JPS5968571A - Manufacture of guide vane - Google Patents

Manufacture of guide vane

Info

Publication number
JPS5968571A
JPS5968571A JP57178338A JP17833882A JPS5968571A JP S5968571 A JPS5968571 A JP S5968571A JP 57178338 A JP57178338 A JP 57178338A JP 17833882 A JP17833882 A JP 17833882A JP S5968571 A JPS5968571 A JP S5968571A
Authority
JP
Japan
Prior art keywords
weight
guide vane
less
manufacturing
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57178338A
Other languages
Japanese (ja)
Inventor
Shozo Tanida
谷田 正三
Toshimi Matsumoto
松本 俊美
Hiroshi Sato
宏 佐藤
Fumio Hataya
幡谷 文男
Takeshi Wada
武 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57178338A priority Critical patent/JPS5968571A/en
Publication of JPS5968571A publication Critical patent/JPS5968571A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • F03B3/183Adjustable vanes, e.g. wicket gates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To enable to improve the reliability against fracture by a method wherein a weld zone is constituted by two or more kinds of welding metals, the thermal expansion coefficients of which are different from each other, and the joining is performed by applying stress relief annealing treatment to the weld zone. CONSTITUTION:A welded joint consisting of austenitic stainless steel welding metal 10, the thermal expansion coefficient of which is larger, and martensitic stainless steel welding metals 11 and 12, the thermal expansion coefficient of which is smaller, is treated by stress relief annealing at or just below the temperature, at which the alpha gamma transformation of steel occurs, after welded. As a result, compression stress remains exceptionally on the surface of the weld metal of the first martensitic stainless steel welding metals 11 and 12, resulting in improving the reliability against fracture.

Description

【発明の詳細な説明】 本発明はガイドベーンの製造法に係り、特に製造コスト
の低減1品質向上のために溶接構造とし、脆性破壊強度
及び疲労破壊強度を改善したガイドベーンの製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a guide vane, and more particularly to a method for manufacturing a guide vane that has a welded structure to reduce manufacturing costs and improve quality, and has improved brittle fracture strength and fatigue fracture strength.

従来、ガイドベーンは一体鋳造で溶製されていたが、鋳
造製品は鋳造過程では成分偏析fひけ巣などの欠陥が生
じ易い欠点があシ疲労強度に問題があった。そこで品質
゛の向上並びにコスト低減を図るためエレクトロスラグ
溶解による一体溶造が採用されてきている。しかしなが
ら、ポンプ水車用のガイドベーン等の溶造では、ベーン
部は一般に1000m長、軸部は3000m+長もある
ことから、溶造に多大な時間を要し、又溶造の際必要な
水冷銅板も複雑となり、作業性が悪い等の欠点があった
Conventionally, guide vanes have been manufactured by integral casting, but cast products have the drawback of being prone to defects such as component segregation and shrinkage cavities during the casting process, which has led to problems with fatigue strength. Therefore, monolithic welding using electroslag melting has been adopted in order to improve quality and reduce costs. However, when melting guide vanes for pump water turbines, etc., the vane part is generally 1000 m long, and the shaft part is 3000 m+ long, so it takes a lot of time to melt, and water cooling is required during the welding process. The copper plate was also complicated and had drawbacks such as poor workability.

そこで、本発明者らは、軸材を局部的にプレス整形し、
その整形部にベーンをエレクトロスラグ溶造させながら
製作する独自の方法を試みた。しかし、溶造の際必要と
する水冷銅板の形状は複雑となり、また、完全なンール
が困難で作業能率の低下を招いていた。そこで、さらに
上記欠点を改善するために、第1図に示す如く、ベーン
全体あるいはベーン頭部5及びベーン尾部6を単独でエ
レクトロスラグで溶造おるいは鍛造して形成し、上述の
プレス成形した軸部と接合する溶接構造のガイドベーン
の製造を試みた。この工うな方法によって、大幅な作業
性の向上が可能となった。しかし、この方法によっても
、溶接部8及び9の表面には応力除去焼な−まし処理の
後でも、通常約10Kgf/m”以下ではあるが、脆性
破壊、疲労破壊あるいは応力腐食割れ等に望ましくない
引張残留応力が分布するという問題がめった。(なお、
第1図において、1はガイドベーン上軸、2はガイドベ
ーン下軸、3はガイドベーン上ソバ、4はガイドベーン
上ソバ、7はカイトベーン中央部を各々示す。) 本発明の目的は上述の如き問題点を解消し、溶接作業の
作業性を同上させるとともに、耐脆性。
Therefore, the present inventors locally press-shaped the shaft material,
We tried a unique method of manufacturing the vane by electroslag melting on the shaped part. However, the shape of the water-cooled copper plate required during melting is complicated, and complete melting is difficult, resulting in a decrease in work efficiency. Therefore, in order to further improve the above-mentioned drawbacks, as shown in FIG. We attempted to manufacture a guide vane with a welded structure that connects to the shaft part. This simple method made it possible to significantly improve work efficiency. However, even with this method, even after the stress relief annealing treatment on the surfaces of the welds 8 and 9, the stress is usually less than about 10 Kgf/m'', which is desirable for brittle fracture, fatigue fracture, stress corrosion cracking, etc. The problem of uneven distribution of tensile residual stress was rare.
In FIG. 1, 1 indicates the upper axis of the guide vane, 2 indicates the lower axis of the guide vane, 3 indicates the upper edge of the guide vane, 4 indicates the upper edge of the guide vane, and 7 indicates the center portion of the kite vane. ) The purpose of the present invention is to solve the above-mentioned problems, improve the workability of welding work, and improve brittleness resistance.

疲労あるいは応力腐食割れ強度等、破壊に対する信頼性
が向上されたカイトベーンの製造方法を提供することに
ある。
It is an object of the present invention to provide a method for manufacturing a kite vane with improved reliability against fracture such as fatigue or stress corrosion cracking strength.

本発明は、溶接部を熱膨張係数の異なる2棟以上の溶接
金属で構成し、溶接後応力除去焼なまし処理を施すこと
によシ、部材の接合を行なうことを特徴とするガイドベ
ーンの製造方法を要旨とするものである。
The present invention relates to a guide vane characterized in that the welded part is composed of two or more welded metals having different coefficients of thermal expansion, and the members are joined by applying stress-relieving annealing treatment after welding. The gist is the manufacturing method.

以下に本発明を、本発明の実施の一態様を示す第2図な
いし第5図を参照して、水車用ガイドベーンの製造につ
いて詳細に説明する。
The present invention will be described in detail below with reference to FIGS. 2 to 5, which show one embodiment of the present invention, regarding the manufacture of a guide vane for a water turbine.

本発明のガイドベーンの製造方法は、熱膨張係数の異な
る溶接金属を肉盛又は順次溶接することによシ溶接部を
構成し、この溶接部に溶接後、応力除去焼なまし処理を
実施することにニジ、溶接部表面に圧縮残留応力を発生
させることでるる。
The method for manufacturing a guide vane of the present invention includes forming a welded part by overlaying or sequentially welding weld metals having different coefficients of thermal expansion, and after welding to this welded part, a stress relief annealing treatment is performed. In particular, compressive residual stress can be generated on the surface of the weld.

本発明の理論的な背景について、ガイドペ〜ン頭部5と
ガイドベーン中央部の接合を説明する第2図の溶接部断
面の模式図で説明する。熱膨張係数の大きな第2の溶接
金属、例えばオーステナイト系ステンレス鋼溶接金属1
0と熱膨張係数の小さな第1の温液金属、例えばマルテ
ンサイト系ステンレス鋼溶接金属11及び12で構成し
た溶接継手において、溶接後、鋼のα#γ変態を起こす
温度あるいはその直下(好ましくは600〜650′C
)で応力除去焼なまし処理する。この加熱時には熱膨張
係数の大きい第2のオーステナイト系ステンレス鋼溶接
金属10は熱膨張係数の小さい第1のマルテンサイト系
ステンレス鋼溶接金属11及び12より多く膨張する。
The theoretical background of the present invention will be explained with reference to a schematic cross-sectional view of a welded portion in FIG. 2, which illustrates the connection between the guide vane head 5 and the guide vane central portion. A second weld metal with a large coefficient of thermal expansion, for example, austenitic stainless steel weld metal 1
0 and a first hot liquid metal with a small thermal expansion coefficient, such as martensitic stainless steel weld metals 11 and 12, after welding, the temperature at which α#γ transformation of the steel occurs or just below that temperature (preferably 600-650'C
) is subjected to stress relief annealing treatment. During this heating, the second austenitic stainless steel weld metal 10 having a large coefficient of thermal expansion expands more than the first martensitic stainless steel weld metals 11 and 12 having a small coefficient of thermal expansion.

その結果、第2のオーステナイト系ステンレス鋼溶接金
属工0には圧縮応力が発生し、fがで圧縮の塑性ひずみ
とクリープひずみが誘起される。一方、第1のマルテン
サイト系ステンレス鋼溶接金属11及び12には引張応
力が発生し、fがて引張の塑性ひずみとクリープひずみ
が誘起される。逆に冷却時には、熱膨張係数の大きい第
2のオーステナイト系ステンレス鋼溶接金属10は第1
のマルテンサイト系ステンレス鋼溶接金属より多く収縮
しようとする。その結果、温度の低下に伴ない溶接金属
の強度が高まると共に第2のオーステナイト系ステンレ
ス鋼溶接金属には、引張応力を発生し、第1のマルテン
サイト系ステンレス鋼溶接金属には圧縮応力を発生する
。しかも、加熱時にそれぞれの溶接金属に誘起された前
記塑性ひずみとクリープひずみは、冷却時に第1のマル
テンサイト系ステンレス鋼溶接金属11及び12に発生
する圧縮応力を助長するように作用する。以上の結果、
第1のマルテンサイト糸オーステナイト鋼溶接金属11
及び12の溶接金属表面には圧縮応力が残留する。この
圧縮応力の大きさは熱膨張係数の大きさの差、溶着量の
比及び積層法などに影響されるものと判断される。熱膨
張係数は成分によって異なるがマルテンサイト系ステン
レス鋼が11〜13 Xl0−’/C。
As a result, compressive stress is generated in the second austenitic stainless steel welded metalwork 0, and compressive plastic strain and creep strain are induced by f. On the other hand, tensile stress is generated in the first martensitic stainless steel weld metals 11 and 12, and tensile plastic strain and creep strain are induced after f. Conversely, during cooling, the second austenitic stainless steel weld metal 10 having a large coefficient of thermal expansion is
The martensitic stainless steel weld metal tries to shrink more. As a result, the strength of the weld metal increases as the temperature decreases, and tensile stress is generated in the second austenitic stainless steel weld metal, and compressive stress is generated in the first martensitic stainless steel weld metal. do. Furthermore, the plastic strain and creep strain induced in each weld metal during heating act to promote compressive stress generated in the first martensitic stainless steel weld metals 11 and 12 during cooling. As a result of the above,
First martensitic thread austenitic steel weld metal 11
Compressive stress remains on the weld metal surface of 12 and 12. It is considered that the magnitude of this compressive stress is influenced by the difference in the coefficient of thermal expansion, the ratio of the amount of welding, the lamination method, etc. The coefficient of thermal expansion varies depending on the components, but martensitic stainless steel has a coefficient of thermal expansion of 11 to 13 Xl0-'/C.

オーステナイト系ステンレス鋼が16〜19X11π程
度である。
Austenitic stainless steel has a diameter of about 16 to 19X11π.

なお、一般に水車用ガイドベーンの部材の構成材料とし
てはマルテンサイト系ステンレス鋼カ用いられるが、そ
の組成は重量%でC: 0.03〜0.15%、  s
*  :0.02〜1.5%、Mn:0.3〜1.5%
、Ni:6%以下、 Cr : 10.0〜14.0%
を主成分として、またその必要に応じてMO=2.5%
以下及びNb、Vをそれぞれ0.5%以下含有し残部F
e及び不純物から成るものが挙げられる。また溶接部の
溶接金属としては、オーステナイト系ステンレス鋼及び
マルテンサイト系ステンレス鋼の組み合わせが好ましく
、オーステナイト系ステンレス鋼溶接金属の組成は重量
%でC:0.02〜0.07%、Si≦0.6%、Mn
≦2,5%。
Generally, martensitic stainless steel is used as a constituent material for guide vane members for water turbines, and its composition is C: 0.03 to 0.15% by weight, s
*: 0.02-1.5%, Mn: 0.3-1.5%
, Ni: 6% or less, Cr: 10.0-14.0%
as the main component, and as necessary MO=2.5%
Contains 0.5% or less of each of Nb and V, with the balance F
Examples include those consisting of e and impurities. The weld metal of the weld zone is preferably a combination of austenitic stainless steel and martensitic stainless steel, and the composition of the austenitic stainless steel weld metal is C: 0.02 to 0.07% by weight, Si≦0 .6%, Mn
≦2.5%.

P≦0.03%、S≦0.02%+N’:1o、o〜1
4.0%、 Cr : 20.0〜24.0%、MO≦
3.0%含有し、残部がFe及び不純物から成り、又、
マルテンサイト系ステンレス鋼溶接金属の組成は重量%
でC≦0.08%、B+≦0.5%、Mn≦0.7%、
P≦0.03%、S≦0.02%、N+≦7.0%、C
r:11.0〜14.0%含有し、残部がFe及び不純
物から成るものが好ましい。
P≦0.03%, S≦0.02%+N': 1o, o~1
4.0%, Cr: 20.0-24.0%, MO≦
3.0%, the remainder consists of Fe and impurities, and
Composition of martensitic stainless steel weld metal is weight%
and C≦0.08%, B+≦0.5%, Mn≦0.7%,
P≦0.03%, S≦0.02%, N+≦7.0%, C
Preferably, it contains r: 11.0 to 14.0%, with the remainder consisting of Fe and impurities.

次に本発明を実施例にニジさらに詳細に説明するが、本
発明はその要旨を超えない限り、以下の実施例により限
定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 第3図に示す如き実物大のガイドベーンの頭部5及び尾
部6を各々中央部7に、本発明の方法によシ溶接した。
Example 1 The head portion 5 and tail portion 6 of a full-sized guide vane as shown in FIG. 3 were each welded to the central portion 7 by the method of the present invention.

なお、第3図中、1〜4は各々第1図におけると同一の
ものを指す。
In addition, in FIG. 3, 1 to 4 refer to the same ones as in FIG. 1, respectively.

本実施例においては、各々の部材を被覆アーク溶接によ
シ接合し、その溶接部表面の残留応力が応力除去焼なま
し後に圧縮応力となることを確認した。接合部は第4図
に示す如く、K型開先とし板厚方向に対称にまず熱膨張
係数の小さい第1のマルテン丈イト系ステンレス鋼溶接
材15でり。
In this example, each member was joined by covered arc welding, and it was confirmed that the residual stress on the surface of the welded portion turned into compressive stress after stress relief annealing. As shown in FIG. 4, the joint has a K-shaped groove and is made of a first marten-length stainless steel welding material 15 having a small thermal expansion coefficient symmetrically in the plate thickness direction.

まで溶接し、次に熱膨張係数の大きい第2のオーステナ
イト系ステンレス鋼溶接材16.17でh2の量を重ね
溶接した。最後に第1のマルテン丈イト系ステンレス鋼
溶接材18.19でり、を溶接した。h、/hの比は1
0%の目標とした。残留応力の測定は溶接後650Cx
sh応力除去焼なまし後ひずみゲージによった。また、
尾部6と中央部7との溶接も同様に行なった。
Then, a second austenitic stainless steel welding material 16.17 having a large coefficient of thermal expansion was welded by an amount h2. Finally, the first marten-length stainless steel welding material 18.19 was welded. The ratio of h, /h is 1
The target was 0%. Measurement of residual stress is 650Cx after welding.
strain gauge after stress relief annealing. Also,
Welding between the tail portion 6 and the center portion 7 was performed in the same manner.

供試カイトベーン及び溶接材の化学組成を下記第1表に
示す。また、各々の機械的性質を第2表に示す。
The chemical compositions of the test kite vane and welding material are shown in Table 1 below. Further, the mechanical properties of each are shown in Table 2.

第1表 第2表 測定された残留応力は、第3図の測定点13においては
−4Ktjf /調2 (第5図A点)、測定点14に
おいては−5Kgf /晒2 (第5図B点)でめった
。これらの圧縮応力がガイドベーンの耐脆性、破壊、疲
労あるいは応力腐食強度を向上させることとなる。
The measured residual stress in Table 1 and Table 2 is -4Ktjf/tone 2 at measurement point 13 in Figure 3 (point A in Figure 5), and -5Kgf/bleach 2 at measurement point 14 (Figure 5B). points). These compressive stresses improve the brittleness, fracture, fatigue, or stress corrosion strength of the guide vane.

なお、第5図中、点線りは小型試験片(長さ;250+
++m、幅:250mm、厚さ:50mの2枚の板をに
型開先で上記と同様に突合せ溶接した継手)による予備
実験結果を示し、これより、圧縮応力が生じる度合には
、第2のオーステナイト系ステンレス鋼溶接金属の深さ
り、が母材の板厚りに対する割合が大きい程圧縮応力が
高くなる傾向があることが明らかである。
In Fig. 5, the dotted line indicates a small test piece (length: 250+
++m, width: 250mm, thickness: 50m (a joint made by butt welding two plates with a mold groove in the same manner as above), and from this, the degree of compressive stress generated is It is clear that the compressive stress tends to increase as the ratio of the depth of the austenitic stainless steel weld metal to the thickness of the base metal increases.

本発明によれば溶接部表面に圧縮応力を与えることがで
き、溶接部の耐脆性、疲労るるいは応力割れ強度等、破
壊に対する信頼性が向上され、また溶接の作業性も改善
される。
According to the present invention, compressive stress can be applied to the surface of the welded part, and reliability against fracture such as brittleness resistance, fatigue resistance, stress cracking strength, etc. of the welded part is improved, and welding workability is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は溶接構造化された水車用ガイドベー
ンの外観を示す図、第2図は本発明方法の溶接部を説明
する断面図、第4図は実施例1に係る方法の溶接部を説
明する断面図、第5図は残留応力と溶接部のオーステナ
イト系ステンレス鋼の割合との関係を示すグラフでるる
。 1・・・ガイドベーン上軸、2・・・ガイドベーン下軸
、3・・・ガイドベーン上ツバ、4・・・ガイドベーン
上ツバ、5・・・ガイドベーン頭部、6・・・カイトベ
ーン尾部、7・・・カイトベーン中央部、8,9・・・
溶接部、lO・・・第1の溶接金属、11.12・・・
第2の溶接金属、13.14・・・残留応力測定点、1
5,18゜19・・・マルテン丈イト系ステンレス!M
L16゜第  l  凹 6 第 2 困 第 4 国 第 、5 日
Figures 1 and 3 are views showing the external appearance of a welded guide vane for a water turbine, Figure 2 is a sectional view illustrating a welded part according to the method of the present invention, and Figure 4 is a method according to Example 1. FIG. 5 is a cross-sectional view illustrating a welded part, and FIG. 5 is a graph showing the relationship between residual stress and the proportion of austenitic stainless steel in the welded part. 1... Guide vane upper shaft, 2... Guide vane lower shaft, 3... Guide vane upper collar, 4... Guide vane upper collar, 5... Guide vane head, 6... Kite vane Tail part, 7... Central part of kite vane, 8, 9...
Welding part, lO...first weld metal, 11.12...
Second weld metal, 13.14...Residual stress measurement point, 1
5,18゜19...Marten length stainless steel! M
L16゜th l concave 6th 2nd trouble 4th country 5th

Claims (1)

【特許請求の範囲】 1、溶接部を熱膨張係数の異なる2種以上の溶接金属で
構成し、溶接後応力除去焼なまし処理を施すことによυ
、部材の接合を行なうことを特徴とするガイドベーンの
製造方法。 2 該ガイドベーンがマルテンサイト系ステンレス鋼製
であることを特徴とする特許請求の範囲第1項に記載の
ガイドベーンの製造方法。 3、該ガイドベーンが、C0,03〜0.15重量%、
s+o、o2〜1.5重量%、Mn0.3〜1.5重量
%、Ni6重量%以下及びCr 10.0〜14.0重
量%を含有し、残部Fe及び不純物から成るマルテンサ
イト系ステンレス鋼製でるることを特徴とする特許請求
の範囲第2項に記載のガイドベーンの製造方法。 4、該ガイドベーンがCO,03〜0,15重量%、8
10.02〜1.5重量%、Mn0.3〜1.5重量%
、Ni6重量%以下、cr 10.[1〜14.0重量
%、MO2,5重量%以下、Nb0.5重量%以下及び
7005重量%以下を含有し、残部Fe及び不純物から
なるマルテンサイト系ステンレス鋼製であることを特徴
とする特許請求の範囲第2項に記載のガイドベーンの製
造方法。 5、該溶接部が、熱膨張係数の大きい溶接金属及び熱膨
張係数の小さい溶接金属の2種の溶接金属で構成されて
いることを特徴とする特許請求の範囲第1項ないし第4
項のいずれが1項に記載のガイドベーンの製造方法。 6、該溶接部が、熱膨張係数の小さい溶接金属を浴接部
外周辺部に位置するように構成されていることを特徴と
する特許請求の範囲第5項に記載のガイドベーンの製造
方法。 7、  該溶接部が、マルテンサイト系ステンレス鋼溶
接金属及びオーステナイト系ステンレス鋼溶接金属で構
成されていることを特徴とする特許請求の範囲第5項に
記載のカイトベーンの製造方法。 8、該溶接部が、マルテンサイト系ステンレス鋼溶接金
属を溶接部外周部に位置するように構成されていること
を特徴とする特許請求の範囲第7項に記載のガイドベー
ンめ製造方法。 9、該マルテン丈イト系ステンVス鋼溶接金属が、c 
o、 o s重量%以下、S+O,S重量%以下、Mn
0.7重量%以下、P O,03重量%以下、80.0
2重量%以下、Ni7.0重量%以下及びCr11.0
〜14.0重量%を含有し、残部Fe及び不純物からな
ることを特徴とする特許請求の範囲第7項又は第8項に
記載のガイドベーンの製造方法。 10、該オーステナイト系ステンレス鋼溶接金属が、C
O,02〜0.07重量%、sio、6重量%以下、M
n2.5重量%以下、P O,03重量%以下、80.
02重量%以下、Ni10.0〜14.0重量%、Cr
2O,0〜24.0重量%及びMn3.0重量%以下を
含有し、残iFe及び不純物からなることを特徴とする
特許請求の範囲第7項又は第8項に記載のガイドベーン
の製造方法。 11、該ガイドベーンが水車用ガイドベーンであること
を特徴とする特許請求の範囲第1項ないし第10項のい
ずれか1項に記載のガイドベーンの製造方法。 12、該応力除去焼なまし処理は、溶接部表面に圧縮応
力を与えるだめのものであることを特徴とする特許請求
の範囲第1項ないし第11項のいずれか1項に記載のガ
イドベーンの製造方法。 13、該溶接部が、該溶接金属を肉盛りすることに、1
m、jl)構成されることを特徴とする特許請求の範囲
第1項ないし第12項のいずれか1項に記載のガイドベ
ーンの製造方法。 14、該溶接部が、該溶接金属を溶接することにより構
成されることを特徴とする特許6青求の範囲第1項ない
し第12項のいずれか1項に記載のガイドベーンの製造
方法。
[Scope of Claims] 1. The welded part is composed of two or more types of weld metals with different coefficients of thermal expansion, and stress-relieving annealing treatment is performed after welding.
A method for manufacturing a guide vane, which comprises joining members. 2. The method for manufacturing a guide vane according to claim 1, wherein the guide vane is made of martensitic stainless steel. 3. The guide vane contains C0.03 to 0.15% by weight,
Martensitic stainless steel containing s+o, o2 to 1.5% by weight, Mn 0.3 to 1.5% by weight, Ni 6% by weight or less, and Cr 10.0 to 14.0% by weight, with the balance consisting of Fe and impurities. A method for manufacturing a guide vane according to claim 2, characterized in that the guide vane is manufactured by: 4. The guide vane contains CO, 03 to 0.15% by weight, 8
10.02-1.5% by weight, Mn 0.3-1.5% by weight
, Ni 6% by weight or less, cr 10. [Characterized by being made of martensitic stainless steel containing 1 to 14.0% by weight, MO2, 5% by weight or less, Nb 0.5% by weight or less, and 7005% by weight or less, the balance being Fe and impurities. A method for manufacturing a guide vane according to claim 2. 5. Claims 1 to 4, characterized in that the welded portion is composed of two types of weld metals: a weld metal with a large coefficient of thermal expansion and a weld metal with a small coefficient of thermal expansion.
1. The method for manufacturing a guide vane according to item 1. 6. The method for manufacturing a guide vane according to claim 5, wherein the welded portion is configured such that the weld metal having a small coefficient of thermal expansion is located on the outer periphery of the bath contact portion. . 7. The method for manufacturing a kite vane according to claim 5, wherein the welded portion is composed of martensitic stainless steel weld metal and austenitic stainless steel weld metal. 8. The method for manufacturing a guide vane according to claim 7, wherein the welded portion is configured such that the martensitic stainless steel weld metal is located on the outer periphery of the welded portion. 9. The marten-length stainless V steel weld metal is c
o, o S weight% or less, S+O, S weight% or less, Mn
0.7% by weight or less, P O, 03% by weight or less, 80.0
2% by weight or less, Ni7.0% by weight or less and Cr11.0
9. The method for manufacturing a guide vane according to claim 7 or 8, wherein the guide vane contains Fe and impurities in an amount of 14.0% by weight. 10. The austenitic stainless steel weld metal has C
O, 02-0.07% by weight, sio, 6% by weight or less, M
n 2.5% by weight or less, P O, 03% by weight or less, 80.
02% by weight or less, Ni 10.0-14.0% by weight, Cr
The method for producing a guide vane according to claim 7 or 8, characterized in that the guide vane contains 0 to 24.0% by weight of 2O and 3.0% by weight or less of Mn, and consists of residual iFe and impurities. . 11. The method for manufacturing a guide vane according to any one of claims 1 to 10, wherein the guide vane is a guide vane for a water turbine. 12. The guide vane according to any one of claims 1 to 11, wherein the stress-relieving annealing treatment is for applying compressive stress to the surface of the welded part. manufacturing method. 13. The welding part builds up the weld metal, 1
The method for manufacturing a guide vane according to any one of claims 1 to 12, characterized in that: 14. The method for manufacturing a guide vane according to any one of Items 1 to 12 of Patent No. 6, wherein the welded portion is constructed by welding the weld metal.
JP57178338A 1982-10-13 1982-10-13 Manufacture of guide vane Pending JPS5968571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178338A JPS5968571A (en) 1982-10-13 1982-10-13 Manufacture of guide vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178338A JPS5968571A (en) 1982-10-13 1982-10-13 Manufacture of guide vane

Publications (1)

Publication Number Publication Date
JPS5968571A true JPS5968571A (en) 1984-04-18

Family

ID=16046739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178338A Pending JPS5968571A (en) 1982-10-13 1982-10-13 Manufacture of guide vane

Country Status (1)

Country Link
JP (1) JPS5968571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355307A (en) * 1986-07-16 1988-03-09 Kawasaki Heavy Ind Ltd Method for manufacturing turbine diaphragm
EP0850719A1 (en) * 1996-12-27 1998-07-01 Kawasaki Steel Corporation Welding method and welding material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355307A (en) * 1986-07-16 1988-03-09 Kawasaki Heavy Ind Ltd Method for manufacturing turbine diaphragm
EP0850719A1 (en) * 1996-12-27 1998-07-01 Kawasaki Steel Corporation Welding method and welding material
US6059177A (en) * 1996-12-27 2000-05-09 Kawasaki Steel Corporation Welding method and welding material
KR100278705B1 (en) * 1996-12-27 2001-06-01 니이 카즈요시 Welding method and welding material
US6290905B1 (en) * 1996-12-27 2001-09-18 Kawasaki Steel Corporation Welding material

Similar Documents

Publication Publication Date Title
KR101300196B1 (en) Piping for steam turbines, a manufacturing method thereof, and main steam pipings for stem turbines using them re-heating pipings and generation plants
US6753504B2 (en) Method for welding together two parts which are exposed to different temperatures, and turbomachine produced using a method of this type
KR930009983B1 (en) Wear-resistant compound roll
JP2000054026A (en) Method for producing pressure vessel used in the presence of hydrogen sulfide, and steel therefor
KR19990036151A (en) Fe-based alloy foil for liquid phase diffusion bonding of Fe-based materials that can be bonded in an oxidizing atmosphere
US4585478A (en) Heat resisting steel
JPH02140465A (en) Water wheel runner and its manufacture
WO2020071343A1 (en) Clad austenitic stainless steel sheet, base steel sheet and method for producing clad steel sheet
US4581067A (en) High-strength austenitic steel
JPS5968571A (en) Manufacture of guide vane
JPH02284777A (en) Manufacture of stainless steel cladded plate having excellent corrosion resistance and toughness
JPS6092455A (en) Cast steel for water turbine for seawater pump
US1941648A (en) Ferrous alloy
JP3509634B2 (en) Low alloy cast steel and its heat treatment method
JPH02185940A (en) Alloy foil for liquid-phase diffusion joining capable of joining in oxidizing atmosphere
JPS63171857A (en) Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
JP3285055B2 (en) Molding machine cylinder and method of manufacturing the same
US4049432A (en) High strength ferritic alloy-D53
EP0188995B1 (en) High chromium cast steel for high-temperature pressure container and method for the thermal treatment thereof
US3804602A (en) Cobalt alloy steel composite article
JP3384515B2 (en) High thermal expansion steel and high strength high thermal expansion bolt
JPH02294452A (en) Ferritic heat resisting steel excellent in toughness in welded bond zone
US3222164A (en) Brazing alloy and process using the same
US3755887A (en) Method of making cobalt alloy steel composite article
US3305328A (en) Composite clad steel product