromechanical conversion element 300 is an example of an electromechanical conversion element that functions as an actuator having a diaphragm structure (Shodeno Electrostriction Actuator).
  • the electromechanical transducer 3 0 0 includes a support part 3 1 0 and a vibration part 3 2 0.
  • the support part 3 10 has a window part 3 1 2 for forming a cavity at the center part.
  • the vibration part 3 20 includes a vibration plate 3 2 2, a lower electrode 3 2 4, a piezoelectric film (P z ⁇ piezoelectric layer) 3 2 6 and an upper electrode 3 2 8.
  • the diaphragm 3 2 2 is a plate that is thinner than the support 3 1 0.
  • Lower electrode 3 2 4 is diaphragm 3 2
  • the piezoelectric film 3 2 6 is formed on the upper surface of the lower electrode 3 2 4.
  • the upper electrode 3 2 8 is formed on the upper surface of the piezoelectric film 3 2 6. That is, the piezoelectric film 3 2 6 is sandwiched between the lower electrode 3 2 4 and the upper electrode 3 2 8.
  • the vibration part 3 20 is integrally fixed to the support part 3 10 so as to cover the window part 3 1 2 of the support part 3 10.
  • the electromechanical transducer 3 0 0 causes displacement in ik ⁇ fe. 3 2 2 due to the deformation of the piezoelectric film 3 2 6.
  • step 3 is also the same as the embodiment described above and
  • the “electromechanical conversion element 3 0 0 is It is preferable to measure the AC admittance characteristics in the frequency region including the resonance frequency that can provide a vibration form similar to that of a vibration form when it is incorporated into a converter and actually driven.
  • the resonance form of the electromechanical conversion element 3 0 0 at the lowest resonance frequency is most similar to the vibration form during actual driving of the electromechanical conversion element 3 0 0. Therefore, in step 3 and step 4, the characteristic peak value (characteristic maximum value) A max and the resonance sharpness Q are the characteristic peak value and resonance sharpness at the lowest resonance frequency of the electromechanical transducer 100. is there.
  • Example 5 the following measurement was performed.
  • each of the 10 electromechanical transducer elements 30 0 was held in order using a holding jig 4 0 0.
  • the measurement terminal 4 1 0 a and the measurement terminal are connected to the “upper electrode 3 2 8 and lower electrode 3 2 4” extended on the upper surface of the diaphragm 3 2 2 of the electromechanical transducer 3 300.
  • Four 1 0 b was brought into contact.
  • Electromechanical conversion element 30 0 was adhered and fixed to the top of the adhesive sheet b 50 4 4.
  • the adhesive sheet 50 4 was vacuum-adsorbed to the vacuum suction disk 50 2, at this time as shown in FIG.
  • the upper electrode 3 2 8 and the lower electrode 3 BX extended on the upper surface of the diaphragm 3 2 2 of the electromechanical transducer 3 0 0
  • Measurement terminal 5 1 0 a and measurement terminal 5 1 0 b were brought into contact with 2 4 ”, respectively.
  • the quasi-static displacement characteristics (quasi-static displacement characteristics data) of the electromechanical transducer 30 0 fixed to the adhesive sheet 50 4 was measured.
  • the “drive voltage V in l” shown in FIG. 24 is connected between “upper electrode 3 2 8 and lower electrode 3 2 4 via“ measurement terminal 5 1 0 a and measurement terminal 5 1 0 b ”. ”Is applied.
  • the drive voltage V in l is a voltage having the trapezoidal waveform shown in Fig. 31.
  • the quasi-static displacement characteristics (quasi-static displacement characteristics data) of the electromechanical transducer 1 0 0 are the output voltage V in 2 of the Doppler displacement meter at the oscilloscope 2 1 4 Obtained by observation.
  • “displacement amount D as quasi-static displacement characteristics data” was obtained based on the amplitude D 1 of the output voltage V in 2 during the period excluding the ring part RIN shown in Fig. 31. .
  • the “resonance frequency with the lowest frequency” of the electromechanical transducer 300 is about 1 MHz. Therefore, when the electromechanical transducer 3 0 0 is driven with the “1 ms trapezoidal driving voltage V in 1” shown in FIG. It is driven at a “sufficiently low frequency” compared to a “resonant frequency of low frequency”. As a result, the displacement amount when the electromechanical transducer 300 is driven by the drive voltage V in 1 shown in FIG. 3 1 is a statically similar voltage (for example, a voltage generated only once). The voltage changes to a trapezoidal shape over time, and the difference between the maximum voltage value and the minimum voltage value is 20 V). Will be equal.
  • Figure 31 is a plot showing the correlation between the admittance characteristics shown in Table 6 and the quasi-static displacement characteristics (quasi-static displacement characteristics data).
  • the diameter 1 ZR 1 of the admittance circle has a low correlation coefficient of about 70% with the square of the displacement D, and the correlation with the square of the displacement D is low. Not good.
  • the value 1 Z (Q ⁇ R 1) obtained by dividing the diameter 1 of the admittance circle R 1 by the resonance sharpness Q has a correlation coefficient with the square of the displacement D 9 0 It can be seen that the correlation with the square of the displacement D is very good. This can also be understood from the comparison between (A) and (B) in Fig. 31. That is, it is understood that the square of the displacement amount D and the value 1 / (Q-R 1) are approximately proportional.
  • a max Index value (k is high in repeatability and high correlation with displacement and ultrasonic motor characteristics compared to the comparative example with the index value as the index value.
  • a max / Q A max / Q

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Provided is a method for inspecting electromechanical characteristic of an electromechanical conversion element which measures frequency characteristic data on AC admittance of an electromechanical conversion element such as a piezoelectric element and acquires “a maximum electric characteristic value Amax at the element resonance frequency (such as a peak value Gmax of AC conductance G, a difference between a maximum value Bmax of AC susceptance B and a minimum value Bmin, and a diameter 1/R1 of AC admittance circle)” and “a resonance sharpness Q”. “The obtained peak value Amax of the electric characteristic value” is divided by “the obtained resonance sharpness Q” to obtain a value (Amax/Q) which is used for inspecting the electromechanical characteristic of the electromechanical conversion element.

Description

電気機械変換素子の電気機械特性検査方法 術 分 野  Electromechanical characteristics inspection method for electromechanical transducers
本発明は 、 圧電又は電歪ァクチユエ一タ 、 超立  The present invention is a piezoelectric or electrostrictive actuator, super-standing
曰波モータ及び圧電 卜 ランス等の電気機械変換機器に用いられる と と もに電圧波形が印 加される こ と によって機械変明位を発生する圧電素子及び電歪素子等 の電 機械変換素子について、 その電気機械特性の良否を検査する ための電気機械特性検査方法に関す田 る。 背 景 技 術  Electromechanical transducers such as piezoelectric elements and electrostrictive elements that are used in electromechanical transducers such as sine wave motors and piezoelectric lances and that generate mechanical distortion when a voltage waveform is applied. The present invention relates to an electromechanical property inspection method for inspecting the quality of the electromechanical property. Background technology
に 、 r圧電又は電歪ァクチユエータ、 超音波モータ及び圧電 卜 ラ ンス等の電気機械変換機器」 に用いられる電気機械変換素子であ つて、 電圧波形が印加される こ と によって機械振動を発生する圧電 素子及ぴ電歪素子等の電気機械変換素子 (以下、 単に 「素子 J と 称呼する 。) は、 その素子の電気機械的な共振周波数における交 Gァ ドミ ッタンスが大きいこ とが好ま しい。  In addition, an electromechanical transducer element used in an electromechanical transducer such as a piezoelectric or electrostrictive actuator, an ultrasonic motor, and a piezoelectric transformer, which generates mechanical vibration when a voltage waveform is applied. An electromechanical transducer such as an element and an electrostrictive element (hereinafter simply referred to as “element J”) preferably has a large cross G admittance at the electromechanical resonance frequency of the element.
例えば 、 特開 2 0 0 4 — 2 6 6 9 4 3号公報は、 超音波モ タ用 の振動体を開示している。 こ の振動体は、 略長方形平板状の金属板 と略長方形平板状の圧電素子と を貼り合わせた振動体であ り 、 その 縦振動と屈曲振動とが利用 される。 特開 2 0 0 4 — 2 6 6 9 4 3号 公報は 、 この振動体の縦横寸法比を調整するこ とによ り、 「交流ィ ン ピ一ダンス が所定値よ り 小さ く なる周波数領域」 の幅が広レ、 厂超立 曰 が提供されるこ と を開示している。  For example, Japanese Laid-Open Patent Publication No. 2000-0 4 6 9 4 3 discloses a vibrator for an ultrasonic motor. This vibrating body is a vibrating body in which a substantially rectangular flat plate-like metal plate and a substantially rectangular flat plate-like piezoelectric element are bonded together, and its longitudinal vibration and bending vibration are used. Japanese Laid-Open Patent Publication No. 20 0 4 — 2 6 6 9 4 3 discloses that a frequency range in which the AC impedance becomes smaller than a predetermined value by adjusting the vertical / horizontal dimension ratio of the vibrator. It is disclosed that a wide range of "" is provided and "super-standing" is provided.
交流ィ ンピ一ダンスは交流ァ ド ミ ッタンス の逆数である 。 従って AC impedance dance is the inverse of AC admittance. Therefore
、 交流ィ ンピ ダンスが小さいこ と は 、 交流ァ ドミ Vタ ンス が大き いこ と と 同義である 。 従つて 、 般に 、 こ の よ う な電気機械変換素 子の電気機械特性の良否の検查は 、 その素子の共振周波数を含む周 波数範囲での交流ァ Kミ ッタ ンスを測定する こ とによつて行われる また、 電気機械特性の良否を判定する指標値と しては 、 共振周波 数での交流ァ ド、 、、 クタンス 、 その逆数である交流ィ ンピ一ダンス 、 及び、 交流ァ Kへ、 クタ ンス の実数部である交流コンダク タンスなど が用いられている。 A small AC impedance is synonymous with a large AC admittance. Therefore, in general, whether or not the electromechanical characteristics of such an electromechanical transducer element are good or bad is measured by measuring the AC amplitude in the frequency range including the resonance frequency of the element. In addition, as an index value for determining the quality of the electromechanical characteristics, the AC code at the resonance frequency,,, and the conductance, and the AC impedance, which is the reciprocal thereof, and the AC To K, AC conductance that is the real part of the conductance, etc. Is used.
例 ば、 特開 2 0 0 3 — 1 6 8 8 3 2号公報は 、 長方形平板状の 圧電 子上に入力電極と 出力電極を配置した圧電 卜 ランスの検查方 法を開示している。 この検查方法においては 、 圧電 ト ランスを連続 駆動した場合の温度上昇を推定するために 、 圧電素子の共振周波数 における交流コンダクタ ンスが測定される。  For example, Japanese Laid-Open Patent Publication No. 2 0 3 — 1 6 8 8 3 2 discloses a method for detecting a piezoelectric balance in which an input electrode and an output electrode are arranged on a rectangular plate-shaped piezoelectric element. In this inspection method, the AC conductance at the resonance frequency of the piezoelectric element is measured in order to estimate the temperature rise when the piezoelectric transformer is continuously driven.
更に、 日本電子材料工業会標準規格 EMAS - 6100 「圧電セラ ミ ック 振動子の電気的試験方法」 は、 圧電素子の電気機械特性の測定方法 と して 、 圧電セラ ミ ック振動子の交流ァ ドミ ッタ ンスの周波数特性 を測定し 、 測定によ り 得られた周波数特性データに基づいて振動子 の電気等価回路定数 ( C 0 、 C l 、 R l 、 L 1 ) と振動子の 振先 鋭度 Q とを算出する方法を開示している。  In addition, EMAS-6100 “Electrical Testing Method for Piezoelectric Ceramic Vibrators” is a standard for measuring the electromechanical characteristics of piezoelectric elements. The frequency characteristics of the admittance are measured, and the electrical equivalent circuit constants (C 0, C l, R l, L 1) of the vibrator and the vibration of the vibrator are measured based on the frequency characteristic data obtained by the measurement. A method for calculating the sharpness Q is disclosed.
、 加えて 、 特開平 1 0 — 1 1 5 6 4 8号公報は、 交流ア ド 、 ッタ ン ス円を最小二乗法によって求める こ と によ り 、 水晶振動子などの圧 電振動子の等価回路定数を精度良く 算出する方法を開示してい 、る  In addition, Japanese Patent Laid-Open No. 10-1 1566 48 discloses an AC add and a balance circle by a least square method to obtain a piezoelectric vibrator such as a crystal vibrator. Discloses a method for accurately calculating equivalent circuit constants.
これらの従来の検査方法は、 圧電又は電歪ァクチユエ一タゝ 超立 曰 波モ一タ及び圧電 ト ラ ンス等の電気機械変換機器そのものにつレ、て These conventional inspection methods are suitable for electromechanical transducers such as piezoelectric or electrostriction actuators, super-stand-wave sensors, and piezoelectric transformers.
(電気機械変換機器に組み込まれた状態における電気機械変換素子 につレ、て ) の電気機械特性の検査には適している。 しかしなが ら 、 電 5¾機械変換機器に組み込む前の電気機械変換素子単体の電気機械 特性の検查においては、 電気機械特性の良否を適切に判定でさない 問題があつに It is suitable for inspecting the electromechanical characteristics of the electromechanical transducer element incorporated in an electromechanical transducer. However, in the inspection of the electromechanical characteristics of the electromechanical conversion element alone before being incorporated into the electromechanical conversion equipment, there is a problem that the quality of the electromechanical characteristics cannot be judged properly.
よ り 具体的に述べる と、 従来の検査方法においては、 素子単体の 電気機械特性値の測定値が測定毎に比較的大き く 変動する o 即ち 、 素子の電気機械特性値の 「繰り返し測定再現性」 が良好ではない 0 加えて 、 素子を電気機械変換機器に組み込む前後においてゝ 素子の 機械特性値の測定値が比較的大き く 変化する。 即ち、 子単体 に ける電気機械特性値の測定値と、 素子を組み込んだ後の電気機 械変換機器の特性と、 の対応関係が良好ではない。  More specifically, in the conventional inspection method, the measured value of the electromechanical characteristic value of a single element fluctuates relatively large from measurement to measurement. In addition, the measured value of the mechanical property value of the device changes relatively greatly before and after the device is incorporated into the electromechanical conversion device. In other words, the correspondence between the measured value of the electromechanical characteristic value in the single element and the characteristic of the electromechanical conversion device after the element is incorporated is not good.
このため、 従来の特性検査方法を用いる と、 振動特性が不良な素 子 (特性不良素子) を 「不良である」 と判定できず、 特性不良素子 をそのまま電気機械変換機器に組み付けて しまい、 素子組み付け後 の電気機械変換機器の特性を検査して初めて特性不良が判明する場 合があった。 その結果、 電気機械変換機器の製造コス トが増大する という 問題があった。 For this reason, if the conventional characteristic inspection method is used, an element having a poor vibration characteristic (characteristic defective element) cannot be determined as “defective”, and the characteristic defective element is directly assembled in the electromechanical conversion device. In some cases, defective characteristics were found only after the characteristics of the electromechanical conversion device were assembled. As a result, the manufacturing cost of electromechanical conversion equipment increases. There was a problem.
更に、 このよ う な問題は、 素子の表面に電極 (電極端子 ) を配置 した電気機械変換素子の特性検査において、 子表面に配置された 電極に電気測定プローブを接触させて特性検查する場合に 、 特に顕 著に発生するこ とが判明 した。  Furthermore, such a problem arises in the characteristic inspection of an electromechanical transducer element in which an electrode (electrode terminal) is arranged on the surface of the element, when an electric measurement probe is brought into contact with the electrode arranged on the element surface. In particular, it was found that the phenomenon occurred particularly markedly.
と こ ろで、 上記電気機械変換素子は、 fc '5¾機械変換機器に組み込 まれた後、 その電気機械変換素子の共振周波数 (又は共振周波数近 傍の周波数) にて振動する よ う に駆動される しかしながら 、 電気 機械変換素子は、 電気機械変換機器に組み込まれた後、 実質的に静 的な変位をもた らす素子 (準静的に駆動される素子 ) と しても使用 される。 即ち、 電気機械変換素子は 、 共振周期よ り も非常に長い時 間に渡って変化する電圧波形が印加され、 その際に機械変位をもた らすための素子と しても使用される。  Here, after the electromechanical conversion element is incorporated in the fc '5¾ mechanical conversion device, it is driven to vibrate at the resonance frequency (or a frequency near the resonance frequency) of the electromechanical conversion element. However, the electromechanical conversion element is used as an element (quasi-statically driven element) that brings about a substantially static displacement after being incorporated in the electromechanical conversion device. . In other words, the electromechanical conversion element is applied with a voltage waveform that changes over a period of time much longer than the resonance period, and is used as an element for causing mechanical displacement at that time.
 > ·
特開 2 0 0 6 — 3 4 3 2 2 2号公報は、 このよ フ な準静的に駆動 される電気機械変換素子の電気機械特性 (変位特性) を検査する方 法を開示している 。 具体的に述べる と 、 特開 2 0 0 6 一 3 4 3 2 2 Japanese Laid-Open Patent Publication No. 2 0 0 6 — 3 4 3 2 2 2 discloses a method for inspecting the electromechanical characteristic (displacement characteristic) of such a quasi-statically driven electromechanical transducer. . Specifically, it is disclosed in Japanese Patent Application Laid-Open No. 2000-063 1 3 4 3 2 2
2 号公報に開示された電 5¾機械変換素子は、 支持部材に接着された 状態にてァクチュェ ' ~タ と して使用 される圧電素子である。 開示さ れた検査方法によれば単体の状態 (支持部材に接着される刖の状態The electromechanical conversion element disclosed in No. 2 is a piezoelectric element that is used as an actuator while being bonded to a support member. According to the disclosed inspection method, it is in a single state (the state of the heel bonded to the support member)
) にある圧電素子に所定電圧が印加され、 その圧電素子に蓄積され る電荷量 q が測 される そ して、 電荷量 q は変位量と所定の相関 関係を有する と の知見に基さ 、 その測定された電荷量 q に基レ、て圧 電素子の変位特性 (圧電特性) が推定される。 Based on the knowledge that a predetermined voltage is applied to the piezoelectric element at (1) and the amount of charge q accumulated in the piezoelectric element is measured, and that the amount of charge q has a predetermined correlation with the displacement amount, Based on the measured charge q, the displacement characteristics (piezoelectric characteristics) of the piezoelectric element are estimated.
更に 、 国際公開 W O 2 0 0 5 / 1 0 4 2 5 8 号公報は 、 圧電 /電 歪ァクチユエ一タを駆動させたと きの周波数特性を測定し、 その周 波数特性から得られる 「共振周波数、 共振波形のピ一ク値の大さ さ 及ぴ共振波形の面稗等」 に基いて 「圧電 Z電歪ァクチュェ一タの変 位量」 を推定するこ と を開示している。  Further, International Publication No. WO 2 0 0 5/1 0 4 2 5 8 discloses a frequency characteristic when a piezoelectric / electrostrictive actuator is driven, and the “resonance frequency, It is disclosed that “the displacement amount of the piezoelectric Z electrostriction actuator” is estimated on the basis of the magnitude of the peak value of the resonance waveform and the surface area of the resonance waveform.
しかしながら、 発明者の検討によれば、 上記従来技術によって推 定される変位量 (変位特性) の精度は十分に高く ないため、 上記従 来の特性検査方法を用いる と、 変位特性が不良な素子 (特性不良素 子) を 「不良である」 と判定できない場合がある こ とが判明した。  However, according to the inventor's investigation, the accuracy of the displacement amount (displacement characteristic) estimated by the conventional technique is not sufficiently high. Therefore, when the conventional characteristic inspection method is used, an element having a poor displacement characteristic is used. (Characteristic failure element) was found to be “not good”.
更に、 電気機械変換素子の変位量を 「レーザー変位計等の光学機 器」 によって精密に測定する方法も知られている。 しかなしなが ら 、 こ の方法は、 測定に長時間を要するので、 電気機械変換素子を量 産する際の検査方法と しては適切ではない。 Furthermore, a method is known in which the amount of displacement of the electromechanical transducer is precisely measured by an “optical device such as a laser displacement meter”. However, Since this method requires a long time for measurement, it is not appropriate as an inspection method when mass-producing electromechanical transducers.
このよ う に、 従来の検査方法は、 「共振周波数にて振動させられる 態様にて使用 される電気機械変換素子」 の電気機械特性のみならず、 「準静的に使用される電気機械変換素子」 の電気機械特性、 更には、 As described above, the conventional inspection method has not only the electromechanical characteristics of “electromechanical transducers used in a mode of being vibrated at a resonance frequency” but also “electromechanical transducers used quasi-statically”. Electromechanical properties, and
「共振周波数と異なる周波数にて振動させられる態様にて使用 され る電気機械変換素子」 の電気機械特性、 を評価する方法と しても適 当ではない。 発 明 の 開 示 It is not appropriate as a method for evaluating the electromechanical characteristics of the “electromechanical transducer element used in a mode in which it is vibrated at a frequency different from the resonance frequency”. Disclosure of invention
本発明は、 従来ににおおけけるる こ のよ う な課題に対処するために成され たものである ち 、 本発 エータ、 超 音波モータ、 卜 ラ ンス 液体噴射装置及びスィ ツチ等」 の 機械変換機器 いられる 子であって 、 且つ、 所定の波形を有す る電圧が印加されるる ここ とと にによつて変位する Γ圧電素子及ぴ電歪素子 等の電気機械変 素子」 の 気機械特性 (振動特性又は変位特性) の良否を効率的且つつ精精度度よよ く 判定する こ とができ る検査方法 (電気 機械変換素子の電気気機機械械特特性検査方法) を提供する こ と 一つの 目 的と してレヽる  The present invention has been made in order to cope with such problems in the prior art, and includes the present invention, an ultrasonic motor, a lance liquid ejecting apparatus, and a switch. Electromechanical transducers such as Γ piezoelectric elements and electrostrictive elements that are displaced by a voltage that has a predetermined waveform and is applied with a voltage that has a predetermined waveform. Provide an inspection method (electro-mechanical mechanical characteristic inspection method for electromechanical transducers) that can determine the quality of mechanical characteristics (vibration characteristics or displacement characteristics) efficiently and with high precision. Learn as one purpose
本発明者はは 、 上記問題の発生原因を鋭意に調査した その結果、 本発明者は、、 電気機械変換素子が 振周波数にて振 せられる態 様にて使用 さされる素子である場合 、 電気機械変換機 組み込む BU の電気機械変変換素子単体の特性値の 「繰り 返し測定再現性」 が良好 でないこ と は 、 特性検查時に素子を治具等で保持する際の保持状態  As a result of intensive investigation into the cause of the above problem, the present inventor found that the inventor found that the electromechanical transducer is an element that is used in a state where it is vibrated at a vibration frequency. Mechanical converter The characteristic value of the unit's built-in electromechanical transducer element is not “repetitive measurement repeatability”. The holding state when holding the element with a jig or the like during characteristic inspection
· - のばらつきに起因する と に気付いた。 よ り 具体的に述ベる と、 電 気機械変換素素子は素子全体が振動するから、 特性検査時 レヽ飞 糸 子を保持するるための治具は、 その素子の振動をでき るだけ阻害しな い構造を採用用 している o と ころが 、 素子を保持する部位が予定され た部位から若干だけずれた り ゝ 子を保持する力が予定された力か ら若干だけ乖離 (強弱) した り する と、 治具が素子の振動を阻害す る度合が変化する。 その結果 、 素子の特性検査測定値にばらつきが 生じる と考えられる。  · I noticed that it was caused by-variation. More specifically, since the electromechanical transducer element vibrates as a whole, the jig for holding the fiber during characteristic inspection inhibits the vibration of the element as much as possible. O When using a non-structure, the part holding the element is slightly deviated from the planned part or the element holding force is slightly different from the planned force (strength) As a result, the degree to which the jig blocks the vibration of the element changes. As a result, it is considered that variations occur in measured values of element characteristics.
更に、 本発明者は、 電気機械変換素子上に配置された電極に電気 測定プローブを接触させて特性検査を行う場合、 電気測定プローブ も電気機械変換素子の振動に影響を及ぼすから、 特性検査測定値の ばらつきが更に顕著になる と考えた。 Furthermore, the present inventor makes the electrical measurement probe in the case where the electrical measurement probe is brought into contact with the electrode arranged on the electromechanical conversion element to perform the characteristic inspection. Since this also affects the vibration of the electromechanical transducer, we thought that the variation in measured values of the characteristic inspection would be even more pronounced.
加えて、 本発明者は、 電気機械変換機器に組み込む前の電気機械 変換素子単体の特性検査測定値と 、 素子を組み込んだ後の電気機械 変換機器の諸特性と、 の間の対応関係が良好でないのは、 素子単体 の特性検査時における素子の保持状態が電気機械変換機器に組込ん だ後の素子の保持状態と異なるこ と に起因する と考えた。  In addition, the present inventor has a good correspondence relationship between the characteristic inspection measurement value of the electromechanical conversion element alone before being incorporated into the electromechanical conversion apparatus and the various characteristics of the electromechanical conversion apparatus after incorporating the element. The reason for this was thought to be that the element holding state at the time of the characteristic inspection of the element alone was different from the element holding state after being incorporated into the electromechanical conversion device.
本発明者は、 電気機械変換素子を治具等で保持する際の保持状態 のばらつさが電 機械変換素子の特性検查測定値にどのよ う に を及ぼすかについて調査する中で 、 同一素子を治具に取り 付けて交 流ア ド 、 、 クタ ンスを測定する こ と を繰り返し行う こ と によ り 、 以下 の知見を得た。  While investigating how the variation in the holding state when holding the electromechanical transducer with a jig or the like affects the characteristic inspection measurement value of the electromechanical transducer, The following knowledge was obtained by repeating the process of attaching the element to the jig and measuring the AC address, and the inductance.
( 1 ) dth振周波数 おける交流ァ ド、ミ ッタ ンスの ピ一ク値 (最大値 (1) Peak value (maximum value)
) Y max 及び共振先鋭度 Q ( Q値) は、 測定毎に比較的大さ く ばら つく。 ) Y max and resonance sharpness Q (Q value) vary relatively from measurement to measurement.
( 2 ) しかし、 両者 (ピーク値 Y max 及ぴ共振先鋭度 Q ) は略一定 の比例関係にある。 即ち、 k を比例定数と した場合、 Y max = k · Qの関係が複数の測定間において略成立する。  (2) However, the two (peak value Y max and resonance sharpness Q) are in a substantially constant proportional relationship. In other words, when k is a proportional constant, the relationship Y max = k · Q is substantially established between multiple measurements.
更に、 本発明者は、 数個の素子について、 素子単体の交流ァ ド、 S ッ タ ンスの周波数特性を測定する と と もに、 素子単体の振動変位及 びその素子を組み入れた超音波モータ の回転速度を測定してみた。 その結果、 例えば、 交流ア ドミ ッタ ンスのピーク値 Y max と共振先 鋭度 Q と の間の比例係数 k = Y max, Qが大きい素子は、 振動変位 や回転速度が大きいとい う こ とが判った。 以上のこ とから、 本発明 者は、 交流ア ドミ ツタ ンスの ピーク値 Y max 及び共振先鋭度 Qは特 性検査時における素子の保持状態によって変化するが、 その比例係 数 k = Y max / Qは素子ごと に固有であ : k は Γ の電気機械変換特性」 を保持状態に依ら の知見 た。 また、 発明者は、 交流ア ドミ ツタ ン max の らず、 交流コ ンダク タ ンスの ピーク値及 -ダンス 相のピーク値等の値であって、 交流ア ド 1波数特 測定結果に基づいて得られる 「共振周波 :と なる 的特性値 A max (特性最大値 A max、 特' I : Q値で た値 ( k = A max/ Q ) も、 素子ごと に その値 「素子の電気機械変換特性」 を保持状態に依らず適切に表すとの知 見を得た。 Furthermore, the present inventor measured the frequency characteristics of AC element and S pattern of a single element for several elements, and also measured the vibration displacement of the element and the ultrasonic motor incorporating the element. I measured the rotational speed. As a result, for example, an element with a large proportional coefficient k = Y max, Q between the peak value Y max of AC admittance and the resonance sharpness Q has a large vibration displacement and rotational speed. I understood. Based on the above, the present inventor found that the peak value Y max and the resonance sharpness Q of the AC admittance change depending on the holding state of the element during the characteristic inspection, but the proportional coefficient k = Y max / Q is unique to each element: k is the electromechanical conversion characteristic of Γ ”. In addition, the inventor has not obtained the AC admittance max, but the AC conductance peak value and the peak value of the dance phase, etc., and obtained based on the AC add 1 wave number characteristic measurement result. “Resonance frequency: Target characteristic value A max (characteristic maximum value A m ax , Special 'I: Q value (k = A max / Q) is also the value for each element. We obtained the knowledge that the “electromechanical conversion characteristics of the element” can be expressed appropriately regardless of the holding state.
更に、 発明者は、 電気機械変換素子が準静的な変位をもたらすよ う に使用 される素子である場合、 及び、 電気機械変換素子が共振周 波数とは異なる周波数にて振動させられる態様にて使用 される素子 である場合、 「それらの素子に所定の電圧を印加した場合の変位量 D J と 「それらの素子の共振周波数において最大と なる電気的特性値 A max を Q値で除した値 ( k = A max/ Q )」 ,とは極めて良好な相関 関係を有する との知見を得た。  Furthermore, the inventor makes the case where the electromechanical conversion element is an element used to cause a quasi-static displacement, and the electromechanical conversion element is vibrated at a frequency different from the resonance frequency. `` The amount of displacement DJ when a predetermined voltage is applied to these elements and the value obtained by dividing the electrical characteristic value A max that is maximum at the resonance frequency of those elements by the Q value '' (K = A max / Q) ”, we have found that there is a very good correlation.
係る知見に基づいて成された本発明による検査方法は、 「電気機械 変換機器に適用 される」 と と もに 「所定の波形を有する電圧 (電圧 波形) が (少なく と も一対の) 電極を介して印加される と によつ て機械変位を発生する」 電気機械変換素子の電気機械特性検查方法 であり 、 以下のステップを含む。  The inspection method according to the present invention based on such knowledge is “applied to an electromechanical conversion device” and “a voltage (voltage waveform) having a predetermined waveform (at least a pair of) electrodes is applied. This is a method for detecting an electromechanical characteristic of an electromechanical transducer, which includes the following steps.
( 1 ) 前記電気機械変換素子を保持治具によって保持する第 1 ステ ップ (素子保持ステップ)、  (1) a first step (element holding step) for holding the electromechanical transducer by a holding jig;
( 2 ) 前記電気機械変換素子の前記電極を交流ァ ミ クタンス測定 器に電気的に接続し、 「前記電気機械変換素子の共振周波数を含む周 波数範囲 J で 「前記電極間の交流ア ドミ ッタ ンスの周波数特性を表 す交流ァ ドミ ッ タ ンス周波数特性データ」 を測定する第 2 ステップ (2) The electrode of the electromechanical conversion element is electrically connected to an AC permeance measuring device, and “in the frequency range J including the resonance frequency of the electromechanical conversion element, the AC admittance between the electrodes”. 2nd step to measure AC admittance frequency characteristic data representing frequency characteristics of
(交流ァ ドミ ッタ ンス周波数特性測定ステ ップ)、 (AC admittance frequency characteristics measurement step),
( 3 ) 前記第 2 ステップにおいて測定した交流ァ ミ Vタンス周波 数特性データに基づいて共振周波数にて最大と なる電気的特性値の ピーク値 (特性最大値) A maxと共振先鋭度 Q と を取得する第 3 ス テツプ (データ解析ステ ップ)、  (3) The peak value of the electrical characteristic value (maximum characteristic value) A max and the resonance sharpness Q, which is the maximum at the resonance frequency, based on the AC Amami V-tance frequency characteristic data measured in the second step. 3rd step to acquire (data analysis step),
( 4 ) 前記第 3 ステ ッ プにて取得された電気的特性値のピーク値 A maxを前記第 3 ス テ ッ プにて取得された共振先鋭度 Qで除算 した値 A max/ Q (即ち、 前記比例係数 k ) を用いて前記電気機械変換素 子の電気機械特性検査を実施する第 4 ステ ップ (検查ステ ッ プ)。  (4) The value A max / Q (that is, the peak value A max of the electrical characteristic value obtained in the third step divided by the resonance sharpness Q obtained in the third step) And a fourth step (a verification step) in which an electromechanical characteristic inspection of the electromechanical transducer element is performed using the proportional coefficient k).
なお、 第 4 ス テ ッ プの 「値 A max Z Qを用いる」 こ と には 「値 Q / A max J を用いる こ と も当然に含まれる。 また、 第 1 ステ ッ プの Note that “use value A max Z Q” in step 4 naturally includes “use value Q / A max J.” Also, in step 1
「保持する」 こ と には基台等の上部に電気機械変換素子を載置する こ と も含まれる。 “Holding” includes placing an electromechanical transducer on the top of a base or the like.
こ の特性検査方法によれば、 素子毎に固有であって測定毎のばら つきが小さい 「値 A maxZ Q」 に基づいて電気機械変換素子の電気 機械特性検査が行われる。 従って、 電気機械変換素子の電気機械特 性 (振動特性又は変位特性) の良否を、 精度良く 且つ繰り 返し再現 性が高く 判定する こ と ができ る。 更に、 値 A max / Qは、 素子を組 付けた後の電気機械変換機器の電気機械変換特性と 良好な対応関係 を示す 「素子に固有の電気機械特性の測定値」 であるので、 その素 子を電気機械変換機器に組付ける前に、 その素子が機器に組み込ま れた場合の電気機械特性の良否を正確に検査するこ と もできる。 According to this characteristic inspection method, it is unique to each element and varies from measurement to measurement. The electromechanical characteristics of the electromechanical transducer are inspected based on the “value A maxZ Q”, which has a small deviation. Therefore, it is possible to determine whether the electromechanical characteristics (vibration characteristics or displacement characteristics) of the electromechanical conversion element are good and accurate with high repeatability. Furthermore, the value A max / Q is a “measured value of the electromechanical characteristics unique to the element” that shows a good correspondence with the electromechanical conversion characteristics of the electromechanical conversion device after the element is assembled. Before assembling the element into the electromechanical conversion device, it is possible to accurately inspect the electromechanical characteristics when the element is incorporated into the device.
な 、 本発明において、 「前記第 2ステップにおける上記交流ァ ド ミ ッ タ ンス特性を測定する際の共振周波数」 は以下に述ハ、、る よ う に 選択されるこ とが望ま しい。  In the present invention, it is desirable that “the resonance frequency when measuring the AC admittance characteristics in the second step” is selected as described below.
一般に電気機械変換素子は、 複数の共振モー ドを有する 即ち、 電 'Ρ^機械変換素子は複数の共振周波数 ^有し、 める共振周波数にて 振動 している場合と他の共振周波数にて振動している場ムとでは互 レヽに異なる振動形態にて振動する。 そこで、 上記共振周波数は 、 電 気機械変換素子が電気機械変換機器に組み込まれた後の使用 波数 に応じて 、 以下のよ う に選択されるこ とが望ま しい。  In general, an electromechanical transducer has a plurality of resonance modes.In other words, an electromechanical transducer has a plurality of resonance frequencies ^ and vibrates at a resonance frequency. It vibrates in a different vibration form from the vibrating field. Therefore, it is desirable that the resonance frequency is selected as follows according to the wave number used after the electromechanical conversion element is incorporated into the electromechanical conversion device.
( a ) 電気機械変換機器に組み込まれた後に共振周波数 (便宜上 「 駆動共振周波数」 と称呼する。 ) にて駆動される素子の場ム  (a) The field of an element driven at a resonance frequency (referred to as “drive resonance frequency” for convenience) after being incorporated in an electromechanical conversion device.
a ゝ 上記 交流ァ ド、ミ ッタ ンス特性を測定する際の共振周波数はその駆動共振 周波数であるこ とが好ま しい。  a 共振 It is preferable that the resonance frequency at the time of measuring the above-mentioned AC ADD and MUT characteristics is the drive resonance frequency.
( b ) 雷気機械変換機器に組み込まれた後に共振周波数とは異なる 周波数で駆動される素子の場合、 上記交流ア ド ッタ ンス特性を測 定する際の共振周波数は 「振動形態が似通った共振モ一ドの共振周 波数 (即ち、 実際に電気機械変換素子が使用 され 際の駆動 波数 に最も近い共振周波数) 」 であるこ とが好ま しレヽ  (b) In the case of an element driven at a frequency different from the resonance frequency after being incorporated into a lightning mechanical conversion device, the resonance frequency when measuring the above AC impedance characteristics is `` the vibration form is similar The resonance frequency of the resonance mode (that is, the resonance frequency closest to the drive frequency when the electromechanical transducer is actually used) is preferred.
( c ) 電気機械変換機器に組み込まれた後に準静的に駆動される素 子の場合、 上記交流ア ドミ ッタ ンス特性を測定する際の共振周波数 は Γ振動形態が似通った共振モー ドの共振周波数 (即ち 、 実際に電 気機械変換素子が使用 される際の駆動周波数に最も近い共振周波数 (c) In the case of an element that is driven quasi-statically after being incorporated in an electromechanical converter, the resonance frequency when measuring the above-mentioned AC admittance characteristics is the resonance mode with a similar Γ vibration form. Resonance frequency (i.e., the resonance frequency closest to the drive frequency when the electromechanical transducer is actually used)
) J である こ とが好ま しい。 なお、 この場合、 ~ "般には 、 最も低い 振周波数における振動形態が準静的駆動時の振動形態と最も似通 つている。 ) J is preferred. In this case, in general, the vibration form at the lowest vibration frequency is most similar to the vibration form at the time of quasi-static drive.
一方、 前述したよ う に、 交流ア ドミ ッタ ンス周波数特性デ タ に 基づレ、て取得される 「電気的特性値」 は、 「交流ア ドミ ッタンス J、 厂 交流 ンダク タ ンス」 及ぴ 「交流イ ンピーダンス の位相」 等を含む - れらの う ち、 交流コ ンダク タ ンス のピーク値を 「共振周波数に て最大と なる電気的特性値 (電気的特性値の最大値) A max」 と し て用いた場合 、 前記値 A max Z Q と、 素子を電気機械変換機器に組 付けた後の同機器の特性と、 の対応が非常に良好になる。 従つて 、On the other hand, as described above, the AC admittance frequency characteristic data “Electrical characteristic value” obtained based on this includes “AC admittance J, 交流 AC inductance”, “AC impedance phase”, etc.- When the peak value of the inductance is used as “the maximum electrical characteristic value at the resonance frequency (maximum value of the electrical characteristic value) A max”, the value A max ZQ and the element are converted to electromechanical conversion. Correspondence between the characteristics of the equipment after it is installed in the equipment and is very good. Therefore,
¾流コ ンダク タ ンス は、 前記電気的特性値と して特に好ま しい o 即 ち、 記電気的特性値のピーク値 A max と して交流コンダク タ ンス のピ一ク値 G maxを採用するこ とが特に好適である。 ¾ flow conductance is particularly preferred as the electrical characteristic value, i.e., the peak value A max of the electrical characteristic value adopts the peak value G max of the AC conductance. This is particularly preferred.
厂共振周波数で最大と なる電気的特性値」 と して交流コ ンダク タ ンス の ピ一ク値 G max を用いる場合、 前記交流コンダクタ ンス の ピ 一ク値 G max を、 交流ア ドミ ッタンス円め直径 1 / R 1 を算出する こ とによ り 求めるこ とが好適である。 これによ り 、 「繰り返し測定再 現性」 が更に良く なるからである。  When the peak value G max of the AC conductance is used as the `` maximum electrical characteristic value at the resonance frequency '', the peak value G max of the AC conductance is rounded to the AC admittance circle. It is preferable to obtain the diameter 1 / R 1 by calculating it. This is because “repetitive measurement reproducibility” is further improved.
なお、 本発明の電気機械特性検査方法の適用対象と な 電 機械 変換素子は 、 所定の波形を有する電圧が印加される と によつて機 械変 ■U ¾"発生する素子であればよ < 、 その機械変位を発生する原理 は限定されない · - The electromechanical conversion element to which the electromechanical characteristic inspection method of the present invention is applied may be an element that generates a mechanical change ■ U ¾ ”when a voltage having a predetermined waveform is applied < The principle of generating the mechanical displacement is not limited
0 の よ う な電気機械変換素子と して 、 例えば 、 圧 電 子、 電歪素子及び磁歪素子等を挙げる こ とができ る o よた 、 本 発明の電気機械特性検查方法の適用対象と なる電 機械変換素子は 単板型、 積層型、 基板上に圧電膜が形成されてなる 、'子 (バィモ ルフ型ァクチュェ一タゃダイ ァ フラム構造を有するァクチュェ一タ 等と して機能する素子) であってもよい。 Examples of electromechanical transducer elements such as 0 can include piezoelectric elements, electrostrictive elements, magnetostrictive elements, and the like. The electromechanical conversion element is a single plate type, a laminated type, or a piezoelectric film formed on a substrate, and a device that functions as a child (a bimorph type actuator has a diaphragm structure, etc.) It may be.
と ころで、 電気機械変換素子の電気機械変換特性は、 上記交流ァ ドミ ッタ ンス周波数特性に代え、 素子の振動変位周波数特性を測定 する こ と によつても得る こ とができ る。 更に、 本発明者は、 電気機 械変換素子の振動変位周波数特性の良否判定についても、 交流ア ド ミ ッタ ンス周波数特性の良否判定と 同様に、 振動変位のピーク値 D max を共振先鋭度 Q Dで除算した値 D max/ Q Dを素子の良否判定の ための評価指標値と して用いれば、 測定時における素子の保持状態 の影響を受ける こ となく 、 素子の良否判定を精度良く 行う こ とがで きる との知見を得た。 On the other hand, the electromechanical conversion characteristics of the electromechanical conversion element can be obtained by measuring the vibration displacement frequency characteristics of the element instead of the AC admittance frequency characteristics. Furthermore, the present inventor also determines whether or not the vibration displacement frequency characteristic of the electromechanical transducer element is good or bad, as in the case of the good or bad judgment of the AC admittance frequency characteristic. using the value D max / Q D divided by Q D as an evaluation index value for quality determination of the elements, without having to go affected holding state of the device during measurement, accurately quality determination element I have learned that I can do it.
そこで、 本発明は、  Therefore, the present invention provides
「電気機械変換機器に適用される と と もに所定の波形 (例えば、 振動波形) を有する電圧が電極を介して印加される こ と によつて機 械変位 (例えば、 機械振動) を発生する電 5 機械変換 子 J の電気 機械特性検査方法であって、 “Applies to electromechanical converters and has a predetermined waveform (eg A method for inspecting electromechanical characteristics of an electromechanical transducer J that generates mechanical displacement (for example, mechanical vibration) by applying a voltage having a vibration waveform) via an electrode,
前記電気機械変換素子を保持治具によつて保持する第 5 ステクプ A fifth strap for holding the electromechanical transducer by a holding jig.
(保持ステ ップ) と、 (Holding step) and
前記電気機械変換素子の前記電極を周波数特性測定器に電気的に 接続し、 前記電気機械変換素子の共振周波数を含む周波数範囲で —、.·■· 刖 記電極間の振動変位特性を表す振動変位周波数特性デ一タを測定す る第 6 ステ ップ (振動変位特性測定ステップ) と、  In the frequency range including the resonance frequency of the electromechanical transducer, the electrode of the electromechanical transducer is electrically connected to a frequency characteristic measuring instrument. —,. 6th step (vibration displacement characteristic measurement step) to measure displacement frequency characteristic data,
前記第 6 ステップにおいて測定した振動変位周波数特性データに 基づいて共振周波数にて最大と なる振動変位の振幅の ピーク値 D maxと共振先鋭度 Q Dと を取得する第 7 ステ ップ (データ解析ステツ プ) と、 Based on the vibration displacement frequency characteristic data measured in the sixth step, the seventh step (data analysis step) for obtaining the peak value D max of the vibration displacement amplitude and the resonance sharpness Q D that are maximum at the resonance frequency. And)
前記第 7 ステ ップにて取得された振幅のピーク値 D maxを前記第 7 ステ ップにて取得された共振先鋭度 Q Dで除算した値 D max/ Q D を用いて前記電気機械変換素子の電気機械特性検査を実施する第 8 ステップ (検査ステップ) と、 Using the value D max / Q D obtained by dividing the peak value D max of the amplitude obtained in the seventh step by the resonance sharpness Q D obtained in the seventh step, the electromechanical conversion is performed. An eighth step (inspection step) to perform electromechanical property inspection of the element;
を含む電気機械特性検査方法を提供する。  An electromechanical property inspection method including the above is provided.
なお、 第 8 ステ ップの 「値 D max/ Q Dを用いる」 こ とには 「値 Q D / D maxj を用いること も当然に含まれる。 Note that “use value D max / Q D ” in the eighth step naturally includes “use value Q D / D maxj”.
この検査方法によっても、 素子の電気機械特性の良否を、 精度良 く 且つ繰り返し再現性が高く判定するこ とができる。 図 面 の 簡 単 な 説 明  This inspection method can also determine the quality of the electromechanical characteristics of the element with high accuracy and high repeatability. A simple explanation of the drawing
図 1 は、 本発明による電気機械特性検査方法が適用される電気機 械変換素子の一例を示す 4面図であ り 、 (A ) はその平面図 (上面図 )、 ( B ) はその正面図、 ( C ) はその裏面図、 ( D ) はその側面図で ある。  FIG. 1 is a four-side view showing an example of an electromechanical transducer to which an electromechanical characteristic inspection method according to the present invention is applied. (A) is a plan view (top view), and (B) is a front view thereof. (C) is the back view and (D) is the side view.
図 2 は、 図 1 に示した電気機械変換素子の積層構造を示す斜視図 である。  FIG. 2 is a perspective view showing a laminated structure of the electromechanical transducer shown in FIG.
図 3 は、 図 1 に示した電気機械変換素子の保持治具の第 1 の例を 示す 3面図であ り 、 (A ) はその平面図 (上面図)、 ( B ) はその正面 図、 ( C ) は結合部を除いた状態におけるその保持治具の側面図であ る。 図 4 は、 図 1 に示した電気機械変換素子の保持治具の第 2 の例を 示す 3面図であ り 、 (A ) はその平面図 (上面図)、 ( B ) はその正面 図、 ( C ) は結合部を除いた状態におけるその保持治具の側面図であ る。 Fig. 3 is a trihedral view showing the first example of the holding jig for the electromechanical transducer shown in Fig. 1, where (A) is a plan view (top view) and (B) is a front view thereof. (C) is a side view of the holding jig in a state in which the connecting portion is removed. Fig. 4 is a trihedral view showing a second example of the holding jig for the electromechanical transducer shown in Fig. 1. (A) is a plan view (top view), and (B) is a front view thereof. (C) is a side view of the holding jig in a state in which the connecting portion is removed.
図 5 は 、 本発明による電気機械変換素子の電気機械特性検査方法 のェ程の流れを示すフローチヤ一 トである。  FIG. 5 is a flowchart showing the flow of the electromechanical characteristic inspection method for an electromechanical transducer according to the present invention.
図 6 は 、 電気機械変換素子 (第 1 素子) についてのァ ド、ミ ッタ ン スの周波数特性測定結果を示すグラフであ り 、 ( A ) は周波数に対し てァ ド、 、ヽ ッタンスをプロ ッ ト したグラフであ り 、 ( B ) は周波数に対 してァ ヽ ッタンスの位相をプロ ッ ト したグラフである。  Fig. 6 is a graph showing the measurement results of the frequency characteristics of the ado and mitance for the electromechanical transducer (first ele- ment). (A) shows the ad, and the frequency with respect to the frequency. This is a plotted graph, and (B) is a graph plotting the phase of the gain with respect to the frequency.
図 7 は 、 電気機械変換素子 (第 1 素子) についてのァ ド、ミ クタ ン スの周波数特性測定結果を示すグラフであ り 、 ( A ) は周波数に対し て ンダク タ ンスをプロ ッ ト したグラフであ り 、 ( B ) は周波数に対 してサセプタンスをプロ ッ ト したグラフであ り 、 ( C ) はコンダク タ ンス及びサセプタ ンスをそれぞれ横軸及ぴ縦軸にプロ ッ 卜 したグ ラ フである  Fig. 7 is a graph showing the results of frequency characteristics measurement of the ado and the inductance for the electromechanical transducer (first element). (A) plots the inductance with respect to the frequency. (B) is a graph plotting susceptance versus frequency, and (C) is a graph plotting conductance and susceptance on the horizontal and vertical axes, respectively. Is
図 8 は 、 電気機械変換素子 (第 2素子) についてのァ ミ クタ ン スの周波数特性測定結果を示すグラフであ り 、 (A ) は周波数に対し てァ ド、ヽ 、 Vタンスをプロ ッ ト したグラフであ り 、 ( B ) は «3波数に対 してァ K 、 、 ッタンスの位相をプロ ッ ト したグラフである。  Fig. 8 is a graph showing the measurement results of the frequency characteristics of the electromechanical transducer (second element). (A) plots the ad, ァ, and V stance against the frequency. (B) is a graph plotting the phases of K,, and T for three wave numbers.
図 9 は 、 電気機械変換素子 (第 2素子) についてのァ ド、ミ Vタ ン スの闺波数特性測定結果を示すグラフであ り 、 ( A ) は周波数に対し て ンダク タンスをプロ ッ ト したグラフであ り 、 ( B ) は周波数に対 してサセプタンスをプロ ッ ト したグラフであ り 、 ( C ) はコンダク タ ンス及ぴサセプタ ンスをそれぞれ横軸及ぴ縦軸にプロ ッ 卜 したグラ フである □  Fig. 9 is a graph showing the results of measurement of the harmonic frequency characteristics of the ADD and MIT terminals for the electromechanical transducer (second element). (A) plots the inductance with respect to the frequency. (B) is a graph with susceptance plotted against frequency, and (C) is plotted with conductance and susceptance on the horizontal and vertical axes, respectively. □
図 1 0 は 、 電気機械変換素子 (第 1 素子) の電気的等価回路図で ある  FIG. 10 is an electrical equivalent circuit diagram of the electromechanical transducer (first element).
図 1 1 は 、 電気機械変換素子 (第 2素子) の電気的等価回路図で ある  Fig. 11 is an electrical equivalent circuit diagram of the electromechanical transducer (second element).
図 1 2 は 、 電気機械変換素子の振動変位の周波数特性の測定系の 例を示すプ口 ック図である。  Fig. 12 is a block diagram showing an example of a measurement system for frequency characteristics of vibration displacement of an electromechanical transducer.
図 1 3 は 、 電気機械変換素子の振動変位の周波数特性の測 方法 の例を示す模式図である。 図 1 4 は、 電気機械変換素子についての振動変位の周波数特性測 定結果の一例を示すグラフであ り 、 (A) は周波数に対して変位 (振 幅) をプロ ッ ト したグラフであ り 、 ( B ) は周波数に対して変位の位 相をプロ ッ ト したグラフである。 FIG. 13 is a schematic diagram showing an example of a method for measuring the frequency characteristics of the vibration displacement of the electromechanical transducer. Fig. 14 is a graph showing an example of the frequency characteristics measurement result of vibration displacement for an electromechanical transducer. (A) is a graph plotting displacement (amplitude) against frequency. , (B) is a graph plotting the phase of displacement against frequency.
図 1 5 は、 電気機械変換素子についての振動変位の周波数特性測 定結果の一例を示すグラフであ り 、 (A) 及び ( B ) は、 図 1 4の ( A) 及び ( B ) に示したデータに基づいて換算された 「振動変位の 余弦成分」 及び 「振動変位の正弦成分」 を周波数 f に対してそれぞ れプロ ッ ト したグラフであ り 、 ( C ) は 「振動変位の余弦成分」 及ぴ 「振動変位の正弦成分」 をそれぞれ横軸及び縦軸にプロ ッ ト したグ ラフである。  Fig. 15 is a graph showing an example of the measurement results of frequency characteristics of vibration displacement for electromechanical transducers. (A) and (B) are shown in Fig. 14 (A) and (B). (C) is a graph plotting the “cosine component of vibration displacement” and “sine component of vibration displacement” converted based on the measured data for frequency f. The graph plots the “component” and “sine component of vibration displacement” on the horizontal and vertical axes, respectively.
図 1 6 は、 図 1 に示した電気機械変換素子が適用 された超音波モ ータの一例を示す同超音波モータ の正面図である。  FIG. 16 is a front view of the ultrasonic motor showing an example of the ultrasonic motor to which the electromechanical transducer shown in FIG. 1 is applied.
図 1 7 は、 電気機械変換素子のア ドミ ッタ ンス の共振先銳度と各 特性ピーク値との相関プロ ッ トの例であ り 、 (A) は共振先鋭度及び ア ドミ ッタンス の ピーク値、 ( B ) は共振先鋭度及びコンダク タンス のピーク値、 ( C ) は共振先鋭度及びサセプタンス の最大 · 最小差、 ( D ) は共振先鋭度及ぴア ドミ ッタ ンス円の直径、 をプロ ッ ト した グラフである。  Figure 17 shows an example of a correlation plot between the resonance intensity of the admittance of the electromechanical transducer and each characteristic peak value. (A) shows the resonance sharpness and the peak of admittance. (B) is the peak value of resonance sharpness and conductance, (C) is the maximum / minimum difference between resonance sharpness and susceptance, (D) is the resonance sharpness and diameter of the admittance circle, This is a plotted graph.
図 1 8 は、 電気機械変換素子のア ドミ ツタ ンスの各特性ピーク値 と変位特性測定値の 2乗との相関プロ ッ トの例であ り 、 ( A) はコン ダク タンスのピーク値及び変位特性測定値の 2乗、 ( B ) はア ドミ ツ タ ンス円の直径及び変位特性測定値の 2乗、 ( C ) はコンダクタンス のピーク値を共振先鋭度で除した値及び変位特性測定値の 2乗、 (D ) はア ドミ ッタンス円の直径を共振先鋭度で除した値及び変位特性 測定値の 2乗、 をプロ ッ ト したグラフである。  Fig. 18 shows an example of a correlation plot between each characteristic peak value of the admittance of the electromechanical transducer and the square of the measured displacement characteristic. (A) shows the peak value of the conductance and (B) is the square of the admittance circle and the square of the measured displacement characteristics, (C) is the conductance peak value divided by the resonance sharpness and the measured displacement characteristics. (D) is a graph plotting the value obtained by dividing the diameter of the admittance circle by the resonance sharpness and the square of the measured displacement characteristics.
図 1 9 は、 電気機械変換素子のア ドミ ッタ ンス特性測定値と超音 波モータの回転速度特性の相関プロ ッ トの例であ り 、 ( A ) はコンダ ク タンス ピーク値及ぴ回転速度の 2乗、 ( B ) はア ドミ ッタンス円の 直径及ぴ回転速度の 2乗、 ( C ) はコンダク タ ンス ピーク値を共振先 鋭度で除した値及ぴ回転速度の 2乗、 (D ) はア ドミ ッタンス円の直 径を共振先鋭度で除した値及び回転速度の 2乗、 をプロ ッ ト したグ ラフである。  Figure 19 shows an example of a correlation plot between the measured admittance characteristics of an electromechanical transducer and the rotational speed characteristics of an ultrasonic motor. (A) is the conductance peak value and rotation speed. (B) is the diameter of the admittance circle and the square of the rotational speed, (C) is the value obtained by dividing the conductance peak value by the resonance sharpness and the square of the rotational speed, ( D) is a graph plotting the value obtained by dividing the diameter of the admittance circle by the resonance sharpness and the square of the rotational speed.
図 2 0 は、 本発明による電気機械特性検査方法が適用 される他の 戆気機械変換素子の一例を示す 3面図であり 、 (A ) はその平面図 ( 上面図)、 ( B ) はその正面図、 ( C ) はその側面図である。 FIG. 20 shows another example to which the electromechanical property inspection method according to the present invention is applied. FIG. 3 is a three-plane view showing an example of an aeration machine conversion element, in which (A) is a plan view (top view), (B) is a front view thereof, and (C) is a side view thereof.
図 2 1 は、 図 2 0 に示した電気機械変換素子の積層構造を示す斜 視図である。  FIG. 21 is a perspective view showing the laminated structure of the electromechanical transducer shown in FIG.
図 2 2 は、 図 2 0 に示した電気機械変換素子の保持治具の例を示 す 4面図であ り 、 (A ) はその平面図 (上面図)、 ( B ) はその正面図 、 ( C ) はその裏面図、 ( D ) は結合部を除いた状態におけるその保 持治具の側面図である。  Fig. 22 is a four-sided view showing an example of the holding jig for the electromechanical transducer shown in Fig. 20. (A) is a plan view (top view), and (B) is a front view thereof. , (C) is a rear view thereof, and (D) is a side view of the holding jig in a state in which a connecting portion is removed.
図 2 3 は、 図 2 0 に示した電気機械変換素子の変位 (準静的変位 特性データ) を測定する方法の例を示す模式図である。  FIG. 23 is a schematic diagram showing an example of a method for measuring the displacement (quasi-static displacement characteristic data) of the electromechanical transducer shown in FIG.
図 2 4 はヽ 図 2 0 に示した電気機械変換素子の変位 (準静的変位 特性テ一タ ) を測定するための測定系の例を示すプ口 ック図である o  Fig. 24 is a block diagram showing an example of a measurement system for measuring the displacement (quasi-static displacement characteristic data) of the electromechanical transducer shown in Fig. 20.
図 2 5 の ( A ) は、 図 2 0 に示した電気機械変換素子の Γァ ド、ヽ ッ タ ンス円の直径」 と 「変位量の 2乗」 との関係をプ ッ 卜 したグ ラ フであ り 、 図 2 5 の ( B ) は、 図 2 0 に示した電 機械変換 子 の 「ァ ド 、 ク タ ンス円の直径を共振先鋭度で除算した値」 と Γ変位 量の 2乗 J との関係をプ 1口 ッ ト したグラフである。  (A) in Fig. 25 is a graph showing the relationship between the Γ-ad and diameter of the electromechanical transducer element shown in Fig. 20 and the square of the displacement amount. (B) in Fig. 25 is the value obtained by dividing the diameter of the circle of the electro-mechanical circle by the resonance sharpness of the electromechanical transducer shown in Fig. 20 and 2 of the Γ displacement. This graph plots the relationship with the multiplier J.
図 2 6 は、 支持部と振動部と を分離した状態における 「更に別の 電気機械変換素子」 の斜視図である。  FIG. 26 is a perspective view of “another electromechanical transducer” in a state where the support portion and the vibration portion are separated.
図 2 7 は、 図 2 6 に示した 1 — 1 線に沿つた平面にて電 機械変 換素子を切断した断面図である。  Fig. 27 is a cross-sectional view of the electromechanical conversion element cut along the plane along line 1-1 in Fig. 26.
図 2 8 は、 図 2 6 に示した 2 — 2線に沿つた平面にて電気機械変 換ン,、子を切断した断面図である。  Figure 28 is a cross-sectional view of the electromechanical converter and the child cut along the plane 2–2 shown in Figure 26.
図 2 9 は、 図 2 6 乃至図 2 8 に示した電気機械変換素子の 「交流 ァ ド、ミ ツタ ンス周波数特性データ」 を測定する際に使用する保持治 具 、 及ぴ、 その保持治具による電気機械 換素子の保持状態 不 し た図である。  Fig. 29 shows the holding jig and its holding jig used when measuring the "alternating current frequency, mitten frequency characteristic data" of the electromechanical transducer shown in Figs. 26 to 28. FIG. 6 is a diagram showing a state in which the electromechanical conversion element is not held by.
図 3 0 は、 図 2 6 乃至図 2 8 に示した電気機械変換素子の 「準静 的変位特性データ」 を測定する際に使用する保持治具、 及ぴ 、 その 保持治具による電気機械変換素子の保持状態を示した図である。  Fig. 30 shows the holding jig used to measure the "quasi-static displacement characteristics data" of the electromechanical transducer shown in Figs. 26 to 28, and the electromechanical conversion by the holding jig. It is the figure which showed the holding | maintenance state of an element.
図 3 1 は、 図 2 6 乃至図 2 8 に示した電気機械変換素子の 「準静 的変位特性データ」 を測定する際に、 電気機械変換素子に印加され る駆動電圧及び測定された変位を示したタイムチヤ一 トである。 図 3 2 の ( A ) は、 図 2 6 乃至図 2 8 に示した電 機械変換素子 のア ド、 、 Fig. 31 shows the drive voltage applied to the electromechanical transducer and the measured displacement when measuring the quasi-static displacement characteristics data of the electromechanical transducer shown in Figs. 26 to 28. It is the time chart shown. (A) in Fig. 3 2 represents the addition of the electromechanical transducer elements shown in Figs. 26 to 28,
、 ッタンス円の直径と変位量の 2乗との関係を示したグラフ であ り 、 図 3 2 の ( B ) は、 図 2 6 乃至図 2 8 に示した電気機械変 換素子の 「ァ ド、ミ ッタ ンス円の直径を共振先鋭度で除算した値 」 と 変位量の との関係を示したグラ フである。 発明を実施するための最良の形態  3 is a graph showing the relationship between the diameter of the circle of circles and the square of the displacement amount. (B) in Fig. 3 2 is the "ad" of the electromechanical transducer shown in Figs. 26 to 28. This is a graph showing the relationship between the value obtained by dividing the diameter of the missance circle by the resonance sharpness and the displacement amount. BEST MODE FOR CARRYING OUT THE INVENTION
以下ヽ 本発明の実施形態について図面を参照しつつ詳細に説明す る。 但し 、 本発明はこれらの実施形態に限定されて解釈される もの ではな < 、 本発明の範囲を逸脱しない限り において 、 当業者の知識 に基づいて、 種々の変更、 修正、 改良を加え得るものである。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not construed as being limited to these embodiments, and various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the present invention. It is.
. 本発明による電気機械特性検査方法は 、 様 な設計の電気機械変 換素子に適用可能である。 本発明による電気機械特性検查方法は、 特に、 電気機械特性測定時に電 測定プ 一ブ (例えば 、 針状の測 定端子) を接触させる電極 (電極端子 ) が素子表面上に配置された 電気機械変換素子に対して適用する とヽ 更に顕著な効果を 58揮する The electromechanical property inspection method according to the present invention can be applied to electromechanical transducers of various designs. In the electromechanical characteristic inspection method according to the present invention, in particular, an electric electrode (electrode terminal) that contacts an electric measurement probe (for example, a needle-like measurement terminal) at the time of measuring the electromechanical characteristic is disposed on the element surface. When applied to mechanical transducers, it has 58 more remarkable effects.
。 図 1 及ぴ図 2 に示した電気機械変換 子 1 0 は、 このぶ 5 な電 5¾ 機械変換素子の一例である。 図 1 は、 電 機械変換素子 1 0 の外観 を示す 4面図であ り 、 図 2 は、 電気機械変換 子 1 0 の禾貝層構成を 示す分解斜視図でめる。 . The electromechanical transducer 10 shown in FIG. 1 and FIG. 2 is an example of such an electromechanical transducer element. FIG. 1 is a four-sided view showing the external appearance of the electromechanical transducer 10, and FIG. 2 is an exploded perspective view showing the shell structure of the electromechanical transducer 10.
電気機械変換素子 1 0 は、 膜状の 2種類の内部電極 1 4 a 及ぴ 1 The electromechanical transducer 1 0 has two types of internal electrodes 1 4 a and 1
4 b によ り挟まれた層状の圧電体 1 0 a を複数枚積層 ·してなる積層 型圧電素子である。 素子 1 0 の上面には上部電極 (電極 子 ) 1 1 a及ぴ 1 1 が 、 側面には側面電極 1 2 a 及ぴ 1 2 b がヽ 底面には 下部電極 1 3 a及び 1 3 b が形成されている o 上部電極 1 1 a 、 内 部電極 1 4 a及ぴ下部電極 1 3 a は、 側面電極 1 2 a によつて互レ、 に電気的に接続されている。 上部電極 1 1 b 内部電極 1 4 b及び 下部電極 1 3 b は、 側面電極 1 2 b によつて互いに電気的に接 れている。 This is a multilayer piezoelectric element formed by laminating a plurality of layered piezoelectric bodies 10 a sandwiched between 4 b. The upper electrode (electrode) 1 1 a and 1 1 are on the top surface of the element 10, the side electrodes 1 2 a and 1 2 b are on the side surface, and the lower electrodes 1 3 a and 1 3 b are on the bottom surface. The formed upper electrode 11a, inner electrode 14a and lower electrode 13a are electrically connected to each other by a side electrode 12a. The upper electrode 1 1 b and the inner electrode 14 b and the lower electrode 13 b are electrically connected to each other by the side electrode 12 b.
素子 1 0 は、 上部電極 1 1 a と上部電極 1 1 b との間に電圧を印 加する と、 逆圧電効果によって厚さ方向 (高さ H方向 ) に伸び 、 長 さ方向 ( L方向及び W方向) に縮むよ う に 、 機械変形する o 従つて When a voltage is applied between the upper electrode 1 1 a and the upper electrode 1 1 b, the element 10 extends in the thickness direction (height H direction) by the inverse piezoelectric effect, and the length direction (L direction and The machine deforms to shrink in the (W direction).
、 上部電極 1 1 a と上部電極 1 1 と の間の 厂交流ァ ド、 、 、 Vタ ンス の周波数特性」 をネッ ト ワークァナラィザゃィ ンピーダンスァナラ ィザ等によって測定する こ と によ り 、 長さ方向及ぴ厚さ方向の共振 周波数や共振先鋭度 ( Q値)、 交流コンダンク タ ンス G及び交流サセ ブタンス B等の電気機械特性値を測定するこ とができる。 The frequency characteristics of the AC,,, and V impedances between the upper electrode 1 1 a and the upper electrode 1 1 Measures the electromechanical characteristic values such as resonance frequency and resonance sharpness (Q value), AC conductance G, and AC sustainability B in the length direction and thickness direction. can do.
本発明によ る電気機械特性検査方法では、 様々 な設計の保持治具 を用いるこ とができ る。 しかしながら、 電気機械変換素子を保持す る こ と は、 その電気機械変換素子の振動状態へ影響を及ぼす。 従つ て、 そのよ う な振動状態への影響を小さ く するために、 電気機械変 換素子への接触が少ない保持治具が好ま しい。 図 3 に示した保持治 具 2 0は、 そのよ う な保持治具の第 1 の例である。  In the electromechanical property inspection method according to the present invention, holding jigs of various designs can be used. However, holding the electromechanical conversion element affects the vibration state of the electromechanical conversion element. Therefore, in order to reduce the influence on the vibration state, a holding jig with less contact with the electromechanical transducer is preferred. The holding jig 20 shown in FIG. 3 is a first example of such a holding jig.
この保持治具 2 0 は、 電気機械変換素子 1 0 の同一平面 (上面) 上に配設された 2 つの電極 1 1 a · 1 1 b に接触する 2 つの測定端 子 (電気測定プローブ) 2 1 a · 2 1 b と、 電極 1 l a , 1 l b の 配設面と対向する面 (下面) に接触して電気機械変換素子 1 0 を支 持する支持部材 2 2 と 、 測定端子 2 1 a · 2 1 b を保持する測定端 子保持部 2 3 と 、 支持部材 2 2 を保持する支持部材保持部 2 4 と 、 測定端子保持部 2 3 と支持部材保持部 2 4 と を機械的に結合する結 合部 2 5 a · 2 5 b と を備えてレ、る。 保持治具 2 0 は、 これらの部 材を用いて、 電気機械変換素子 1 0 を保持する と と もに、 測定端子 2 1 a · 2 1 b を介して電極 1 1 a · 1 1 b から 2つの電気配線を 取り 出すよ う に構成されている。 即ち、 測定端子 2 l a · 2 l b の 素子 1 0 に接触しない側の端部には、 後述する電気計測器へと繋が る電気配線が接続される。  This holding jig 20 has two measuring terminals (electrical measuring probes) 2 that are in contact with the two electrodes 1 1 a · 1 1 b arranged on the same plane (upper surface) of the electromechanical transducer 10. 1 a · 2 1 b, a support member 2 2 that supports the electromechanical conversion element 10 in contact with the surface (bottom surface) facing the electrode 1 la, 1 lb mounting surface, and the measurement terminal 2 1 a · Mechanically connecting measurement terminal holding part 2 3 holding 2 1 b, support member holding part 2 4 holding support member 2 2, measurement terminal holding part 2 3 and support member holding part 2 4 The connecting part 2 5 a · 2 5 b is provided. The holding jig 20 uses these materials to hold the electromechanical transducer 10 and from the electrodes 1 1 a and 1 1 b via the measurement terminals 2 1 a and 2 1 b. It is configured to take out two electrical wires. That is, an electrical wiring connected to an electrical measuring instrument to be described later is connected to the end of the measuring terminals 2 l a · 2 l b on the side not contacting the element 10.
図 4 に示した保持治具 2 0 ' は、 素子 1 0 の振動状態への影響を 小さ く するよ う に素子 1 0 を保持する こ とができ る治具の第 2 の例 である。 保持治具 2 0 ' は、 保持治具 2 0 の支持部材 2 2及ぴ支持 部材保持部 2 4 に代わる台座 2 6 を備えている。 保持治具 2 0 ' は 、 この台座 2 6 によ り 素子 1 0 の電極 1 l a · 1 l b の配設面 (上 面) と対向する面 (下面) 全体を支持する よ う に構成されている点 のみにおいて、 保持治具 2 0 と相違している。  The holding jig 20 ′ shown in FIG. 4 is a second example of a jig that can hold the element 10 so as to reduce the influence of the element 10 on the vibration state. The holding jig 20 ′ includes a support member 2 2 of the holding jig 20 and a pedestal 2 6 in place of the support member holding portion 2 4. The holding jig 20 ′ is configured to support the entire surface (lower surface) facing the arrangement surface (upper surface) of the electrode 1 la · 1 lb of the element 10 by the pedestal 26. This is different from the holding jig 20 only in the point.
本発明の実施形態に係る 「電気機械変換素子の電気機械特性検査 方法」 の工程 (ステ ップ) の流れを図 5 に示す。 こ の電気機械特性 検查方法においては、 先ず、 ステップ 1 において電気機械変換素子 1 0 を保持治具によ り保持し、 ステ ップ 2 において電気機械変換素 子 1 0 の電極を交流ァ ドミ ッタ ンス測定器に電気的に接続してから 電気機械変換素子 1 0 の交流ァ ド ミ ッ タ ンス の周波数特性を測定し て交流ァ ドミ ッタ ンス周波数特性データを取得し、 ステ ッ プ 3 にお いてその測定データから特性ピーク値 (特性最大値) A max と共振 先鋭度 Qを算出し、 ステップ 4 において特性ピーク値 A max を共振 先鋭度 Qで除算した値 k ( = A max / Q ) を評価指標値と して用い なが ら素子 1 0 の良否を判定する (素子 1 0 の電気機械特性の良否 を判定する。)。 FIG. 5 shows the flow of the steps (steps) of the “electromechanical characteristics inspection method for electromechanical transducers” according to the embodiment of the present invention. In this electromechanical characteristic inspection method, first, in step 1, the electromechanical conversion element 10 is held by a holding jig, and in step 2, the electrode of the electromechanical conversion element 10 is connected to the AC admittance. Electrically connected to the meter The AC admittance frequency characteristic data is obtained by measuring the AC admittance frequency characteristics of the electromechanical transducer 10, and in step 3, the characteristic peak value (characteristic Maximum value) A max and resonance sharpness Q are calculated, and the value k (= A max / Q) obtained by dividing the characteristic peak value A max by the resonance sharpness Q in step 4 is used as the evaluation index value. Determining whether element 10 is good (determining whether electromechanical characteristics of element 10 are good).
上記ステ ッ プ 1 における電気機械変換素子 1 0 の保持方法は、 特 に限定されず、 従来技術による保持方法を適用する こ とができ る。 但し、 電気機械変換素子 1 0 の振動状態に大きな影響を与えないよ う にするため、 前述した保持治具 2 0及び 2 0 ' のよ う に素子 1 0 との接触が少ない保持治具を用いて素子 1 0 を保持する こ とが好ま しい。  The holding method of the electromechanical conversion element 10 in step 1 is not particularly limited, and a holding method according to the prior art can be applied. However, in order not to greatly affect the vibration state of the electromechanical transducer 10, a holding jig with little contact with the element 10, such as the holding jig 20 and 2 0 ′ described above, may be used. It is preferable to use and hold element 10.
上記ステップ 2 における電気機械変換素子 1 0 の交流ァ ドミ ッタ ンス の周波数特性の測定方法は、 特に限定されず、 例えば、 ネッ ト ワークアナライザやイ ン ピーダンスアナライザ等の周波数特性測定 器を用いた従来技術の方法であれば良い。  The method for measuring the frequency characteristics of the AC admittance of the electromechanical transducer 10 in step 2 above is not particularly limited. For example, a frequency characteristic measuring instrument such as a network analyzer or impedance analyzer is used. Any conventional method may be used.
ある電気機械変換素子 1 0 (便宜上 「第 1 素子」 と称呼する。) の 交流ァ ドミ ッタンス の周波数特性の測定結果を図 6及び図 7 に、 別 の電気機械変換素子 1 0 (便宜上 「第 2素子」 と称呼する。) の交流 ァ ドミ ッタ ンス の周波数特性の測定結果を図 8及ぴ図 9 に示す。 図 6及ぴ図 7 から理解される よ う に、 第 1 素子は測定周波数範囲内で 1 つの共振ピーク を有する。 図 8及び図 9 から理解される よ う に、 第 2素子は測定周波数範囲内で 2つの共振ピークを有する。  The measurement results of the frequency characteristics of the AC admittance of one electromechanical transducer element 10 (referred to as “first element” for convenience) are shown in FIG. 6 and FIG. Figures 8 and 9 show the measurement results of the frequency characteristics of the AC admittance. As can be seen from Figs. 6 and 7, the first element has one resonance peak within the measurement frequency range. As can be seen from FIGS. 8 and 9, the second element has two resonance peaks within the measurement frequency range.
交流ア ドミ ッタ ンス特性 (交流ア ドミ ッタ ンス の周波数特性) は 、 良く 知られている よ う に、 ア ドミ ッタ ンス の振幅と位相とから成 る一組のデータの群によって表現する こ とができ、 或は、 ア ドミ ツ タ ンスの余弦成分である コンダク タ ンス と正弦成分であるサセプタ ンス とから成る一組のデータの群によって表現する こ と もできる。 これらの両データは、 互いに換算する こ とができ る。 図 7 は図 6 に 示されたァ ドミ ッタ ンスの振幅と位相とからなるデータをコ ンダク タ ンス とサセプタ ンス と からなるデータに換算した結果をプロ ッ ト したグラフである。 図 9 は図 8 に示されたデータ を同様に換算して プロ ッ ト したグラフである。 電気機械変換素子の共振周波数付近での交流ァ ドミ ッタ ンス特性 は、 良く 知られている よ う に、 電気的等価回路によ り 表現する こ と ができ る。 そのよ う な等価回路の回路図の例を図 1 0及び図 1 1 に 示す。 図 1 0 は共振ピーク を 1 つだけ有する第 1 素子の等価回路図 であ り 、 図 1 1 は共振ピーを 2つ有する第 2素子の等価回路図であ る。 As is well known, AC admittance characteristics (frequency characteristics of AC admittance) are expressed by a set of data composed of the amplitude and phase of the admittance. It can also be expressed by a set of data consisting of conductance, which is the cosine component of admittance, and susceptance, which is the sine component. Both of these data can be converted to each other. Fig. 7 is a graph plotting the result of converting the data of the amplitude and phase of the admittance shown in Fig. 6 into the data of conductance and susceptance. Fig. 9 is a graph plotting the data shown in Fig. 8 in the same way. As is well known, the AC admittance characteristics near the resonance frequency of the electromechanical transducer can be expressed by an electrical equivalent circuit. Examples of circuit diagrams of such an equivalent circuit are shown in Figs. 10 and 11. FIG. 10 is an equivalent circuit diagram of the first element having only one resonance peak, and FIG. 11 is an equivalent circuit diagram of the second element having two resonance peaks.
上記ス テ ッ プ 3 において、 交流ァ ド ミ ッ タ ンス の周波数特性につ いての測定データから 「特性ピーク値 A max 及ぴ共振先鋭度 Q」 を 算出する方法は、 特に限定されず、 従来技術の方法であればよい。 特性ピーク値 A ma と して、 交流ア ドミ ッタ ンス のピーク値、 交流 コ ンダク タ ンス のピーク値及び交流ィ ンピーダンス位相のピーク値 等を好適に使用する こ と ができ る。 特に、 交流コ ンダク タ ンス の ピ 一ク値を特性ピーク値 A max と して用いるこ とが好ま しい。 これは、 「交流コ ンダク タ ンス のピーク値を共振先鋭度によ り 除した値」 と 「電気機械変換素子を組付けた後の電気機械変換機器の特性」 と 間 の対応が特に良好だからである。  In step 3 above, the method for calculating “characteristic peak value A max and resonance sharpness Q” from the measurement data of the frequency characteristics of the AC admittance is not particularly limited. Any technique may be used. As the characteristic peak value A ma, the peak value of the AC admittance, the peak value of the AC conductance, the peak value of the AC impedance phase, and the like can be suitably used. In particular, it is preferable to use the peak value of the AC conductance as the characteristic peak value A max. This is because the correspondence between the value obtained by dividing the peak value of the AC conductance by the resonance sharpness and the characteristics of the electromechanical conversion device after the electromechanical conversion element is assembled is particularly good. It is.
特性ピー ク値 A max と して交流コ ンダク タ ンス G の ピー ク値 G max を用いる場合、 そのピーク値 G max の算出方法と して以下に掲 げる値を使用するこ とができ る。  When the peak value G max of the AC conductance G is used as the characteristic peak value A max, the following values can be used as the calculation method for the peak value G max. .
( A ) 交流コンダクタンス Gの測定値のう ちのピーク値 (最大値)。 ( B ) 交流サセプタンス Bの測定値の う ちの最大値 B max と最小値 B min との差 ( B max— B min)。  (A) Peak value (maximum value) of the measured AC conductance G values. (B) The difference between the maximum value B max and the minimum value B min of the measured AC susceptance B (B max – B min).
( C ) X軸を交流コンダク タ ンス G と し Y軸を交流サセプタ ンス B とするグラ フ上に 「交流コ ンダク タンス G の測定値及び交流サセプ タ ンス Bの測定値」 力 らなるデータをプロ ッ トする こ と によ り 得ら れる 「交流ア ドミ ッタンス円」 の直径 1 Z R 1。  (C) On the graph with AC conductance G on the X-axis and AC susceptance B on the Y-axis, the data consisting of the `` Measured value of AC conductance G and Measured value of AC susceptance B '' force Diameter of “AC admittance circle” obtained by plotting 1 ZR 1.
この場合、 交流コンダク タ ンス Gのピーク値 G max と して、 交流 ァ ドミ ッタ ンス円の直径 1 Z R 1 を用いる と、 繰り 返し測定再現性 が更に良く なる。 交流ア ドミ ッタ ンス円の直径 1 Z R 1 は、 「円プロ ッ トデータに円をフ ィ ッ テ ィ ングする」 最小 2乗法等の既知の計算 方法によって算出 (取得) するこ とができる。  In this case, if the AC admittance circle diameter 1 Z R 1 is used as the peak value G max of the AC conductance G, repeated measurement reproducibility is further improved. The diameter 1 Z R 1 of the AC admittance circle can be calculated (obtained) by a known calculation method such as “Fitting a circle to the circle plot data” or the least square method.
交流ァ ドミ ッタ ンス の周波数特性についての測定データ (交流ァ ドミ ッタンス周波数特性データ) から共振先鋭度 Qを算出する場合 、 共振周波数 f 0 を交流コ ンダク タ ンス G のピーク半値幅 (交流コ ンダク タ ンス Gがそのピーク値 G max の半値 ( 0 . 5 G max) とな る つの周波数 f 1 , f 2 の差 ( f 2 - f 1 , f 2 > f 1 ) ) で除算 する既知の方法が迴用でき る。 また、 周波数特性測定データは 、 通 常 、 所定の周波数ステツプごと の離散データである。 従って、 その 波数ステ ップ間の値について補間計算 (周波数データ捕間) を行 レ、 、 それによ り周波数ステ ップよ り も細かい精度で算出された共振 周波数 f 0 と ピーク半値幅 ( f 2 - f 1 ) と を用いて Q値を計算す るこ とが、 Q値の分解能を高める上で好ま しい。 When calculating the resonance sharpness Q from the measurement data on the frequency characteristics of AC admittance (AC admittance frequency characteristics data), the resonance frequency f 0 is set to the peak half-value width of the AC conductance G (AC The inductance G is divided by the difference between two frequencies f 1 and f 2 (f 2-f 1, f 2> f 1)) at which the peak value G max is half (0.5 G max). The method can be used. Further, the frequency characteristic measurement data is usually discrete data for each predetermined frequency step. Therefore, interpolation calculation (frequency data capture) is performed on the values between the wave number steps, and the resonance frequency f 0 and peak half-value width (f It is preferable to calculate the Q value using 2-f 1) and to increase the resolution of the Q value.
特性ピーク値 A max を共振先鋭度 Qで除算した値 A max/ Qを評 価指標値と して使用 して電気機械変換素子の良否 (特性の良否) を 判定する と は、 この除算した値 A max / Qが所定の範囲内にあるか 否かに応じて良否判定する こ と を意味する。 即ち、 値 A max / Qが 所定の範囲内にあれば電気機械変換素子は良好な素子である と判定 され、 値 A max / Qが所定の範囲内になければ電気機械変換素子は 良好でない素子である と判定される。 通常、 値 A max/ Qが大きい ほど電気機械変換効率が大きい。 従って、 値 A max/ Qが大き く な るほど好ま しい特性を有する素子である と判断でき る。 そのため、 値 A max/ Qに対して下限値を設定し、 値 A max/ Qがその下限値以 上である電気機械変換素子は特性が良好である と判定すればよい。  The value obtained by dividing the characteristic peak value A max by the resonance sharpness Q. Use A max / Q as the evaluation index value to determine the quality of the electromechanical transducer (characteristic quality). This means that pass / fail is judged according to whether A max / Q is within a predetermined range. That is, if the value A max / Q is within the predetermined range, the electromechanical conversion element is determined to be a good element, and if the value A max / Q is not within the predetermined range, the electromechanical conversion element is not good. It is determined that Normally, the larger the value A max / Q, the greater the electromechanical conversion efficiency. Therefore, it can be determined that the element has more favorable characteristics as the value A max / Q increases. Therefore, it is only necessary to set a lower limit value for the value A max / Q, and to determine that the electromechanical transducer having the value A max / Q equal to or higher than the lower limit value has good characteristics.
—方、 電気機械変換素子の用途によっては、 電気機械変換 (変換 効率) が大き過ぎる と不都合が生じる場合がある。 この よ う な場合 、 値 A max/ Qに対して更に上限値を設定し、 値 A max/ Qがその上 限値以下である電気機械変換素子は特性が良好である と判定しても よい。 即ち、 値 A max/ Qに対する下限値のみな らず上限値をも、 電気機械変換素子の良否判定条件に加えるこ とができる。  -On the other hand, depending on the application of the electromechanical transducer, there may be inconvenience if the electromechanical transformation (conversion efficiency) is too large. In such a case, an upper limit value may be further set for the value A max / Q, and the electromechanical transducer having the value A max / Q equal to or lower than the upper limit value may be determined to have good characteristics. . That is, not only the lower limit value but also the upper limit value for the value A max / Q can be added to the pass / fail judgment condition of the electromechanical transducer.
また 、 電気機械変換素子の用途によっては、 電気機械変換素子が 本来の用途に用レ、る 「主共振」 とは別の 「寄生共振」 を有する素子 である場合、 その寄生共振が本来の用途に悪影響を及ぼす場合がめ Also, depending on the application of the electromechanical transducer, if the electromechanical transducer is an element having a “parasitic resonance” that is different from the “main resonance” used for the original application, the parasitic resonance may May adversely affect
Ό。 このよ う な電気機械変換素子は、 図 8及び図 9 に示したよ う に 共振ピーク点を 2箇所に有する交流ァ ドミ ッタ ンス特性を示す ί疋つて 、 主共 及び寄生共振の各々 について値 A max / Qを算出 しΌ. Such an electromechanical transducer has an AC admittance characteristic having resonance peak points at two locations as shown in FIGS. 8 and 9, and has a value for each of the main resonance and the parasitic resonance. Calculate A max / Q
、 各々 の共振についての値 A max / Qに対する良否判定条件を設定 する こ とが好ま しい。 これによ り 、 電気機械変換素子の良否をよ り 適切に判定する と ができ る。 この場合、 例えば、 主共振の値 A max/ Qが所定の下限値以上であ り 、 且つ、 寄生共振の値 A maxZ Q が所定の上限値以下である素子を良品とすれば良い。 It is preferable to set pass / fail judgment conditions for each resonance value A max / Q. As a result, the quality of the electromechanical transducer can be determined more appropriately. In this case, for example, the value of the main resonance A An element in which max / Q is equal to or higher than a predetermined lower limit value and the parasitic resonance value A maxZ Q is equal to or lower than a predetermined upper limit value may be determined as a non-defective product.
このよ う に、 特性ピーク値 A max を共振先鋭度 Qで除算した値 A maxZ Q (又はその逆数である値 Qノ A max) を性能指標値と して用 いる と、 測定時の電気機械素子の保持状態によ る測定結果のばらつ きの影響を小さ く する こ とができる。 また、 電気機械変換素子が実 際に機器に組み込まれた際、 測定時と は異なった状態で保持された と しても、 値 A max/ Qはその機器の性能と強い相関を示す。 これ らのこ とから、 値 A max / Qを性能指標値と して用いれば、 電気機 械変換機器に組み込まれる予定の電気機械素子単体の良否を良好に 判定するこ とできる。 これは、 特性ピーク値 A m ax の測定値及び共 振先鋭度 Qの測定値は、 電気機械変換素子が保持されている状態に よって影響を受けて変動するのに対し、 特性ピーク値 A max の測定 値を共振先鋭度 Qの測定値で除した値 A max / Qは、 電気機械変換 の保持状態の影響を受け難く 、 電気機械変換素子の本来的な電気機 械変換性能を示すからである と考えられる。  In this way, if the value A maxZ Q (or the reciprocal value Q no A max) obtained by dividing the characteristic peak value A max by the resonance sharpness Q is used as the performance index value, The effect of variations in measurement results due to the holding state of the element can be reduced. In addition, even when the electromechanical transducer is actually incorporated into a device, the value A max / Q shows a strong correlation with the performance of the device even if it is held in a state different from that during measurement. From these facts, if the value A max / Q is used as the performance index value, the quality of the single electromechanical element to be incorporated into the electromechanical conversion device can be judged well. This is because the measured value of the characteristic peak value A max and the measured value of the resonance sharpness Q fluctuate depending on the state where the electromechanical transducer is held, whereas the characteristic peak value A max The value A max / Q, which is obtained by dividing the measured value by the measured value of the resonance sharpness Q, is not easily affected by the holding state of the electromechanical conversion, and shows the original electromechanical conversion performance of the electromechanical conversion element. It is believed that there is.
と ころで、 電気機械変換素子の電気機械変換特性を直接測定する 方法と して、 振動変位 (振動変位特性、 振幅特性) を測定する方法 が存在する。 振動変位特性は、 例えば、 レーザー ドップラー振動計 と周波数特性測定器とを用いる こ と によ り 測定する こ とができる。 図 1 2 は振動変位測定系のプロ ック図の一例を、 図 1 3 は振動変位 測定方法の一例を示す図である。  On the other hand, as a method for directly measuring the electromechanical conversion characteristics of the electromechanical conversion element, there is a method for measuring vibration displacement (vibration displacement characteristics, amplitude characteristics). The vibration displacement characteristics can be measured, for example, by using a laser Doppler vibrometer and a frequency characteristic measuring instrument. Fig. 12 shows an example of a block diagram of the vibration displacement measurement system, and Fig. 13 shows an example of the vibration displacement measurement method.
図 1 2 に示した例は、 周波数特性測定器 3 1 からの周波数掃引信 号 V out を電力増幅器 3 2を介して電気機械変換素子 1 0に電圧 V in と して印加する と同時に、 素子 1 0 の振動速度をレーザー ドッブラ 一振動計 3 3 によ り測定し (振動速度の信号 S vを得て)、 印加電圧 V in と振動速度の信号 S V とを周波数特性測定器 3 1 によって測定 する こ と によ り 、 素子 1 0 の振動変位特性を周波数掃引測定してい る。 なお、 破線 L Bはレーザー光線を表している。  In the example shown in Fig. 12, the frequency sweep signal V out from the frequency characteristic measuring device 3 1 is applied to the electromechanical transducer 10 as the voltage Vin through the power amplifier 3 2 and at the same time Measure the vibration speed of 1 0 with the laser Doppler vibrometer 3 3 (obtain the vibration speed signal S v) and measure the applied voltage V in and the vibration speed signal SV with the frequency characteristic measuring instrument 3 1 By doing so, the vibration displacement characteristics of element 10 are measured by frequency sweep. The broken line LB represents the laser beam.
図 1 3 に示した例においては、 図 3 に示した保持治具 2 0 と 同様 な保持治具によって電気機械変換素子 1 0 を保持する と、と もに、 素 子 1 0 の上部電極 (電極端子) 1 1 a · 1 1 b をプロ一ビングしな がら (即ち、 測定端子 2 1 a · 2 1 b を電極 1 l a · 1 l b に接触 させながら) 素子 1 0 の長手方向 (紙面上下方向、 L方向) の振動 速度をレーザー ドップラー振動計 3 3 によって測定している。 なお 、 素子 1 0 の レーザー ドップラー振動計 3 3 に対向する面には、 後 述する超音波モータのロータに接触する接触部材 4 1 が設けられて いる。 また、 破線 L Bはレーザー光線を表している。 In the example shown in FIG. 13, when the electromechanical transducer 10 is held by a holding jig similar to the holding jig 20 shown in FIG. 3, the upper electrode of the element 10 ( Electrode terminal) While probing 1 1 a · 1 1 b (ie, while measuring terminal 2 1 a · 2 1 b is in contact with electrode 1 la · 1 lb) Longitudinal direction of element 1 0 (up and down on the page) Direction, L direction) The speed is measured by a laser Doppler vibrometer 3 3. A contact member 4 1 that contacts the rotor of an ultrasonic motor described later is provided on the surface of the element 10 facing the laser Doppler vibrometer 33. A broken line LB represents a laser beam.
このよ う に して測定した電気機械変換素子の振動変位特性の測定 結果 (振動変位周波数特性データ) の例を図 1 4及び図 1 5 に示す 。 図 1 4 の (A) は振動変位 (振幅 D ) を周波数 f に対してプロ ッ ト したグラ フであ り 、 図 1 4の ( B ) は振動変位の位相 0 Dを周波数 f に対してプロ ッ ト したグラフである。 図 1 5 の (A) 及び ( B ) は、 図 1 4 の ( A ) 及ぴ ( B ) に示したデータに基づいて換算され た 「振動変位 (振幅 D ) の余弦成分」 及び 「振動変位 (振幅) Dの 正弦成分」 を周波数 f に対してそれぞれプロ ッ ト したグラフである 。 図 1 5 の ( C ) は X軸を振動変位 (振幅) Dの余弦成分と し Y軸 を振動変位 (振幅) Dの正弦成分とするグラフ上に上記データをプ ロ ッ トする こ と によ り 得られたグラフである。 なお、 図 1 4及び図 1 5 に示した例においては、 測定周波数範囲で共振ピークが 1 つだ け存在している。 Figures 14 and 15 show examples of the measurement results (vibration displacement frequency characteristic data) of the electromechanical transducer measured in this way. Fig. 14 (A) is a graph plotting the vibration displacement (amplitude D) against the frequency f, and Fig. 14 (B) shows the phase 0 D of the vibration displacement against the frequency f. This is a plotted graph. (A) and (B) in Fig. 15 are "cosine component of vibration displacement (amplitude D)" and "vibration displacement" converted based on the data shown in (A) and (B) in Fig. 14 (Amplitude) D plot of “sine component of D” with respect to frequency f. (C) in Fig. 15 plots the above data on a graph with the X axis as the cosine component of the vibration displacement (amplitude) D and the Y axis as the sine component of the vibration displacement (amplitude) D. This is a graph obtained. In the examples shown in Fig. 14 and Fig. 15, only one resonance peak exists in the measurement frequency range.
このよ う に して測定した電気機械変換素子の振動変位特性の良否 判定を行う場合について も、 交流ァ ドミ ッタ ンスの良否判定を行 う 場合と同様、 振幅 Dのピーク値 (最大値) Dmax を共振先鋭度 Q Dで 除算した値 D max/ Q Dを評価指標値と して用いる こ とが好適である 。 発明者による実験によれば、 値 D max/ Q Dは、 測定時における素 子の保持状態の影響を受け難いこ とが判明 したからである。 こ の場 合、 共振先鋭度 Q Dは、 振幅 Dの共振周波数 f nを振幅 Dの正弦成分 のピーク半値幅 ( f 2 - f 1 、 f 2 > f 1 、 即ち、 振幅 Dの正弦成 分がそのピーク V ma の半値 ( 0. 5 V max) となる二つの周波数 f 1 , f 2 の差) で除算する こ と によ り得られる (図 1 5 の ( B ) を参照。)。 In the case of determining the pass / fail of the vibration displacement characteristics of the electromechanical transducer measured in this way, the peak value (maximum value) of the amplitude D is the same as when determining the pass / fail of the AC admittance. and this use of Dmax and an evaluation index value the value D max / Q D divided by resonance sharpness Q D are preferred. This is because, according to experiments by the inventor, it has been found that the value D max / Q D is not easily affected by the holding state of the element at the time of measurement. In this case, the resonance sharpness Q D is the resonance frequency fn of the amplitude D and the peak half-value width of the sine component of the amplitude D (f 2-f 1, f 2> f 1, that is, the sine component of the amplitude D is It can be obtained by dividing by the half value of the peak V ma (the difference between the two frequencies f 1 and f 2, which is 0.5 V max) (see (B) in Fig. 15).
振幅 Dのピーク値 D max と共振先鋭度 Q Dは、 交流ァ ドミ ッタンス の特性ピーク値 Amax と共振先鋭度 Q と を算出 した場合と 同様、 最 小 2乗法による円フィ ッティ ング及び周波数ポイ ン ト間の補間計算 を用いた方法によ り 求める こ とが望ま しい。 これによ り 、 よ り精度 が高く 且つ、 繰り返し再現性がよ り 良好なピーク値 D max 及ぴ共振 先鋭度 Q Dが得られる。 このよ う に、 本発明の実施形態の他の一つは、 電気機械変換機器 に適用 される と と もに所定の振動波形を有する電圧が電極 1 1 a · 1 1 b を介して印加される こ と によって機械振動を発生する電気機 械変換素子 1 0 の電気機械特性検查方法であって、 The peak value D max of the amplitude D and the resonance sharpness Q D are the circle fitting and frequency points by the least square method, as in the case of calculating the characteristic peak value Amax of the AC admittance and the resonance sharpness Q. It is desirable to obtain this value using a method that uses interpolation calculation between the two. As a result, the peak value D max and the resonance sharpness Q D with higher accuracy and better repeatability can be obtained. Thus, in another embodiment of the present invention, a voltage having a predetermined vibration waveform is applied to the electromechanical conversion device via the electrodes 1 1 a and 1 1 b. An electromechanical characteristic inspection method for an electromechanical transducer 10 that generates mechanical vibrations by
前記電気機械変換素子 1 0 を保持治具 2 0 , 2 0 , 等によって保 持する第 5 ステ ップと、  A fifth step of holding the electromechanical transducer 10 by holding jigs 20, 20, etc .;
前記電気機械変換素子 1 0 の前記電極 1 1 a · 1 1 b を周波数特 性測定器 3 1 に電気的に接続し、 前記電気機械変換素子 1 0 の共振 周波数を含む周波数範囲で前記電極 1 1 a · 1 1 b 間の振動変位特 性を表す振動変位周波数特性データを測定する第 6 ステップと、  The electrodes 1 1 a · 1 1 b of the electromechanical transducer 10 are electrically connected to a frequency characteristic measuring device 3 1, and the electrode 1 has a frequency range including the resonance frequency of the electromechanical transducer 10. A sixth step of measuring vibration displacement frequency characteristic data representing vibration displacement characteristics between 1 a and 1 1 b;
前記第 6 ステ ップにおいて測定した振動変位周波数特性データに 基づいて共振周波数にて最大と なる振動変位の振幅の ピーク値 D maxと共振先鋭度 Q Dとを取得する第 7 ステップと 、 A seventh step of obtaining a peak value D max and a resonance sharpness Q D of the amplitude of the vibration displacement that is maximum at the resonance frequency based on the vibration displacement frequency characteristic data measured in the sixth step;
前記第 7 ステップにて取得された振幅のピーク値 D maxを前記第 7 ステ ップにて取得された共振先鋭度 Q Dで除算 した値 D max/ Q D を用いて前記電気機械変換素子 1 0 の電気機械特性検査を実施する 第 8 ステ ップと、 The electromechanical transducer element 1 using the value D max / Q D obtained by dividing the peak value D max of the amplitude acquired in the seventh step by the resonance sharpness Q D acquired in the seventh step. An eighth step of performing an electromechanical property test of 0;
を含む。  including.
と こ ろで、 電気機械変換素子 1 0 の電気機械変換機器への適用例 の 1 つと して、 図 1 6 に示したよ う な超音波モータ 4 0 を挙げる こ と ができ る。 超音波モータ 4 0 に使用 される電気機械変換素子 1 0 は、 その先端に接触部材 4 1 が取り付けられる。 そ して、 超音波モ ータ 4 0 は、 その素子 1 0 に固定された接触部材 4 1 を、 シャ フ ト As an example of application of the electromechanical transducer 10 to an electromechanical transducer, an ultrasonic motor 40 as shown in Fig. 16 can be cited. The electromechanical transducer 10 used for the ultrasonic motor 40 has a contact member 4 1 attached to its tip. Then, the ultrasonic motor 40 transmits the contact member 41 fixed to the element 10 to the shaft.
(回転軸部) 4 2 に回転可能に支持されたロータ 4 3 に押し当てる 構造を備える。 この超音波モータ 4 0 は、 所謂 「ウ ッ ドペッカー型 の超音波モータ」 である。 超音波モータ 4 0 においては、 電気機械 変換素子 1 0 に対し、 その長手方向の伸縮共振周波数付近の駆動信 号 (即ち、 所定の振動波形を有する電圧) を印加し、 素子 1 0 に長 手方向の伸縮振動を発生させる。 これによ り 、 接触部材 4 1 がロー タ 4 3 を斜めに突き、 その結果、 ロータ 4 3 が回転する。 (Rotating shaft) A structure that presses against the rotor 4 3 rotatably supported by the 4 2 is provided. This ultrasonic motor 40 is a so-called “woodpecker type ultrasonic motor”. In the ultrasonic motor 40, a drive signal (that is, a voltage having a predetermined vibration waveform) in the vicinity of the expansion / contraction resonance frequency in the longitudinal direction is applied to the electromechanical conversion element 10, and the element 10 is long. Generate direction stretching vibration. As a result, the contact member 4 1 pushes the rotor 4 3 obliquely, and as a result, the rotor 4 3 rotates.
(実施例 1 )  (Example 1)
図 1 及び図 2 に示したよ う な電気機械変換素子 1 0 を、 図 3 に示 したよ う な保持治具 2 0 を用いて保持する と と もに、 素子 1 0 の表 面に配設された上部電極 1 1 a · 1 1 b に測定端子 2 1 a · 2 1 b を接触させ、 素子 1 0 の交流ァ ドミ ッタ ンス特性を示す測定データThe electromechanical transducer 10 as shown in FIGS. 1 and 2 is held by using a holding jig 20 as shown in FIG. 3 and disposed on the surface of the element 10. Connected to the upper electrode 1 1 a 1 1 b to the measuring terminal 2 1 a 2 1 b Measured data showing AC admittance characteristics of element 10
(交流ァ ドミ ッタンス周波数特性データ) をネッ ト ワークアナライ ザを用いて周波数掃引測定する こ と によ り 取得し、 その測定された 特性データから特性ピーク値 A max と共振先鋭度 Q等の値を求める 測定を、 同一の素子 1 0 について 1 0 回繰り 返した。 この測定に使 用 された素子 1 0 は、 1層の厚みが約 6 0 mの P Z T圧電体を上 述した電極 1 4 a · 1 4 b を介して積層 した素子であ り 、 その長さ Lは 5 mm、 幅 Wは 1 . 5 mm、 厚さ Hは 1 . 5 mmである。 (AC admittance frequency characteristic data) is obtained by frequency sweep measurement using a network analyzer, and the characteristic peak value A max and resonance sharpness Q, etc. are measured from the measured characteristic data. The measurement to determine the value was repeated 10 times for the same element 10. The element 10 used in this measurement is an element in which a PZT piezoelectric body having a thickness of about 60 m is laminated via the electrodes 14 a and 14 b described above, and its length is L is 5 mm, width W is 1.5 mm, and thickness H is 1.5 mm.
このよ う に して得た 1 0 回の測定結果を表 1 及び表 2 に示す。 表 1 は、 交流ァ ドミ ッタ ンス の 1 回ずつの周波数特性測定データから 円フィ ッティ ング及び周波数データ補間を用いる こ と な く 取得した (即ち、 補間計算を行う こ と なく 、 得られた測定値その も のに基づ いて求めた) 「共振先鋭度 Q ( Q镇)」、 「交流ア ドミ ッタ ンス のピー ク値 Ymax」、 「コンダクタンス のピーク値 G maxj 及ぴ 「サセプタン ス Bの最大値 B 2 と最小値 B 1 との差 ( B 2 - B 1 )」 の一覧表であ る。  Tables 1 and 2 show the 10 measurement results obtained in this way. Table 1 was obtained without using circular fitting and frequency data interpolation from the frequency characteristic measurement data for each AC admittance (i.e., without interpolation calculation). “Resonance sharpness Q (Q 镇)”, “AC admittance peak value Ymax”, “Conductance peak value G maxj and“ susceptance B ” The difference between the maximum value B 2 and the minimum value B 1 (B 2-B 1) ”.
表 2 は、 表 1 に示したデータ と同一である 「交流ァ ド ミ ッタ ンス の 1 回ずつの周波数特性測定データ」 から、 円フ ィ ッ テ ィ ング及び 周波数データ補間を実行する こ と によ り算出した 「共振先鋭度 Q ( Q値)」 と 「ア ドミ ッタンス円の直径 1 / R 1 」 の一覧表である。 表 1 及び表 2 には、 1 0回の測定値の平均値、 標準偏差及び変動比が 合わせて掲載されている。 こ こ で、 変動比は、 標準偏差を平均値で 除算した値である。 変動比は、 繰り 返し測定ばらつきの程度を相対 的に示す値である。 Table 2 shows how to perform circular fitting and frequency data interpolation from “frequency characteristics measurement data for each AC admittance”, which is the same as the data shown in Table 1. 2 is a list of “resonance sharpness Q (Q value)” and “admittance circle diameter 1 / R 1” calculated by the above. Tables 1 and 2 list the average, standard deviation, and variation ratio of the 10 measurements. Here, the fluctuation ratio is a value obtained by dividing the standard deviation by the average value. The fluctuation ratio is a value that indicates the relative degree of repeated measurement variation.
t t
Figure imgf000024_0002
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0001
繰り返し 測定値 2 (データ補間を使用した算出方法) Repeated measurement value 2 (Calculation method using data interpolation)
測定番号 fs f1 f2 Q 1/R1 1/QR1  Measurement number fs f1 f2 Q 1 / R1 1 / QR1
[kHz] [kHz] [kHz] [mS] CuS]  [kHz] [kHz] [kHz] [mS] CuS]
1 319.91 319.61 320.21 540 1109 2054  1 319.91 319.61 320.21 540 1109 2054
2 319.97 319.49 320.44 339 691 2045  2 319.97 319.49 320.44 339 691 2045
3 320.01 319.71 320.31 534 11 17 2095  3 320.01 319.71 320.31 534 11 17 2095
4 320.07 319.83 320.31 666 1439 2175  4 320.07 319.83 320.31 666 1439 2175
5 319.92 319.68 320.1 6 662 1330 2023  5 319.92 319.68 320.1 6 662 1330 2023
6 319.93 319.51 320.35 379 785 2081  6 319.93 319.51 320.35 379 785 2081
7 319.94 319.70 320.1 8 663 1443 2180  7 319.94 319.70 320.1 8 663 1443 2180
8 320.02 319.64 320.40 417 838 201 2  8 320.02 319.64 320.40 417 838 201 2
9 319.91 319.63 320.20 556 1144 2065  9 319.91 319.63 320.20 556 1144 2065
10 319.96 319.68 320.24 571 1208 2131  10 319.96 319.68 320.24 571 1208 2131
平均 m 319.96 319.65 320.28 533 11 10 2086  Average m 319.96 319.65 320.28 533 11 10 2086
標準偏差 σ 0.05 0.10 0.1 0 119 265 59  Standard deviation σ 0.05 0.10 0.1 0 119 265 59
変動比 σ/ηπ 0.02% 0.03% 0.03% 22.4% 23.9% 2.8% 表 2  Fluctuation ratio σ / ηπ 0.02% 0.03% 0.03% 22.4% 23.9% 2.8% Table 2
表 1 及び表 2 に示されたよ う に、 交流ァ ドミ ッ タ ンス のピー ク値 Y max , コンダク タ ンス の ピーク値 G max、 サセプタ ンスの最大最小 差 ( B 2 — B 1 ) 及びア ドミ ッタンス円の直径 1 Z R 1 の 4 つの測 定値は、 それぞれ 2 4 %程度の変動比を持っている。 これに対し、 その 4つの測定値の各々 を Q値で除算した値の変動比は、 3 〜 6 % 程度であって相対的に極めて小さい。 こ のこ とから、 4 つの測定値 の各々を Q値で除算した値 ( Y max/ Q、 G max/ Q、 ( B 2 - B 1 ) ノ Q、 1 / ( Q · R 1 ) ) は、 繰り返し測定再現性が良好であるこ とが理解される。 これらの値の中でも 「円フィ ッティ ングと周波数 データ補間」 を使用 して算出した値 ( 1 / ( Q · R 1 ) ) は、 その変 動比が 3 %程度と非常に小さ く 、 繰り返し測定再現性が非常に良い 図 1 7 は、 表 1 及ぴ表 2 に示したデータに基づく グラフであって 、 Q値と交流ア ドミ ッタンスのピーク値 Y max 等との相関プロ ッ ト 図である。 図 1 7 力 ら、 Q値と交流ア ド ミ ッ タ ンス の ピーク値 Y max とが略比例関係にあるこ とが判る。 特に、 図 1 7 の ( D ) 力 ら 、 円フィ ッティ ングと周波数データ補間 と を用いて算出した Q値と ア ドミ ッタンス円の直径 1 / R l と は、 非常に高い相関関係 (明瞭 な比例関係) にある こ とが理解される。 これらのこ と は、 Q値及び ァ ドミ ッタンス のピーク値 Y max のそれぞれは、 素子の保持状態の 影響を受けて変化するが、 その比例係数 k = l Z ( Q · R 1 ) は素 子ごとに固有であるこ と を示している。 As shown in Tables 1 and 2, AC admittance peak value Y max, conductance peak value G max, maximum susceptance difference (B 2-B 1) and admittance The four measured values of the diameter circle 1 ZR 1 have a variation ratio of about 24%. On the other hand, the fluctuation ratio of the value obtained by dividing each of the four measured values by the Q value is about 3 to 6%, which is relatively small. From this, the value obtained by dividing each of the four measured values by the Q value (Y max / Q, G max / Q, (B 2-B 1) no Q, 1 / (Q · R 1)) is It is understood that the reproducibility of repeated measurement is good. Among these values, the value calculated using “circle fitting and frequency data interpolation” (1 / (Q · R 1)) has a very small fluctuation ratio of about 3%, and is repeatedly measured. Reproducibility is very good Figure 17 is a graph based on the data shown in Tables 1 and 2, and is a correlation plot between the Q value and the peak value Y max of the AC admittance. . Figure 17 shows that the Q value and the peak value Y max of AC admittance are approximately proportional. In particular, the (D) force in Fig. 17 shows the Q value calculated using circular fitting and frequency data interpolation. It is understood that there is a very high correlation (clear proportionality) with the diameter 1 / R l of the admittance circle. These factors indicate that each of the Q value and the admittance peak value Y max changes depending on the holding state of the element, but its proportionality coefficient k = l Z (Q · R 1) Each is unique.
(実施例 2 )  (Example 2)
図 1 及び図 2 に示したよ う な電気機械変換素子 1 0 を 1 0個用意 し、 それらの各素子を図 3 に示したよ う な保持治具 2 0 を用いて保 持する と と もに、 各素子 1 0 の表面に配設された上部電極 1 1 a · 1 1 b に測定端子 2 1 a · 2 1 b を接触させ、 各素子 1 0 の交流ァ ドミ ッタ ンス特性を示す測定データ (交流ァ ドミ ッタ ンス周波数特 性データ) をネッ ト ワークアナライザを用いて周波数掃引測定する こ と によ り 取得し、 その測定された特性データから各素子 1 0 の特 性ピーク値 A max と共振先鋭度 Q等の値を求めた。 その後、 図 1 2 及び図 1 3 に示したよ う な方法によ り 、 同 じ 1 0個の素子 1 0 それ ぞれの振動変位特性 (振動変位周波数特性データ) も測定した。 各 素子 1 0 は、 1 層の厚みが約 6 0 mの P Z T圧電体を上述した電 極 1 4 a · 1 4 b を介して積層 した素子であ り 、 その長さ Lは 5 m m、 Φ畐 Wは 1 . 5 mm、 厚さ Hは 1 . 5 mmである。  Prepare 10 electromechanical transducers 10 as shown in Fig. 1 and Fig. 2 and hold each of them using a holding jig 20 as shown in Fig. 3. The measurement terminals 2 1 a and 2 1 b are brought into contact with the upper electrodes 1 1 a and 1 1 b arranged on the surface of each element 10, and the AC admittance characteristics of each element 10 are measured. Data (AC admittance frequency characteristic data) is obtained by frequency sweep measurement using a network analyzer, and the characteristic peak value A of each element 10 is obtained from the measured characteristic data. Values such as max and resonance sharpness Q were obtained. Thereafter, the vibration displacement characteristics (vibration displacement frequency characteristic data) of each of the same 10 elements 10 were also measured by the method shown in FIGS. 12 and 13. Each element 10 is an element in which a PZT piezoelectric body having a thickness of about 60 m is laminated through the above-mentioned electrodes 14 a and 14 b, and its length L is 5 mm, Φ畐 W is 1.5 mm and thickness H is 1.5 mm.
1 0個の素子 1 0 の交流ァ ドミ ッタ ンス周波数特性データから、 円フィ ッティ ング及ぴ周波数データ補間を用いる こ と なく (即ち、 補間計算を行う こ と なく 、 得られた測定値その ものに基づいて) コ ンダク タ ンス ピーク値 G max 及び共振先鋭度 Qを取得し、 更に、 円 ブイ ッティ ング及び周波数データ捕間を用いてァ ドミ ッタ ンス円の 直径 1 Z R 1 及び共振先鋭度 Qを算出 した。 また、 変位の周波数特 性データ (振動変位周波数特性データ) から、 円フ ィ ッティ ング及 ぴ周波数データ補間を用いて変位円の直径 D max及び共振先鋭度 Q D を算出した。 このよ う して得られた 1 0組のデータ群に基づいて、 G max, G max/ Q、 1 / R l及ぴ 1 / ( Q - R 1 ) からなる 4つの ア ド ミ ッ タ ンス特性測定値のそれぞれにっき 、 変位特性測定値 D max/ Q Dの 2乗との相関係数を算出した。 結果を表 3及び図 1 8 に 示す。 図 1 8 は、 表 3 に示したア ドミ ッタンス特性と変位特性 (振 動変位特性) との相関を示すプロ ッ ト図である。 素子単体のアドミッタンス特性測定結果 素子単体の変位特性測定結果 測定値 1 測定値 ί 測定値 The measured values obtained from the AC admittance frequency characteristic data of 10 elements 10 without using circular fitting and frequency data interpolation (that is, without performing interpolation calculation) The conductance peak value G max and the resonance sharpness Q are obtained, and the diameter of the admittance circle 1 ZR 1 and the resonance sharpness are further obtained by using circular and frequency data capture. Degree Q was calculated. In addition, the diameter D max of the displacement circle and the resonance sharpness Q D were calculated from the frequency characteristic data of the displacement (vibration displacement frequency characteristic data) using circular fitting and frequency data interpolation. Based on the 10 sets of data obtained in this way, four admittances consisting of G max, G max / Q, 1 / R l and 1 / (Q-R 1) For each characteristic measurement value, a correlation coefficient with the square of the displacement characteristic measurement value D max / Q D was calculated. The results are shown in Table 3 and Figure 18. Fig. 18 is a plot showing the correlation between the admittance characteristics shown in Table 3 and the displacement characteristics (vibration displacement characteristics). Measurement results of admittance characteristics of a single element Measurement results of displacement characteristics of a single element Measurement value 1 Measurement value ί Measurement value
サンプル (データ痛間しない値) (デー 間した値) (デ ΐ 間した値)  Sample (value without data pain) (data value) (data value)
番号 Q Gmax Gmax/Q Q 1 /R1 1 /QR1 QD Dmax Dmax/QD (Dmax/QD)2 Number Q Gmax Gmax / QQ 1 / R1 1 / QR1 Q D Dmax Dmax / Q D (Dmax / Q D ) 2
[mS] CuS] CmS] [uS] [nm/V] [nm/V] [nm/V] [mS] CuS] CmS] [uS] [nm / V] [nm / V] [nm / V]
1 533 1032 1935 544 1046 1924 220 139 0.634 0.4021 533 1032 1935 544 1046 1924 220 139 0.634 0.402
2 356 452 1271 360 452 1257 182 95 0.523 0.2742 356 452 1271 360 452 1257 182 95 0.523 0.274
3 400 667 1669 358 669 1869 193 129 0.668 0.4473 400 667 1669 358 669 1869 193 129 0.668 0.447
4 640 1012 1581 597 1018 1704 195 121 0.619 0.3844 640 1012 1581 597 1018 1704 195 121 0.619 0.384
5 400 484 121 1 419 485 1156 218 106 0.486 0.2365 400 484 121 1 419 485 1156 218 106 0.486 0.236
6 457 758 1658 460 759 1650 213 133 0.626 0.3926 457 758 1658 460 759 1650 213 133 0.626 0.392
7 640 813 1270 544 838 1541 197 1 1 1 0.562 0.3167 640 813 1270 544 838 1541 197 1 1 1 0.562 0.316
8 320 471 1473 310 471 1521 208 24 0.596 0.3558 320 471 1473 310 471 1521 208 24 0.596 0.355
9 400 557 1392 377 558 1478 196 1 10 0.560 0.3149 400 557 1392 377 558 1478 196 1 10 0.560 0.314
10 640 1 176 1837 630 1177 1867 210 136 0.648 0.42010 640 1 176 1837 630 1177 1867 210 136 0.648 0.420
(Dmax/QD)2 (Dmax / Q D ) 2
に対する 41.6% 77.3% 40.6¾ 91.3%  Against 41.6% 77.3% 40.6¾ 91.3%
相関係数  Correlation coefficient
表 3  Table 3
表 3 に示したよ う に、 コ ンダク タンス ピーク値 G max 及びァ ドミ ッタンス円の直径 1 Z R 1 は、 変位特性測定値 D max/ Q Dの 2乗と の相関係数が 4 0 %程度と低く 、 変位特性測定値 D max/ Q Dの 2乗 と の相関が良好ではない。 これに対して、 コ ンダク タンス ピーク値 G max 及びァ ドミ ッタ ンス円の直径 1 Z R 1 のそれぞれを共振先鋭 度 Qで除算した値 ( G max/ Q、 1 / ( Q · R 1 ) ) は、 変位特性測 定値 D max/ Q Dの 2乗との相関係数が 7 5〜 9 0 %程度となり 、 変 位特性測定値 D maxZ Q Dの 2乗との相関性が良好である。 特に、 値 ( 1 / ( Q - R 1 ) ) は、 相関係数が 9 0 %以上であって、 図 1 8 の ( D ) から も理解される よ う に、 変位特性との相関が非常に良いこ とが判る。 As shown in Table 3, the conductance peak value G max and the admittance circle diameter 1 ZR 1 have a correlation coefficient of about 40% with the square of the measured displacement characteristics D max / Q D Low, displacement characteristics measured value D max / Q D is not good correlation with the square of D. In contrast, the conductance peak value G max and the admittance circle diameter 1 ZR 1 are each divided by the resonance sharpness Q (G max / Q, 1 / (Q · R 1)) Has a correlation coefficient with the square of the displacement characteristic measured value D max / Q D of about 75 to 90%, and the correlation with the square of the displacement characteristic measured value D maxZ Q D is good. In particular, the value (1 / (Q-R 1)) has a correlation coefficient of 90% or more, and the correlation with the displacement characteristics is very high, as can be seen from (D) in Fig. 18. It turns out to be good.
(実施例 3 )  (Example 3)
実施例 2 において交流ァ ドミ ッタ ンス特性および振動変位特性を 測定した 1 0個の電気機械変換素子 1 0 を、 図 1 6 に示したよ う な 超音波モータ 4 0 に組み込み、 それぞれの超音波モータ 4 0 の特性 を測定した。 このよ う して得られた 1 0組のデータ群から、 G m ax 、 G max/ Q、 1 / R 1 , 1 / ( Q · R 1 ) 力、らなる 4つのア ドミ ッタ ンス特性測定値のそれぞれについて、 対応する超音波モータ 4 0 の回転速度の 2乗との相関係数を算出 した。 結果を表 4及び図 1 9 に示す。 図 1 9 は、 表 4 に示したア ドミ ッタ ンス特性と超音波モ ータ特性との相関を示すプロ ッ ト図である。 Ten electromechanical transducers 10 whose AC admittance characteristics and vibration displacement characteristics were measured in Example 2 were incorporated into an ultrasonic motor 40 as shown in Fig. 16, and each ultrasonic wave was measured. The characteristics of the motor 40 were measured. Four admittance characteristics consisting of G m ax, G max / Q, 1 / R 1, 1 / (Q · R 1) force from 10 sets of data obtained in this way For each measured value, the corresponding ultrasonic motor 4 The correlation coefficient with the square of the rotational speed of 0 was calculated. The results are shown in Table 4 and FIG. Fig. 19 is a plot showing the correlation between the admittance characteristics shown in Table 4 and the ultrasonic motor characteristics.
Figure imgf000028_0001
Figure imgf000028_0001
表 4  Table 4
表 4 に示したよ う に、 コンダク タンス ピーク値 G max 及びァ ドミ ッタ ンス円の直径 1 Z R 1 は、 超音波モータの回転数の 2乗と の相 関係数が 5 6 %程度と低く 、 超音波モータ の回転数の 2乗との相関 が良好ではない。 これに対して、 コンダク タンスピーク値 G max 及 びァ ドミ ッタ ンス 円 の直径 1 ZR 1のそれぞれを共振先銳度 Qで除 算した値 ( G max/ Q、 1 / ( Q - R 1 )) は、 超音波モータ の回転 数の 2乗との相関係数が 8 0 〜 9 5 %程度とな り 、 超音波モータ の 回転数の 2乗との相関性が良好である。 特に、 値 ( 1 / ( Q · R 1 ) ) は、 相関係数が 9 5 %以上あ り 、 図 1 9 の ( D ) から も理解され るよ う に、 超音波モータ特性との相関が非常に良いこ とが判る。  As shown in Table 4, the conductance peak value G max and the admittance circle diameter 1 ZR 1 are as low as about 56% of the correlation with the square of the rotational speed of the ultrasonic motor. The correlation with the square of the rotation speed of the ultrasonic motor is not good. On the other hand, the conductance peak value G max and the diameter 1 ZR 1 of the admittance circle are divided by the resonance degree Q (G max / Q, 1 / (Q-R 1 )) Has a correlation coefficient with the square of the rotational speed of the ultrasonic motor, which is about 80 to 95%, and has a good correlation with the square of the rotational speed of the ultrasonic motor. In particular, the value (1 / (Q · R 1)) has a correlation coefficient of 95% or more, and as can be seen from (D) in Fig. 19, the correlation with the ultrasonic motor characteristics is high. It turns out to be very good.
(別の実施形態)  (Another embodiment)
本発明による電気機械特性検查方法は、 準静的に駆動される電気 機械変換素子の変位特性の評価にも適用 され得る。 準静的に駆動さ れる電気機械変換素子と は、 その素子の最も低い共振周波数に比べ て非常に低い周波数で交番変化する電圧波形や、 その素子の最も低 い共振周期に比べて非常に長い時間に渡って変化する電圧波形が印 加され且つその電圧印加時に変位する素子のこ とである。 The electromechanical characteristic inspection method according to the present invention can also be applied to the evaluation of the displacement characteristics of a quasi-statically driven electromechanical transducer. Quasi-statically driven An electromechanical transducer that can be used is a voltage waveform that alternates at a very low frequency compared to the lowest resonance frequency of the device, or a very long time compared to the lowest resonance frequency of the device. An element that is displaced when a voltage waveform is applied and when the voltage is applied.
図 2 0及び図 2 1 に示した電気機械変換素子 1 0 0 は、 このよ う な 「準静的に駆動される電気機械変換素子」 の一例である。 図 2 0 は、 電気機械変換素子 1 0 0 の外観を示す 3面図であ り 、 図 2 1 は 、 電気機械変換素子 1 0 0 の積層構成を示す分解斜視図である。  The electromechanical transducer element 100 shown in FIGS. 20 and 21 is an example of such an “electromechanical transducer element driven quasi-statically”. FIG. 20 is a trihedral view showing the external appearance of the electromechanical transducer element 100, and FIG. 21 is an exploded perspective view showing the laminated structure of the electromechanical transducer element 100.
電気機械変換素子 1 0 0 は、 膜状の 2種類の内部電極 1 0 4 a及 び 1 0 4 b によ り挟まれた層状の P Z T圧電体 1 0 0 a を複数枚積 層 してなる積層型圧電素子である。 素子 1 0 0 の側面には側面電極 1 0 2 a 及ぴ側面電極 1 0 2 b が形成されている。 複数の内部電極 1 0 4 a は側面電極 1 0 2 a によって互いに電気的に接続されてい る。 複数の内部電極 1 0 4 b は側面電極 1 0 2 b によって互いに電 気的に接続されている。  The electromechanical transducer 100 is formed by stacking a plurality of layered PZT piezoelectric bodies 100 a sandwiched between two kinds of film-like internal electrodes 10 4 a and 10 4 b. It is a laminated piezoelectric element. Side electrodes 1 0 2 a and 1 0 2 b are formed on the side surfaces of the element 1 0 0. The plurality of internal electrodes 10 04a are electrically connected to each other by side electrodes 10202a. The plurality of internal electrodes 10 4 b are electrically connected to each other by side electrodes 10 0 2 b.
素子 1 0 0 は、 側面電極 1 0 2 a と側面電極 1 0 2 b と の間に電 圧を印加する と、 逆圧電効果によって厚さ方向 (高さ H方向) に伸 び、 長さ方向 ( L方向及び W方向) に縮むよ う に機械変形する (即 ち、 機械変位を発生する)。 従って、 側面電極 1 0 2 a と側面電極 1 0 2 b との間の 「交流ア ドミ ッタ ンス の周波数特性」 をネッ ト ヮー クアナライザによって測定する こ と によ り 、 長さ方向及び厚さ方向 の共振周波数や共振先鋭度 ( Q値)、 交流コ ンダンク タ ンス G及び交 流サセプタ ンス B等の電気機械特性値を測定するこ とができる。  When a voltage is applied between the side electrode 1 0 2 a and the side electrode 1 0 2 b, the element 1 0 0 extends in the thickness direction (height H direction) due to the inverse piezoelectric effect, and the length direction It deforms so that it shrinks in the L direction and the W direction (that is, it generates mechanical displacement). Therefore, by measuring the “frequency characteristics of AC admittance” between the side electrode 10 2 a and the side electrode 10 2 b with a network analyzer, the length direction and thickness Electromechanical characteristic values such as longitudinal resonance frequency, resonance sharpness (Q value), AC conductance G and AC susceptance B can be measured.
図 2 2 に示した保持治具 2 0 0 は、 素子 1 0 0 の電気機械特性値 を測定する際に素子 1 0 0 を保持する保持治具の一例である。 この 保持治具 2 0 0 は、 電気機械変換素子 1 0 0 の側面電極 1 0 2 a に 接触する測定端子 (電気測定プローブ) 2 0 l a と、 電気機械変換 素子 1 0 0 の側面電極 1 0 2 b に接触する測定端子 (電気測定プロ ーブ) 2 0 1 b と、 を備えている。 更に、 保持治具 2 0 0 は、 測定 端子 2 0 1 a を保持する測定端子保持部 2 0 3 と、 測定端子 2 0 1 b を保持する測定端子保持部 2 0 4 と 、 測定端子保持部 2 0 3 と測 定端子保持部 2 0 4 と を機械的に結合する結合部 2 0 5 a · 2 0 5 b と、 を備えている。  The holding jig 20 0 shown in FIG. 22 is an example of a holding jig that holds the element 10 0 0 when the electromechanical characteristic value of the element 1 0 0 is measured. The holding jig 20 0 is composed of a measurement terminal (electric measurement probe) 2 0 la that contacts the side electrode 1 0 2 a of the electromechanical transducer 1 100 and the side electrode 1 0 of the electromechanical transducer 1 0 0. 2 b Measuring terminal (electrical measuring probe) that contacts b 2 0 1 b and. Furthermore, the holding jig 20 0 includes a measuring terminal holding unit 20 3 for holding the measuring terminal 2 0 1 a, a measuring terminal holding unit 2 0 4 for holding the measuring terminal 2 0 1 b, and a measuring terminal holding unit. 2 0 5 a and 2 0 5 b are provided for mechanically connecting 2 0 3 and the measurement terminal holding portion 2 0 4.
保持治具 2 0 0 は、 これらの部材を用いて、 電気機械変換素子 1 0 0 を図 2 2 に示したよ う に保持する と と もに、 測定端子 2 O l aThe holding jig 2 0 0 uses these members to make an electromechanical conversion element 1 Hold 0 0 as shown in Fig. 2 2 and measure terminal 2 O la
• 2 0 1 b を介して側面電極 1 0 2 a • 1 0 2 b から 2つの電 5^ Sd 線を取り 出すよ う に構成されている。 即ち 、 測定端子 2 0 1 a · 2• It is configured to take out two 5 ^ Sd wires from side electrode 1 0 2 a • 1 0 2 b via 2 0 1 b. That is, the measurement terminal 2 0 1 a 2
0 1 b の素子 1 0 0 に接触しない側の端部には、 電気計測器へと繫 がる電気配線が接続される。 An electrical wiring extending to the electrical measuring instrument is connected to the end of the 0 1 b that does not contact the element 1 0 0.
この保持治具 2 0 0 は、 図 2 2 の ( B ) に示したよ う に、 電気機 械変換素子 1 0 0 を 「測定端子 2 0 1 a と測定端子 2 0 1 b と の間 As shown in Fig. 2 (B), the holding jig 20 0 is connected to the electromechanical transducer 10 0 between the measurement terminals 2 0 1 a and 2 0 1 b.
」 に挟持する。 この と き、 測定端子 2 0 1 a及び測定端子 2 0 1 b は、 互いに反対方向に湾曲 (屈曲) し 、 電気機械変換 子 1 0 0 の 各側面 (即ち、 側面電極 1 0 2 a · 1 0 2 b ) と鋭角を成して接触 する。 ”. At this time, the measuring terminal 2 0 1 a and the measuring terminal 2 0 1 b are bent (bent) in opposite directions to each other (that is, the side electrodes 1 0 2 a · 1). 0 2 b) and contact at an acute angle.
この実施形態に係る 「電気機械変換素子の電気機械特性検査方法 According to this embodiment, “electromechanical property inspection method for electromechanical transducer”
」 の工程 (ステ ップ) の流れは 、 上述した実施形態と 同様であ り 、 図 5 に示した流れに従う 。 但し 、 亀 ¼機械変换素子 1 0 0 は 、 電 5^ 機械変換機器に組み込まれた後に準静的に駆動される素子であるか ら、 ステップ 2 において 「電気機械変換素子 1 0 0 が電気機械変換 機器に組み込まれて実際に駆動される場合の振動形態 J に似通った 振動形態が得られる共振周波数を含む周波数領域に レ、て交流ァ ド ミ ッ す ·>- タ ンス特性を測定 るのが好ま しい o の場合 、 電気機械変換 素子 1 0 0 の最も低い共振周波数に ける共振形態が 、 電 yx機械変 換素子 1 0 0 の実際の駆動時の振動形態と最ち似通つている o 従つ て、 ステップ 3及びステ ップ 4 における 特性ピ一ク値 (特性最大 値) A max と共振先鋭度 Qは、 電気機械変換素子 1 0 0 の最も低い 共振周波数における特性ピーク値及び共振先鋭度である。 The process flow (step) is the same as that of the above-described embodiment, and follows the flow shown in FIG. However, since the turtle ¼ mechanical conversion element 100 0 is an element that is quasi-statically driven after being incorporated in the electromechanical conversion device, the electromechanical conversion element 10 0 Vibration transducer when incorporated into a mechanical conversion device and actually driven Vibration measurement similar to J is obtained. In the case of o, the resonance form at the lowest resonance frequency of the electromechanical transducer element 100 is most similar to the vibration form at the time of actual driving of the electromechanical transducer element 100 Therefore, the characteristic peak value (maximum characteristic value) A max and resonance sharpness Q in Step 3 and Step 4 are the characteristic peak value and resonance at the lowest resonance frequency of the electromechanical transducer 100. Sharpness.
(実施例 4 )  (Example 4)
実施例 4 においては、 以下のよ う な測定を行った。  In Example 4, the following measurement was performed.
1 ) 図 2 0及び図 2 1 に示したよ う な電気機械変換素子 1 0 0 を 1 0個用意した。 電気機械変換素子 1 0 0 のそれぞれは、 1 層の厚み が約 2 0 111の ? 2 丁圧電体を電極 1 0 4 & · 1 0 4 b を介して積 層した素子であ り 、 その長さ Lは 1 . 2 m m、 幅 Wは 1 . 2 m m、 厚さ Hは 1 . O m mである。  1) Ten electromechanical transducer elements 100 as shown in Fig. 20 and Fig. 21 were prepared. Each of the electromechanical transducer elements 100 has a thickness of about 2 0 111? This is an element in which two piezoelectric elements are stacked via electrodes 104 and 10 4 b.The length L is 1.2 mm, the width W is 1.2 mm, and the thickness H is 1. O mm.
2 ) この 1 0個の電気機械変換素子 1 0 0 のそれぞれを順に図 2 2 に示した保持治具 2 0 0 を用いて保持した。 この と き、 図 2 2 に示 したよ う に、 電気機械変換素子 1 0 0 の側面に配設された側面電極 1 0 2 a · 1 0 2 b に測定端子 2 0 1 a · 2 0 1 b をそれぞれ接触 させた。 2) Each of the 10 electromechanical transducer elements 100 was held in turn using a holding jig 2 00 shown in FIG. At this time, as shown in FIG. 22, the side electrode disposed on the side surface of the electromechanical transducer 100. Measurement terminals 2 0 1 a · 2 0 1 b were brought into contact with 1 0 2 a · 1 0 2 b, respectively.
3 ) 測定端子 2 0 l a · 2 0 l b をネッ ト ワーク アナライザに接続 し、 保持治具 2 0 0 によって保持された素子 1 0 0 の 「交流ァ ドミ ッタ ンス特性を示す測定データ (交流ア ドミ ッタ ンス周波数特性デ 一タ)」 をそのネッ トワークアナライザを用いて周波数掃引測定する こ とによ り取得した。  3) Connect measurement terminal 2 0 la · 2 0 lb to the network analyzer, and measure data indicating the AC admittance characteristics of the element 1 0 0 held by the holding jig 2 0 0 (AC Dotance frequency characteristic data) ”was obtained by frequency sweep measurement using the network analyzer.
4 ) 測定 (取得) された交流ア ドミ ッタ ンス周波数特性データから 1 0個の素子 1 0 0 のそれぞれの特性ピーク値 A max と共振先鋭度 Q等の値を求めた。 この場合、 特性ピーク値 Amax と共振先鋭度 Q 等は、 電気機械変換素子 1 0 0 の 「最も周波数の低い共振周波数」 は約 1 M H z における値である。  4) From the measured (acquired) AC admittance frequency characteristic data, the values of the characteristic peak value A max and resonance sharpness Q of each of the 10 elements 100 were obtained. In this case, the characteristic peak value Amax, the resonance sharpness Q, etc. are the values at about 1 MHz for the “lowest resonance frequency” of the electromechanical transducer 100.
5 ) このよ う にして取得した 1 0個の電気機械変換素子 1 0 0 の交 流ァ ドミ ッタ ンス周波数特性データから、 円フィ ッティ ング及び周 波数データ補間を用いるこ とによ り 、 「ァ ドミ ッタンス円の直径 1 / R l 」 及び 「共振先鋭度 Q」 を算出した。  5) By using circular fitting and frequency data interpolation from the AC admittance frequency characteristic data of 10 electromechanical transducer elements 100 obtained in this way, The “admittance circle diameter 1 / R l” and “resonance sharpness Q” were calculated.
その後、 以下に述べる よ う な測定を行い、 上記 1 0個の電気機械 変換素子 1 0 0 のそれぞれについて、 準静的変位特性データを取得 した。  Thereafter, measurements as described below were performed, and quasi-static displacement characteristic data was obtained for each of the 10 electromechanical transducer elements 100.
6 ) 図 2 3 に示したよ う に、 上記 1 0個の電気機械変換素子 1 0 0 のそれぞれを順に保持した。 即ち、 電気機械変換素子 1 0 0 を台座 2 0 8 の上部に配置し、 側面電極 1 0 2 a · 1 0 2 b に電圧印加用 端子 2 0 9 a · 2 0 9 b をそれぞれ接触させた。  6) As shown in Fig. 23, each of the 10 electromechanical transducers 100 was held in order. That is, the electromechanical conversion element 1 0 0 is arranged on the top of the base 2 0 8, and the voltage application terminals 2 0 9 a 2 0 9 b are brought into contact with the side electrodes 1 0 2 a 1 0 2 b, respectively. .
7 ) 図 2 4 に示した測定系によ り 台座 2 0 8 の上部に配置された素 子 1 0 0 の準静的変位特性 (準静的変位特性データ) を測定した。 具体的に述べる と、 図 2 4 に示した測定系においては、 信号発生器 2 1 0 の出力 V out が 「電力増幅器 2 1 2及び電圧印加用端子 2 0 9 a 」 を介して 「駆動電圧 V in 1 」 と して側面電極 1 0 2 a に印カロさ れる。 電圧印加用端子 2 0 9 b は接地される。 駆動電圧 Vin l はォ シロス コープ 2 1 4 に入力 される。 レーザー ドッ ^ラー変位計 2 1 6 は、 レーザー光線 L B を用いて電気機械変換素子 1 0 0 の変位を 測定する (電気信号 V in 2 に変換する。)。 測定された変位 (電気信 号 Vin2 ) はオシロ ス コ ープに入力される。  7) Using the measurement system shown in Fig. 24, we measured the quasi-static displacement characteristics (quasi-static displacement characteristics data) of the element 100 located above the pedestal 20 8. More specifically, in the measurement system shown in FIG. 24, the output V out of the signal generator 2 1 0 is connected to the “drive voltage via the power amplifier 2 1 2 and voltage application terminal 2 0 9 a”. V in 1 ”is marked on the side electrode 10 2 a. Voltage application terminal 2 0 9 b is grounded. The drive voltage Vin l is input to the oscilloscope 2 1 4. The laser Doppler displacement meter 2 1 6 measures the displacement of the electromechanical transducer 10 0 using the laser beam L B (converts it into an electrical signal V in 2). The measured displacement (electrical signal Vin2) is input to the oscilloscope.
駆動電圧 V in 1 は、 周波数が 2 k H z 、 振幅 (最大電圧と最小電 圧と の差) が 6 Vの正弦波電圧である。 電気機械変換素子 1 0 0 の 準静的変位特性データは、 ドップラー変位計からの電気信号 (出力 電圧) V in 2 をオシロ ス コープ 2 1 4 にて観察する こ と によ り 取得 した。 即ち、 出力電圧 V in 2 の波形の振幅を測定し、 その測定され た振幅を準静的変位特性データ (変位量 D ) と して取得した。 The drive voltage V in 1 has a frequency of 2 kHz and amplitude (maximum voltage and minimum voltage). Is the sine wave voltage of 6 V. The quasi-static displacement characteristics data of the electromechanical transducer 100 were obtained by observing the electrical signal (output voltage) V in 2 from the Doppler displacement meter with an oscilloscope 2 14. That is, the amplitude of the waveform of the output voltage V in 2 was measured, and the measured amplitude was obtained as quasi-static displacement characteristic data (displacement amount D).
と こ ろで、 電気機械変換素子 1 0 0 の 「最も周波数の低い共振周 波数」 は約 1 MH z である。 従って、 周波数 2 k H z の正弦波状の 駆動電圧 Vin l にて電気機械変換素子 1 0 0 を駆動した場合、 電気 機械変換素子 1 0 0 は 「最も低い周波数の共振周波数」 に比べて 「 十分に低い周波数」 で駆動される。 この結果、 駆動電圧 Vin l にて 電気機械変換素子 1 0 0 を駆動した場合の変位量 Dは、 静的に同様 の電圧 (例えば、 単発的に発生する電圧であって時間経過と と もに 台形状に変化し、 且つ、 最大電圧値と最小電圧値との差が 6 Vであ る電圧) を電気機械変換素子 1 0 0 に印加した場合の変位量に略等 しく なる。  Here, the “resonance frequency with the lowest frequency” of the electromechanical transducer 100 is about 1 MHz. Therefore, when the electromechanical transducer 10 0 is driven by a sinusoidal drive voltage Vin l with a frequency of 2 kHz, the electromechanical transducer 1 0 0 is “sufficiently compared to the lowest resonance frequency”. Driven at “low frequency”. As a result, the amount of displacement D when the electromechanical transducer 100 is driven by the drive voltage Vin l is the same as a static voltage (for example, a voltage that is generated only once and has elapsed over time). The voltage changes to a trapezoidal shape, and the difference between the maximum voltage value and the minimum voltage value is 6 V) is approximately equal to the displacement amount when applied to the electromechanical transducer 100.
以上の方法によ り 、 上記 1 0個の電気機械変換素子 1 0 0 のそれ ぞれについて、 ア ドミ ッタ ンス円の直径 1 Z R 1 、 共振先鋭度 Q及 ぴ変位量 Dを取得した。 そ して、 上記 1 0個の電気機械変換素子 1 0 0 のそれぞれについて、 了 ドミ ッタ ンス円の直径 1 / R 1 と変位 量 Dの 2乗との相関係数、 値 Γ 1 / ( Q * R 1 )」 と変位量 Dの 2乗 と の相関係数、 を算出 した。 この結果を表 5及び図 2 5 に示す。 図 2 5 は、 表 5 に示したア ドミ ッタ ンス特性と準静的変位特性 (準静 的変位特性データ) との相関を示すプロ ッ ト図である。 By the above method, the admittance circle diameter 1 ZR 1, resonance sharpness Q and displacement D were obtained for each of the 10 electromechanical transducers 100. Then, for each of the 10 electromechanical transducers 100, the correlation coefficient between the diameter 1 / R 1 of the dominance circle and the square of the displacement D, value Γ 1 / ( The correlation coefficient between Q * R 1) ”and the square of the displacement D was calculated. The results are shown in Table 5 and Fig. 25. Figure 25 is a plot showing the correlation between the admittance characteristics shown in Table 5 and the quasi-static displacement characteristics (quasi-static displacement characteristics data).
Figure imgf000033_0001
表 5
Figure imgf000033_0001
Table 5
表 5 に示したよ う に、 ア ドミ ッタ ンス円の直径 1 / R 1 は 、 変位 量 Dの 2乗と の相関係数が 6 0 %程度と低く 、 変位量 Dの 2乗と の 相関が良好ではない。 これに対して、 ア ドミ ツタ ンス円の直径 1 ノ As shown in Table 5, the diameter 1 / R 1 of the admittance circle has a low correlation coefficient of about 60% with the square of the displacement D, and the correlation with the square of the displacement D Is not good. In contrast, the diameter of the admittance circle is 1
R 1 を共振先鋭度 Qで除算した値 1 Z ( Q · R 1 ) は 、 変位量 D の の 2乗との相関係数が 9 0 %以上とな り 、 変位量 Dの 2乗との相関 性が非常に良いこ とが判る。 こ のこ とは、 図 2 5 の ( A ) と ( B ) との比較から も理解される。 即ち、 変位量 D の 2乗と 、 値 1 / ( QThe value 1 Z (Q · R 1) obtained by dividing R 1 by the resonance sharpness Q has a correlation coefficient of 90% or more with the square of the displacement D and the square of the displacement D It can be seen that the correlation is very good. This can be understood from the comparison between (A) and (B) in Fig. 25. That is, the square of the displacement D and the value 1 / (Q
• R 1 ) と、 は略比例関係にあるこ とが理解される。 • It is understood that R 1) and are approximately proportional.
(更に別の実施形態) (Still another embodiment)
図 2 6 乃至図 2 8 は、 準静的に駆動される他の電気機械変換素子 3 0 0 を示している。 こ の電気機械変換素子 3 0 0 にも本発明によ る電気機械特性検査方法は適用 され得る。 電気機械変換素子 3 0 0 は、 ダイ アフラム構造を有するァクチユエータ (庄電ノ電歪ァクチ ユエ"タ) と して機能する電気機械変換素子の一例である。  FIGS. 26 to 28 show other electromechanical transducers 30 0 that are driven quasi-statically. The electromechanical characteristic inspection method according to the present invention can also be applied to this electromechanical transducer element 300. The electromechanical conversion element 300 is an example of an electromechanical conversion element that functions as an actuator having a diaphragm structure (Shodeno Electrostriction Actuator).
電気機械変換素子 3 0 0 は、 支持部 3 1 0 と振動部 3 2 0 とから なる。 支持部 3 1 0 は、 キヤ ビティ を形成するための窓部 3 1 2 を中央 部に有する The electromechanical transducer 3 0 0 includes a support part 3 1 0 and a vibration part 3 2 0. The support part 3 10 has a window part 3 1 2 for forming a cavity at the center part.
振動部 3 2 0 は、 振動板 3 2 2 、 下部電極 3 2 4 、 圧電膜 ( P z τ圧電体層 ) 3 2 6及ぴ上部電極 3 2 8 を備える。 振動板 3 2 2 は 支持部 3 1 0 よ り も薄い板体である。 下部電極 3 2 4 は振動板 3 2 The vibration part 3 20 includes a vibration plate 3 2 2, a lower electrode 3 2 4, a piezoelectric film (P z τ piezoelectric layer) 3 2 6 and an upper electrode 3 2 8. The diaphragm 3 2 2 is a plate that is thinner than the support 3 1 0. Lower electrode 3 2 4 is diaphragm 3 2
2 の上面に形成される。 圧電膜 3 2 6 は下部電極 3 2 4 の上面に形 成される 上部電極 3 2 8 は圧電膜 3 2 6 の上面に形成される。 即 ち、 圧電膜 3 2 6 は下部電極 3 2 4 と上部電極 3 2 8 と によ り挟持 されてレ、る 。 振動部 3 2 0 は、 支持部 3 1 0 の窓部 3 1 2 を覆う よ う に支持部 3 1 0 に一体的に固定されている 。 上部電極 3 2 8 と下 部電極 3 2 4 と の間に電圧が印加されたと さに圧電膜 3 2 6 が変形 する。 電気機械変換素子 3 0 0 は 、 この圧電膜 3 2 6 の変形によ り ik Λ fe. 3 2 2 に変位を生じさせる。 2 is formed on the top surface. The piezoelectric film 3 2 6 is formed on the upper surface of the lower electrode 3 2 4. The upper electrode 3 2 8 is formed on the upper surface of the piezoelectric film 3 2 6. That is, the piezoelectric film 3 2 6 is sandwiched between the lower electrode 3 2 4 and the upper electrode 3 2 8. The vibration part 3 20 is integrally fixed to the support part 3 10 so as to cover the window part 3 1 2 of the support part 3 10. When a voltage is applied between the upper electrode 3 2 8 and the lower electrode 3 2 4, the piezoelectric film 3 2 6 is deformed. The electromechanical transducer 3 0 0 causes displacement in ik Λ fe. 3 2 2 due to the deformation of the piezoelectric film 3 2 6.
この実施形態に係る 「電気機械変換素子の電気機械特性検査方法 According to this embodiment, “electromechanical property inspection method for electromechanical transducer”
」 のェ程 (ステ ップ) の流れも、 上述した実施形態と |RJ様であ り 、 図 5 に示した流れに従う。 但し、 電気機械変換素子 3 0 0 は、 ¾気 機械変換機器に組み込まれた後に準静的に駆動される素子であるか ら、 ステ Vプ 2 において 「電気機械変換素子 3 0 0 が 気機械変換 機器に組み込まれて実際に駆動される場合の振動形態」 に似通った 振動形態が得られる共振周波数を含む周波数領域において交流ァ ド ミ ッタ ンス特性を測定するのが好ま しい。 この場合、 電気機械変換 素子 3 0 0 の最も低い共振周波数における共振形態が、 電気機械変 換素子 3 0 0 の実際の駆動時の振動形態と最も似通っている。 従つ て、 ステップ 3及ぴステップ 4 における、 特性ピーク値 (特性最大 値) A max と共振先鋭度 Qは、 電気機械変換素子 1 0 0 の最も低い 共振周波数における特性ピーク値及び共振先鋭度である。 The flow of “steps” is also the same as the embodiment described above and | RJ, and follows the flow shown in FIG. However, since the electromechanical conversion element 3 0 0 is an element that is quasi-statically driven after being incorporated into the ¾-air mechanical conversion device, the “electromechanical conversion element 3 0 0 is It is preferable to measure the AC admittance characteristics in the frequency region including the resonance frequency that can provide a vibration form similar to that of a vibration form when it is incorporated into a converter and actually driven. In this case, the resonance form of the electromechanical conversion element 3 0 0 at the lowest resonance frequency is most similar to the vibration form during actual driving of the electromechanical conversion element 3 0 0. Therefore, in step 3 and step 4, the characteristic peak value (characteristic maximum value) A max and the resonance sharpness Q are the characteristic peak value and resonance sharpness at the lowest resonance frequency of the electromechanical transducer 100. is there.
(実施例 5 )  (Example 5)
実施例 5 においては、 以下のよ う な測定を行った。  In Example 5, the following measurement was performed.
1 ) 図 2 6 乃至図 2 8 に示したよ う な電気機械変換素子 3 0 0 を 1 0個用意した。  1) Ten electromechanical transducers 30 0 as shown in FIGS. 26 to 28 were prepared.
2 ) 図 2 9 に示したよ う に、 こ の 1 0個の電気機械変換素子 3 0 0 のそれぞれを順に保持治具 4 0 0 を用いて保持した。 この と き、 電 気機械変換素子 3 0 0 の振動板 3 2 2 の上面に延設された 「上部電 極 3 2 8及ぴ下部電極 3 2 4」 に測定端子 4 1 0 a 及び測定端子 4 1 0 b を接触させた。 2) As shown in FIG. 29, each of the 10 electromechanical transducer elements 30 0 was held in order using a holding jig 4 0 0. At this time, the measurement terminal 4 1 0 a and the measurement terminal are connected to the “upper electrode 3 2 8 and lower electrode 3 2 4” extended on the upper surface of the diaphragm 3 2 2 of the electromechanical transducer 3 300. Four 1 0 b was brought into contact.
3 ) 測定端子 4 1 0 a 及び測定端子 4 1 0 b をネッ ト ワークアナラ ィザに接続し、 保持治具 4 0 0 によって保持された素子 3 0 0 の 「 交流ア ドミ ッタ ンス特性を示す測定データ (交流ア ドミ ッタ ンス周 波数特性データ)」 をそのネ ッ ト ワークアナライザを用いて周波数掃 引測定するこ とによ り取得した。  3) Connect measurement terminal 4 1 0 a and measurement terminal 4 1 0 b to the network analyzer, and show the `` AC admittance characteristics of element 3 0 0 held by holding jig 4 0 0 “Measurement data (AC admittance frequency characteristic data)” was obtained by frequency sweep measurement using the network analyzer.
4 ) 測定 (取得) された交流ア ドミ ッタンス周波数特性データから 1 0個の素子 3 0 0 のそれぞれの特性ピーク値 A max と共振先鋭度 Q等の値を求めた。  4) From the measured (acquired) AC admittance frequency characteristic data, the values of the characteristic peak value A max and resonance sharpness Q of each of the 10 elements 30 were determined.
5 ) このよ う にして取得した 1 0個の電気機械変換素子 3 0 0 の交 流ァ ドミ ッタ ンス周波数特性データから、 円フィ ッティ ング及び周 波数データ補間を用いる こ と によ り 、 「ア ドミ ッタンス円の直径 1ノ R l」 及び 「共振先鋭度 Q」 を算出した。  5) By using circular fitting and frequency data interpolation from the AC admittance frequency characteristic data of 10 electromechanical transducers 30 obtained in this way, “Admittance circle diameter 1 cm R l” and “Resonance sharpness Q” were calculated.
その後、 以下に述べる よ う な測定を行い、 上記交流ア ドミ ツタ ン ス周波数特性データ を取得した上記 1 0個の電気機械変換素子 3 0 0 のそれぞれについて、 準静的変位特性データを取得した。  After that, the measurement as described below was performed, and the quasi-static displacement characteristic data was obtained for each of the 10 electromechanical transducer elements 30 0 from which the AC admittance frequency characteristic data was obtained. .
6 ) 図 3 0 に不 しによ つ に 、 _b HLI 1 0個の電気機 変換素子 3 0 0 のそれぞれを順に保持治具 5 0 0 を用いて保持した o 保持治具 5 0 6) Although not shown in Fig. 30, _b HLI 10 Each of the electric machine conversion elements 30 0 was held in turn using the holding jig 50 0.
0 は、 真空吸着盤 5 0 2 と 、 その真空吸着盤 5 0 2 の上面に配置さ れる 「紫外線 ( U V ) 剥離性の粘着シ 卜 5 0 4 J と 、 を備える。 電気機械変換素子 3 0 0 は 、 粘着シ一 b 5 0 4 の上部に接着固定さ れた。 粘着シ — ト 5 0 4 は真空吸着盤 5 0 2 に対して真空吸着され た。 こ の と き 、 図 3 0 に示したよ う にヽ 電気機械変換素子 3 0 0 の 振動板 3 2 2 の上面に延 BXされた 「上部電極 3 2 8及び下部電極 30 includes a vacuum suction disk 50 2 and an “ultraviolet (UV) peelable adhesive film 50 4 J disposed on the upper surface of the vacuum suction disk 50 2. Electromechanical conversion element 30 0 was adhered and fixed to the top of the adhesive sheet b 50 4 4. The adhesive sheet 50 4 was vacuum-adsorbed to the vacuum suction disk 50 2, at this time as shown in FIG. As shown in the figure, the upper electrode 3 2 8 and the lower electrode 3 BX extended on the upper surface of the diaphragm 3 2 2 of the electromechanical transducer 3 0 0
2 4」 に測定端子 5 1 0 a 及ぴ測定端子 5 1 0 b をそれぞれ接触さ せた。 Measurement terminal 5 1 0 a and measurement terminal 5 1 0 b were brought into contact with 2 4 ”, respectively.
7 ) 図 2 4 に示した測定系 と同様な測定系を用いて、 粘着シー ト 5 0 4 に固定された電気機械変換素子 3 0 0 の準静的変位特性 (準静 的変位特性データ) を測定した。 この場合、 図 2 4 に示した 「駆動 電圧 V in l 」 は 「測定端子 5 1 0 a 及び測定端子 5 1 0 b 」 を介し て 「上部電極 3 2 8 と 下部電極 3 2 4 と の間」 に印加される。 駆動 電圧 V in l は、 図 3 1 に示 した台形波形を有する電圧である。 電気 機械変換素子 1 0 0 の準静的変位特性 (準静的変位特性データ) は 、 ドップラー変位計の出力電圧 V in 2 をオシロ ス コープ 2 1 4 にて 観察する こ と によ り 取得した。 このと き、 図 3 1 に示したリ ンギン グ部分 R I Nを除く 期間における出力電圧 V in 2 の振幅 D 1 に基い て 「準静的変位特性データ と しての変位量 D」 を取得した。 7) Using a measurement system similar to the measurement system shown in Fig. 24, the quasi-static displacement characteristics (quasi-static displacement characteristics data) of the electromechanical transducer 30 0 fixed to the adhesive sheet 50 4 Was measured. In this case, the “drive voltage V in l” shown in FIG. 24 is connected between “upper electrode 3 2 8 and lower electrode 3 2 4 via“ measurement terminal 5 1 0 a and measurement terminal 5 1 0 b ”. ”Is applied. The drive voltage V in l is a voltage having the trapezoidal waveform shown in Fig. 31. The quasi-static displacement characteristics (quasi-static displacement characteristics data) of the electromechanical transducer 1 0 0 are the output voltage V in 2 of the Doppler displacement meter at the oscilloscope 2 1 4 Obtained by observation. At this time, “displacement amount D as quasi-static displacement characteristics data” was obtained based on the amplitude D 1 of the output voltage V in 2 during the period excluding the ring part RIN shown in Fig. 31. .
と ころで、 電気機械変換素子 3 0 0 の 「最も周波数の低い共振周 波数」 は約 1 M H z である。 従って、 図 3 1 に示した 「 1 ミ リ 秒周 期の台形波状の駆動電圧 V in 1 」 にて電気機械変換素子 3 0 0 を駆 動した場合、 電気機械変換素子 3 0 0 は 「最も低い周波数の共振周 波数」 に比べて 「十分に低い周波数」 で駆動される。 この結果、 図 3 1 に示した駆動電圧 V in 1 にて電気機械変換素子 3 0 0 を駆動し た場合の変位量は、 静的に同様の電圧 (例えば、 単発的に発生する 電圧であって時間経過と と もに台形状に変化し、 且つ、 最大電圧値 と最小電圧値との差が 2 0 Vである電圧) を電気機械変換素子 3 0 0 に印加した場合の変位量に略等しく なる。  Meanwhile, the “resonance frequency with the lowest frequency” of the electromechanical transducer 300 is about 1 MHz. Therefore, when the electromechanical transducer 3 0 0 is driven with the “1 ms trapezoidal driving voltage V in 1” shown in FIG. It is driven at a “sufficiently low frequency” compared to a “resonant frequency of low frequency”. As a result, the displacement amount when the electromechanical transducer 300 is driven by the drive voltage V in 1 shown in FIG. 3 1 is a statically similar voltage (for example, a voltage generated only once). The voltage changes to a trapezoidal shape over time, and the difference between the maximum voltage value and the minimum voltage value is 20 V). Will be equal.
以上の測定結果に基いて、 1 0個の電気機械変換素子 3 0 0 のそ れぞれについて、 ァ ドミ ッタ ンス円の直径 1 / R 1 と変位量 Dの 2 乗との相関係数、 及ぴ、 値 「 1 Z ( Q * R 1 )」 と変位量 Dの 2乗と の相関係数、 を算出 した。 この結果を表 6 及び図 3 1 に示す。 図 3 1 は、 表 6 に示したア ドミ ッタ ンス特性と準静的変位特性 (準静的 変位特性データ) との相関を示すプロ ッ ト図である。 Based on the above measurement results, the correlation coefficient between the diameter 1 / R 1 of the admittance circle and the square of the displacement D for each of the 10 electromechanical transducers 300 The correlation coefficient between the value “1 Z (Q * R 1)” and the square of the displacement D was calculated. The results are shown in Table 6 and Fig. 31. Figure 31 is a plot showing the correlation between the admittance characteristics shown in Table 6 and the quasi-static displacement characteristics (quasi-static displacement characteristics data).
Figure imgf000037_0001
表 6
Figure imgf000037_0001
Table 6
表 6 に示したよ う に、 ア ドミ ッタ ンス円の直径 1 Z R 1 は、 変位 量 Dの 2乗との相関係数が 7 0 %程度と低く 、 変位量 Dの 2乗と の 相関が良好ではない。 これに対して、 ア ドミ ッタ ンス円の直径 1 ノ R 1 を共振先鋭度 Qで除算した値 1 Z ( Q · R 1 ) は、 変位量 Dの 2乗との相関係数が 9 0 %以上と な り 、 変位量 Dの 2乗と の相関性 が非常に良いこ とが判る。 こ のこ と は、 図 3 1 の ( A) と ( B ) と の比較から も理解される。 即ち、 変位量 Dの 2乗と、 値 1 / ( Q - R 1 ) と、 は略比例関係にあるこ とが理解される。  As shown in Table 6, the diameter 1 ZR 1 of the admittance circle has a low correlation coefficient of about 70% with the square of the displacement D, and the correlation with the square of the displacement D is low. Not good. On the other hand, the value 1 Z (Q · R 1) obtained by dividing the diameter 1 of the admittance circle R 1 by the resonance sharpness Q has a correlation coefficient with the square of the displacement D 9 0 It can be seen that the correlation with the square of the displacement D is very good. This can also be understood from the comparison between (A) and (B) in Fig. 31. That is, it is understood that the square of the displacement amount D and the value 1 / (Q-R 1) are approximately proportional.
以上に説明 した実施例 4及び実施例 5 においては、 値 1 / ( Q · R 1 ) と変位量 D と の間には非常に良い相関関係が測定ばらつきに 依存せず成立する こ とが確かめ られた。 なお、 値 I , ( Q · R 1 ) のみならず、 交流コ ンダク タ ンス のピーク値及び交流ィ ンピーダン ス の位相のピーク値等の値であって、 交流ア ドミ ッタ ンス の周波数 特性の測定結果に基づいて得られる 「共振周波数において最大と な る電気的特性値 A max (特性最大値 Amax、 特性ピーク値)」 を共振 先鋭度 Qで除した値 ( k = AmaX// Q ) と、 変位量 D と、 の間にも 非常に良い相関関係が成立する。 従って、 .値 1 Z ( Q · R 1 ) を含 むァ ドミ ッタンス特性のピーク値 A max を共振先鋭度 Qで除算した 値 (比例係数 k = A maxノ Q ) を、 準静的に駆動される電気機械変 換素子の変位特性の評価に使用すれば、 電気機械変換素子の良否を 精度良く判定するこ とができ る。 In Examples 4 and 5 described above, it was confirmed that a very good correlation between the value 1 / (Q · R 1) and the displacement D was established without depending on measurement variations. It was. Not only the values I and (QR1), but also the peak values of the AC conductance and the peak value of the phase of the AC impedance, etc., and the frequency characteristics of the AC admittance. The value obtained by dividing the “maximum electrical characteristic value A max (characteristic maximum value Amax, characteristic peak value) at the resonance frequency” divided by the resonance sharpness Q (k = Ama X / / Q) There is also a very good correlation between the displacement D and. Therefore, including the value 1 Z (QR1) The value obtained by dividing the peak value A max of the musmitance characteristic by the resonance sharpness Q (proportional coefficient k = A max no Q) is used to evaluate the displacement characteristics of a quasi-statically driven electromechanical transducer. If so, the quality of the electromechanical transducer can be determined with high accuracy.
以上、 説明 したよ う に、 本発明による実施形態及び実施例におレヽ ては、 ア ドミ ッタンス特性のピーク値 A ma を共振先鋭度 Qで除算 した値 (比例係数 k = A max Z Q ) を 「電気機械特性検查 J の指標 値と して用いている。 これによ り 、 ア ドミ ッタンス特性のピ一ク値 As described above, in the embodiments and examples according to the present invention, the value obtained by dividing the peak value A ma of the admittance characteristic by the resonance sharpness Q (proportional coefficient k = A max ZQ) is obtained. “It is used as an index value for the electromechanical characteristic inspection J. This gives the peak value of the admittance characteristic.
A max その も のを指標値とする比較例に比べて、 繰り返し再現性が 高く 、 また、 変位や超音波モータ特性との相関性が高い指標値 ( kA max Index value (k is high in repeatability and high correlation with displacement and ultrasonic motor characteristics compared to the comparative example with the index value as the index value.
= A max / Q ) を電気機械変換素子の良否判定に使用する こ とがで ぎ る。 その結果、 電気機械変換素子の良否を極めて良好に判定する こ とができる。 = A max / Q) can be used for pass / fail judgment of electromechanical transducers. As a result, the quality of the electromechanical transducer can be judged very well.

Claims

1 . 電気機械変換機器に適用 される と と もに所定の波形を有する電 圧が電極を介して印加される こ と によって機械変位を発生する電気 機械変換素子、 の電気機械特性検查方法であって、 1. An electromechanical characteristic detection method for an electromechanical conversion element, which is applied to an electromechanical conversion device and generates a mechanical displacement when a voltage having a predetermined waveform is applied via an electrode. There,
前記電気機械変換素子を保持治具によって保持する第 1 ステ ップ と、  A first step of holding the electromechanical transducer by a holding jig;
前記電気機械変換素子の前記電極を交流ァ ドミ ッタ ンス測定器に 電気的に接続し、 前記電気機求械変換素子の共振周波数を含む周波数 範囲で前記電極間の交流ァ ドミ ッタ ンスの周波数特性を表す交流ァ ドミ ッタンス周波数特性データをの測定する第 2 ステ ップと、  The electrode of the electromechanical transducer is electrically connected to an AC admittance measuring device, and the AC admittance between the electrodes is within a frequency range including the resonance frequency of the electromechanical transducer. A second step of measuring AC admittance frequency characteristic data representing frequency characteristics;
前記第 2 ステップにおいて測定した交流ァ ドミ ッタ ンス周波数特 性データに基づいて共振周波数にて最大と なる電気的特性値のピ一 ク値 A maxと共振先鋭度 Qと を取得する第囲 3 ステ ップと、  Based on the AC admittance frequency characteristic data measured in the second step, the peak value A max and the resonance sharpness Q that are the maximum electrical characteristic values at the resonance frequency are obtained. Step and
前記第 3 ステ ップにて取得された電気的特性値のピーク値 A m ax を前記第 3 ステ ップにて取得された共振先鋭度 Qで除算 した値 A max/ Qを用いて前記電気機械変換素子の電気機械特性検査を実施 する第 4ステップと、  Using the value A max / Q obtained by dividing the peak value A max of the electrical characteristic value acquired in the third step by the resonance sharpness Q acquired in the third step. A fourth step of conducting an electromechanical property inspection of the mechanical transducer,
を含む電気機械特性検査方法。  An electromechanical property inspection method including:
2 . 請求の範囲 1 に記載の電気機械変換素子の電気機械特性検查方 法において、 2. In the method for detecting the electromechanical characteristics of the electromechanical transducer according to claim 1,
前記電極は前記電気機械変換素子上に配設され、 前記第 2 ステ V プにおいて前記電極が電気測定プローブによって前記交流ァ K - 、 V タ ンス測定器に電気的に接続される こ と を特徴とする電気機械特性 検査方法。  The electrode is disposed on the electromechanical transducer, and in the second step, the electrode is electrically connected to the AC key K-, V-balance measuring device by an electric measurement probe. Electromechanical property inspection method.
3 . 請求の範囲 1 又は請求の範囲 2 に記載の電気機械変換素子の電 気機械特性検査方法において、 3. In the method for inspecting electromechanical characteristics of an electromechanical transducer according to claim 1 or claim 2,
前記第 3 ステ ップは、 前記電気的特性値のピーク値 A maxと して 交流コ ンダク タ ンスのピーク値 G ma を採用 したステ ップである電 気機械特性検査方法。  The third step is an electromechanical characteristic inspection method which is a step in which an AC conductance peak value G ma is used as the peak value A max of the electrical characteristic value.
4 . 請求の範囲 3 に記載の電気機械変換素子の電気機械特性検查方 法において、 4. Electromechanical characteristics inspection method for electromechanical transducer according to claim 3 In law
前記第 3 ステ ップは、 前記交流コ ンダク タ ンス のピーク値 G max を、 交流ア ドミ ッタンス円の直径 1 Z R 1 を算出する こ と によ り 求 めるステ ップである電気機械特性検査方法。  The third step is an electromechanical characteristic that is a step of obtaining the peak value G max of the AC conductance by calculating the diameter 1 ZR 1 of the AC admittance circle. Inspection method.
5 . 電気機械変換機器に適用 される と と もに所定の波形を有する電 圧が電極を介して印加される こ と によって機械変位を発生する電気 機械変換素子の電気機械特性検查方法であって、 5. It is an electromechanical characteristic inspection method for an electromechanical transducer that is applied to an electromechanical transducer and generates a mechanical displacement when a voltage having a predetermined waveform is applied through an electrode. And
刖記 β気機械 換素子を保持 ム具によつて保持する ステクプ 第 5 刖記β Sutekupu fifth to'll go-between holding a-mechanical換素Ko to hold non- member
と 、 When ,
前記 気機械変換素子の前記電極を周波数特性測定 ¾^に電気的に The electrode of the gas-mechanical transducer is electrically measured in frequency characteristics measurement ¾ ^
,
接 し 、 目 IJ記電気機械変換素子の 振 IdEl波数を含む周波数範囲で目リ 記電極間の振動変位特性を表す振動変位周波数特性デ一タを測定す る第 6 ステップと The sixth step of measuring vibration displacement frequency characteristic data representing the vibration displacement characteristics between the recording electrodes in the frequency range including the vibration IdEl wave number of the electromechanical transducer element
前記 6 ステッノ し ^いて測疋した振動変位周波数特性ァ一タに 基づいて共振周波数にて最大 と なる振動変位の振幅の ピーク値 D maxと共振先鋭度 Q Dとを取得する第 7 ステップと、 A seventh step of obtaining the peak value D max of the amplitude of the vibration displacement and the resonance sharpness Q D which are the maximum at the resonance frequency based on the vibration displacement frequency characteristic data measured by the above 6 stenno;
前記第 7 ステップにて取得された振幅のピーク値 D maxを前記第 7 ステ ップにて取得された共振先鋭度 Q Dで除算した値 D max/ Q D を用いて前記電気機械変換素子の電気機械特性検査を実施する第 8 ステップと、 The value D max / Q D of the amplitude peak value D max obtained in the seventh step divided by the resonance sharpness Q D obtained in the seventh step is used for the electromechanical transducer. An eighth step of conducting an electromechanical property test;
を含む電気機械特性検査方法。  An electromechanical property inspection method including:
6 . 請求の範囲 1 乃至請求の範囲 5 の何れか一項に記載の電気機械 変換素子の電気機械特性検査方法において、 前記電気機械変換素子 の主要構成材料が、 圧電材料又は電歪材料である こ と を特徴とする 電気機械特性検査方法。 6. In the electromechanical transducer testing method according to any one of claims 1 to 5, the main constituent material of the electromechanical transducer is a piezoelectric material or an electrostrictive material. An electromechanical property inspection method characterized by this.
PCT/JP2008/069399 2007-10-30 2008-10-21 Method for inspecting electromechanical characteristic of electromechanical conversion element WO2009057535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009539042A JP5225284B2 (en) 2007-10-30 2008-10-21 Electromechanical property inspection method for electromechanical transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007281625 2007-10-30
JP2007-281625 2007-10-30

Publications (1)

Publication Number Publication Date
WO2009057535A1 true WO2009057535A1 (en) 2009-05-07

Family

ID=40590926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069399 WO2009057535A1 (en) 2007-10-30 2008-10-21 Method for inspecting electromechanical characteristic of electromechanical conversion element

Country Status (2)

Country Link
JP (1) JP5225284B2 (en)
WO (1) WO2009057535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818730A1 (en) * 2013-06-27 2014-12-31 Alcatel Lucent Method and apparatus for assessment and optimization of performance of piezoelectric devices
JP2016080390A (en) * 2014-10-10 2016-05-16 横河電機株式会社 Resonance frequency measuring system, and resonance frequency measuring method
WO2018077522A1 (en) * 2016-10-25 2018-05-03 Endress+Hauser SE+Co. KG Method for monitoring the condition of an electromechanical resonator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171875A (en) * 1990-11-05 1992-06-19 Piezo Tec Kk Piezoelectric body element
JPH0618577A (en) * 1992-07-03 1994-01-25 Tokyo Inst Of Technol Instrument for measuring q-value of crystal resonator
JPH10115648A (en) * 1996-10-11 1998-05-06 Advantest Corp Measuring method for equivalent circuit constant of piezoelectric vibrator
WO2005104258A1 (en) * 2004-04-27 2005-11-03 Ngk Insulators, Ltd. Elastic body inspection method, inspection device, and dimension prediction program
JP2006074878A (en) * 2004-08-31 2006-03-16 Ngk Insulators Ltd Inspection method of piezoelectric/electrostriction device set
WO2006109501A1 (en) * 2005-03-18 2006-10-19 Ngk Insulators, Ltd. Piezoelectric element inspection method, inspection device, and polarization processing method
JP2007071722A (en) * 2005-09-07 2007-03-22 Tokyo Institute Of Technology Method of measuring parameter of elastic wave element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175489B2 (en) * 1994-08-24 2001-06-11 三菱電機株式会社 Vibrating gyroscope and vibrating gyroscope inspection device
JP3499469B2 (en) * 1999-08-05 2004-02-23 Tdk株式会社 Piezoelectric resonator
JP4668441B2 (en) * 2001-03-22 2011-04-13 シチズンホールディングス株式会社 Vibrating gyro
JP4059152B2 (en) * 2002-10-16 2008-03-12 セイコーエプソン株式会社 Surface acoustic wave resonator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171875A (en) * 1990-11-05 1992-06-19 Piezo Tec Kk Piezoelectric body element
JPH0618577A (en) * 1992-07-03 1994-01-25 Tokyo Inst Of Technol Instrument for measuring q-value of crystal resonator
JPH10115648A (en) * 1996-10-11 1998-05-06 Advantest Corp Measuring method for equivalent circuit constant of piezoelectric vibrator
WO2005104258A1 (en) * 2004-04-27 2005-11-03 Ngk Insulators, Ltd. Elastic body inspection method, inspection device, and dimension prediction program
JP2006074878A (en) * 2004-08-31 2006-03-16 Ngk Insulators Ltd Inspection method of piezoelectric/electrostriction device set
WO2006109501A1 (en) * 2005-03-18 2006-10-19 Ngk Insulators, Ltd. Piezoelectric element inspection method, inspection device, and polarization processing method
JP2007071722A (en) * 2005-09-07 2007-03-22 Tokyo Institute Of Technology Method of measuring parameter of elastic wave element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818730A1 (en) * 2013-06-27 2014-12-31 Alcatel Lucent Method and apparatus for assessment and optimization of performance of piezoelectric devices
WO2014206614A1 (en) * 2013-06-27 2014-12-31 Alcatel Lucent Method and apparatus for assessment and optimization of performance of piezoelectric devices
JP2016080390A (en) * 2014-10-10 2016-05-16 横河電機株式会社 Resonance frequency measuring system, and resonance frequency measuring method
WO2018077522A1 (en) * 2016-10-25 2018-05-03 Endress+Hauser SE+Co. KG Method for monitoring the condition of an electromechanical resonator
US10895489B2 (en) 2016-10-25 2021-01-19 Endress+Hauser SE+Co. KG Method for monitoring the condition of an electromechanical resonator
CN109923381B (en) * 2016-10-25 2021-07-16 恩德莱斯和豪瑟尔欧洲两合公司 Method for monitoring the state of an electromechanical resonator

Also Published As

Publication number Publication date
JPWO2009057535A1 (en) 2011-03-10
JP5225284B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
Lin et al. Modeling and testing of PZT and PVDF piezoelectric wafer active sensors
US6595058B2 (en) Method and apparatus for determining dynamic response of microstructure by using pulsed broad bandwidth ultrasonic transducer as BAW hammer
US9476861B2 (en) Ultrasound diagnostic device and ultrasound probe
US7424827B2 (en) Inspecting method of elastic body, inspecting apparatus thereof, and dimension predicting program thereof
WO2009128546A1 (en) Method for testing piezoelectric/electrostrictive device, testing apparatus, and method for adjusting piezoelectric/electrostrictive device
CN108931292B (en) Method for calibrating at least one sensor
WO2009057535A1 (en) Method for inspecting electromechanical characteristic of electromechanical conversion element
Ealo et al. Airborne ultrasonic phased arrays using ferroelectrets: A new fabrication approach
US7332849B2 (en) Method and transducers for dynamic testing of structures and materials
EP2442919B1 (en) Electromechanical transducer and method for detecting sensitivity variation of electromechanical transducer
Salowitz et al. Structural health monitoring of high temperature composites
Hur et al. Determination of liquid density and viscosity using a self-actuating microcantilever
Zure et al. Fabrication and measurements of dynamic response of an SOI based non-planar CMUT array
Ahmad et al. Design and characterization piezoelectric acoustic transducer for sonar application
Lee et al. Improvements in electrical properties of piezoelectric microcantilever sensors by reducing parasitic effects
CN109085203B (en) Method and device for measuring dynamic shear modulus of material
Yaacob et al. Response estimation of micro-acoustic transducer for underwater applications using finite element method
JP3433209B2 (en) Method and apparatus for measuring stress in painted structures
Martinussen et al. CMUT characterization by interferometric and electric measurements
JP4576614B2 (en) Measuring method of elastic wave and static strain of members
El Rammouz et al. A micro-transducer matrix design for the detection of flexural guided waves
Gibson et al. Effects of Sample Adhesives Acoustic Properties on Spatial Resolution of Pulsed Electroacoustic Measurements
TW548408B (en) Method and apparatus for determining dynamic response of microstructure
Zhang et al. Characterization of AlN thin film piezoelectric coefficient d31 using Piezoelectric Micromachined Ultrasonic Transducers (PMUTs)
Song et al. A Hybrid Method for Modeling of Capacitive Micromachined Ultrasonic Transducers (CMUTs)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08844207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009539042

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08844207

Country of ref document: EP

Kind code of ref document: A1