JPS5968117A - Lead switch - Google Patents

Lead switch

Info

Publication number
JPS5968117A
JPS5968117A JP17890082A JP17890082A JPS5968117A JP S5968117 A JPS5968117 A JP S5968117A JP 17890082 A JP17890082 A JP 17890082A JP 17890082 A JP17890082 A JP 17890082A JP S5968117 A JPS5968117 A JP S5968117A
Authority
JP
Japan
Prior art keywords
contact
alloy
piece
phosphoric acid
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17890082A
Other languages
Japanese (ja)
Other versions
JPH0113177B2 (en
Inventor
章 田中
茂 斉藤
馬場 正典
小熊 俊郎
修一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17890082A priority Critical patent/JPS5968117A/en
Publication of JPS5968117A publication Critical patent/JPS5968117A/en
Publication of JPH0113177B2 publication Critical patent/JPH0113177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Contacts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a1発明の技術分野 本発明はガラス管の中に両端から磁性材料のリード片を
封入し、リード片の互いにオーバラップする部分で接点
の開閉を行なわ−Vるリードスイッチに関する。
Detailed Description of the Invention (a1 Technical Field of the Invention The present invention is a glass tube in which lead pieces made of magnetic material are sealed from both ends, and contacts are opened and closed at mutually overlapping parts of the lead pieces. Regarding switches.

fbl技術の背景 通常のリードスイッチは第1図(イ)に示すように、ガ
ラス管lの両端から1対のリード片2”、3゛が挿入さ
れ、不活性ガスの雰囲気中で封止されている。そしてガ
ラス管1の外部に配置された励磁コイル4に通電すると
、両リート片2°、3°を通る磁束で、リード片のオー
バラップした接点部分のギャップ5が閉じ°ζスイッヂ
オンする。次に励磁コイル4を非通電状態にすると、接
点ギャップ5の磁気吸引力が消失して接点ギャップ5が
開き、スイッチオフとなる。
Background of FBL Technology In a typical reed switch, as shown in Figure 1 (a), a pair of lead pieces 2'' and 3'' are inserted from both ends of a glass tube l, and the switch is sealed in an inert gas atmosphere. Then, when the excitation coil 4 placed outside the glass tube 1 is energized, the magnetic flux passing through both the reed pieces 2° and 3° closes the gap 5 at the overlapped contact portion of the reed pieces, turning on the °ζ switch. Next, when the excitation coil 4 is de-energized, the magnetic attraction force of the contact gap 5 disappears, the contact gap 5 opens, and the switch is turned off.

リード片の内端の接点部は、(ロ)のようにリード片3
’ (2’)の先端に貴金属材料からなる接点6”を設
け”ζ、接触抵抗が小さくなるようにしている。リード
片の磁性材料としては、通常パーマロイ特に5270イ
と呼ばれる52%ニッケルと48%鉄の合金相が広く用
いられる。接点材料としては金、銀、ロジウム、銅また
は金糸合金(Au−co、、Au−N1)などの材料が
用いられる。
The contact part at the inner end of the lead piece is connected to the lead piece 3 as shown in (b).
A contact point 6'' made of a noble metal material is provided at the tip of ``ζ''(2') to reduce contact resistance. Permalloy, especially an alloy phase of 52% nickel and 48% iron called 5270i, is widely used as the magnetic material for the reed piece. As the contact material, materials such as gold, silver, rhodium, copper, or gold thread alloy (Au-co, Au-N1) are used.

(C1従来技術とその問題点 ところが金や銀などのような軟い材料を接点ltA料と
して用いた場合、接点材料同士の粘着現象によって、励
磁コイル4を非通電状態にして励磁磁界を取り去っても
、接点ギャップ5が閉じたままとなり易い。これを防止
するために、リード片に接点材料をメッキした後、水素
雰囲気の電気炉中で20分程度の熱処理を行ない5.下
地金属と接点材料を拡散して、下池金属が接点の表面に
一部析出するようにしている。
(C1 Prior art and its problems) However, when a soft material such as gold or silver is used as the contact LTA material, the excitation coil 4 is de-energized and the excitation magnetic field is removed due to the adhesive phenomenon between the contact materials. Also, the contact gap 5 tends to remain closed.In order to prevent this, after plating the contact material on the lead piece, heat treatment is performed for about 20 minutes in an electric furnace in a hydrogen atmosphere. is diffused so that a portion of Shimoike metal precipitates on the surface of the contact.

ところがこの方法は、粘着は多少軽減される反面次のよ
うな欠点が生じる。
However, although this method reduces adhesion to some extent, it has the following drawbacks.

(11パーマロイ中のFeのために接点の表面が酸化し
易く、接触抵抗が不安定になり易い。即ちFe−Niの
酸化皮膜が形成され鉄と酸素が共存するため境界抵抗(
皮膜抵抗)が高くなり、ロジウム(Rh)接点に比べて
接触抵抗のレベルが高(なる。
(11 Due to Fe in permalloy, the surface of the contact is easily oxidized and the contact resistance is likely to become unstable. In other words, an oxide film of Fe-Ni is formed and iron and oxygen coexist, so the boundary resistance (
This results in a higher level of contact resistance than rhodium (Rh) contacts.

(2)リートスイッチのガラス管内の微量の残留酸素に
よって、無負荷動作の場合に接点閉止時のiE突エネル
ギーで酸化皮膜が形成され、かつ動作回数と共に増大す
る。つまり動作回数の増大と共に、ブリッジ消耗即ちp
ip &craterを生成し、接触抵抗増大、粘着(
s ticking)などの接触障害を引き起す。その
理由は、閉じた接点間に電流が流れると、そのときのジ
ュール熱で温度が上昇し、接点表面が軟化して粘性が低
下する。しかも正側が負側より高温になるため、正側の
軟化した接点材料が低温の負側の接点に粘着し、正側が
ブリッジ消耗して窪みができる。また通電時のショート
・アークによって負側に発生したイオンが正側の接点表
面に衝突し、そのとき発生した粉末が負側の接点表面に
堆積し、窪みと隆起を更に促進する。そしてこの窪みに
隆起が嵌入するとロックされると共に粘着し、励磁磁界
を取り去ったときの接点の開離が困難になる。これらの
現象ば特に50V1100m八程度の領域で発生し易い
(2) Due to a small amount of residual oxygen in the glass tube of the reet switch, an oxide film is formed by the iE thrust energy when the contact closes during no-load operation, and increases with the number of operations. In other words, as the number of operations increases, the bridge wears out, i.e., p
It generates ip & crater, increases contact resistance, and reduces adhesion (
This may cause contact problems such as sticking. The reason is that when current flows between closed contacts, the temperature rises due to Joule heat, which softens the contact surface and reduces viscosity. Moreover, since the positive side becomes hotter than the negative side, the softened contact material on the positive side sticks to the cold negative side contact, causing bridge wear on the positive side and creating a depression. In addition, ions generated on the negative side due to a short arc during energization collide with the positive side contact surface, and the powder generated at that time is deposited on the negative side contact surface, further promoting depressions and protrusions. When the protuberance fits into this recess, it becomes locked and adheres, making it difficult to separate the contacts when the excitation magnetic field is removed. These phenomena are particularly likely to occur in a region of about 50V1100m8.

このような拡散処理を行なう方法のほかに、金のメッキ
液に3%程度のCOを混入して合金メッキを行なうこと
により、接点材料の全表面に3%のCOが混在したいわ
ゆる硬質金が得られ、耐粘着性が向上する。しかも接点
表面に酸化しゃずいFeが現れないので、52アロイと
金メツキ間を拡散処理したものより、接触抵抗も改善さ
れる。
In addition to this method of diffusion treatment, by mixing approximately 3% CO into the gold plating solution and performing alloy plating, so-called hard gold containing 3% CO mixed on the entire surface of the contact material can be formed. obtained, and the adhesion resistance is improved. Furthermore, since unoxidized Fe does not appear on the contact surface, the contact resistance is improved compared to the case where the 52 alloy and the gold plating are subjected to diffusion treatment.

しかしながら拡散処理したものと違って、合金メッキさ
れた接点と下地の5270イとの結合が弱く、温度変化
を繰り返し受けることによって、接点の剥離が起きやす
い。特に5270イの電気抵抗率は、35μΩ・cmと
高いため、接点を通る電流による発熱が大きく、高温の
温度サイクルを受けることになり、一層剥離し易い。
However, unlike those subjected to diffusion treatment, the bond between the alloy-plated contacts and the underlying 5270I is weak, and the contacts tend to peel off due to repeated temperature changes. In particular, the electrical resistivity of 5270I is as high as 35 μΩ·cm, so the current passing through the contact generates a large amount of heat, and the contact is subjected to high-temperature cycles, making it even more likely to peel off.

本発明の出願人は、このような問題を解消するために、
下地自身が多量のCOを含むリート片材料としてFe(
10〜18%)−Co(残)合金を提案した。この磁性
材料を用いるとCoが82〜90%含まれ−ζいるため
、接点材料として金メッキを行なった後拡散処理すれば
、酸化し易いFeは析出せずCOが析出するので、酸化
して接触抵抗を高くすることはなく、かつ接点材料とり
一ト片との密着性も向上する。
In order to solve such problems, the applicant of the present invention has
Fe(
10-18%)-Co(balance) alloy was proposed. When this magnetic material is used, it contains 82 to 90% Co, so if it is gold-plated as a contact material and then subjected to a diffusion treatment, CO, which is easily oxidized, will not precipitate, so it will oxidize and contact The resistance does not increase, and the adhesion between the contact material and the piece is improved.

しかしながらFe(10〜18%) −Co (残)合
金を用いた場合、別の問題として、メブキ処理の前段階
で行なわれるパリ取りを電解研摩で行なった場合は、接
点材料とり一ト片との密着が悪化し、期待した効果が得
られない。即ちり−1”片は第2図に示すように、丸棒
7の一部をプレスで平に潰して板状に形成し、この板状
部71の先端に接点を設りるが、プレス加工時や切断時
に発生したバリア2やカエリがリード片先端に残ってい
ると、接点の開閉動作に支障をきたし、接点動作の信頼
性が低下する。このパリを除去するために、機械的方法
として、研摩材と一緒に掻きまぜるノくレル研摩がある
が、この方法ではり−1・片目体が変形する恐れがある
。またバレル研摩時はり一ト片がバラバラになっており
且つ研摩材と混合されているので、バレル研摩からメ・
ノキ工程へ移行する際のハンドリングが困難で作業性が
悪い。これに対し電解研摩法は、電解液中に浸漬するだ
けでよいので機械的に攪拌するバレル研摩のようにリー
ド片同士が衝突して変形をきたすことはなく、且つ一定
の状態で保持できるので、次のメ・ノキ工程へ移行する
際のハンドリングは容易で作業性も優れている。
However, when Fe (10 to 18%) - Co (remainder) alloy is used, another problem is that if the deburring performed before the coating process is performed by electrolytic polishing, the contact material and one piece are The adhesion of the product deteriorates, and the desired effect cannot be obtained. That is, as shown in FIG. 2, the dust-1" piece is formed by flattening a part of the round bar 7 with a press to form a plate shape, and a contact point is provided at the tip of this plate part 71. If barriers 2 or burrs generated during processing or cutting remain on the tip of the lead piece, this will interfere with the opening/closing operation of the contact and reduce the reliability of the contact operation.In order to remove this burr, mechanical methods are used. As a method of barrel polishing, there is a method called barrel polishing in which the abrasive is stirred together with the abrasive, but with this method there is a risk that the beam 1 and one eye may be deformed.Also, during barrel polishing, the beam pieces are broken apart and the abrasive is Since it is mixed with
Handling is difficult and workability is poor when transitioning to the wood cutting process. On the other hand, the electropolishing method requires only immersion in an electrolytic solution, so unlike barrel polishing, which uses mechanical stirring, the lead pieces do not collide with each other and cause deformation, and can be held in a constant state. It is easy to handle and has excellent workability when moving on to the next metal/noki process.

ところで5270イの電解研摩は、リン酸濃度が50〜
70%のリン酸液(FI3PO1)が電解研摩液として
行なわれるが、同様のリン酸液でFeが20%以下のF
e (10〜18%> −CO<残)合金を電解研摩す
ると、研摩面が荒れやすく、電解ピット即ぢ微小な窪み
が生じやすい。そのため折角COを多く含有したFe(
10〜18%)−Go (残)合金を利用しても、次の
メブキ処理における接点材料とリード片との密着性を阻
害し、所期の目的を達成できない。
By the way, electrolytic polishing of 5270i requires a phosphoric acid concentration of 50~
A 70% phosphoric acid solution (FI3PO1) is used as the electrolytic polishing solution, but a similar phosphoric acid solution containing less than 20% Fe
e (10-18%>-CO<remainder) When an alloy is electrolytically polished, the polished surface tends to be rough, and electrolytic pits and minute depressions are likely to occur. Therefore, Fe containing a large amount of CO (
Even if the (10 to 18%) -Go (remainder) alloy is used, it will impede the adhesion between the contact material and the lead piece in the subsequent coating process, making it impossible to achieve the intended purpose.

(d)発明の目的 本発明は、従来のり一ドスイソチにおけるこのような問
題を解消し、リード片と接点との密着性が良く、且つ粘
着が発生しにりく、接触抵抗も低いリードスイッチを実
現することを目的とする。
(d) Purpose of the Invention The present invention solves these problems in the conventional glued switch, and realizes a reed switch that has good adhesion between the reed piece and the contact, is less prone to adhesion, and has low contact resistance. The purpose is to

te1発明の構成 本発明はこの目的を達成するために、リン酸濃度が90
%以上のリン酸液で電解研摩してパリ取りしたFe  
(10〜18%)−Co  (残)合金の強磁性材料か
らなるリード片がその接点部に接点を被着して密封容器
に封入されている構成を採っている。
te1 Structure of the Invention In order to achieve this object, the present invention has a phosphoric acid concentration of 90%.
Fe deburred by electrolytic polishing with phosphoric acid solution of % or more
A structure is adopted in which a lead piece made of a ferromagnetic material of (10 to 18%)--Co (remainder) alloy is sealed in a sealed container with a contact attached to its contact portion.

(f1発明の実施例 次に本発明によるリードスイ・ノチが実際上どのように
具体化されるかを実施例で説明する。第3図は本発明に
よるリードスイッチを示した断面図である。リード片2
.3は、52ア1コイに代えζFe(10〜18%)−
Co(残)合金で構成した。そしてこのり−1!片2.
3は、プレス加]二後に、リン酸濃度が90%以上のリ
ン酸液で電解研摩してパリ取りして表面状態を良くして
から、接点材料をメッキし、且つ拡散されている。6は
このようにしてFB (10〜18%) −Co (残
)合金のり−I′片2.3の先端に金メッキと拡散処理
で作成された接点である。またガラス簀1申には、不活
性ガスとしてアルゴンが封入されている。
(f1 Embodiment of the Invention Next, how the reed switch according to the present invention is actually embodied will be explained by way of an embodiment. FIG. 3 is a sectional view showing the reed switch according to the present invention. Piece 2
.. 3 is ζFe (10-18%) in place of 52A1 carp.
It was composed of a Co (residue) alloy. And Konori-1! Piece 2.
3 is pressing] After pressing, the contact material is electrolytically polished with a phosphoric acid solution having a phosphoric acid concentration of 90% or more to remove deburrs and improve the surface condition, and then the contact material is plated and diffused. Reference numeral 6 denotes a contact point made by gold plating and diffusion treatment on the tip of the FB (10-18%)-Co (remainder) alloy paste-I' piece 2.3. Furthermore, the glass cage is filled with argon as an inert gas.

第4図はこのリードスイッチの製造方法を工程順に示す
ブロック図である。まずFe(10〜18%)−CO<
残)合金の丸棒をプレスして、ガラス管1内に封入され
る部分を平に潰して所定の弾性特性を得る。次に所定の
長さに切断した後、プレスによる磁気特性の劣化を回復
するために、所定の条件で熱処理(アニール)を行なう
FIG. 4 is a block diagram showing the manufacturing method of this reed switch in order of steps. First, Fe(10-18%)-CO<
(Remaining) Press the alloy round bar to flatten the portion to be enclosed in the glass tube 1 to obtain predetermined elastic properties. Next, after cutting to a predetermined length, heat treatment (annealing) is performed under predetermined conditions in order to recover the deterioration of magnetic properties caused by pressing.

そして本発明の方法でリード片2.3の電解研摩を行な
う。電解研摩の条件は、リン酸濃度が90%以上のリン
酸液を用いて行なう。
Then, the lead piece 2.3 is electrolytically polished using the method of the present invention. The electropolishing conditions are such that a phosphoric acid solution having a phosphoric acid concentration of 90% or more is used.

即ち5270イと同じ条件で電解研摩すると表面状態が
悪化するのは、Fe−Co合金が、52アロイに比べて
陽極酸化によって生じる酸化膜の均一性が劣り、COの
溶出が激しくなるためと考えられる。そこで電解研摩液
の組成を、リン酸濃度が90%以上の濃リン酸液(If
fi PO+ )とし、更に必要に応じてエチレングリ
コール等を主成分とする添加剤を加える。そしてリード
片を陽極にして、電解研摩を行なう。
In other words, the reason why the surface condition deteriorates when electrolytically polished under the same conditions as 5270I is thought to be because the oxide film formed by anodizing the Fe-Co alloy is less uniform than that of the 52 alloy, and the elution of CO becomes more intense. It will be done. Therefore, the composition of the electrolytic polishing solution was changed to a concentrated phosphoric acid solution with a phosphoric acid concentration of 90% or more (If
fi PO+ ), and additives containing ethylene glycol or the like as a main component are added as necessary. Electrolytic polishing is then performed using the lead piece as an anode.

このような濃リン酸液でFe(10〜18%)−Co 
(残)合金を電解研摩してパリ取りしたところ、従来の
電解研摩液で電解研摩したものに比べて、ピントは発生
せず表面荒れのない均一な状態が得られた。
Fe (10-18%)-Co with such a concentrated phosphoric acid solution
When the (remaining) alloy was electrolytically polished to remove burrs, no focusing occurred and a uniform condition with no surface roughness was obtained compared to those electrolytically polished with a conventional electrolytic polishing solution.

こうしてハリ取りしたリード片に、金などの接点材料を
メッキする。前記のようにリート片は濃リン酸液によっ
て表面状態が均一になっ“ζいるので、メッキの密着性
は充分である。接点材料がメッキされたリード片を更に
熱処理して、接点材料とリ−(・片間の拡散を行なう。
The lead pieces that have been sharpened in this way are plated with a contact material such as gold. As mentioned above, the surface of the reed piece is made uniform by the concentrated phosphoric acid solution, so the adhesion of the plating is sufficient.The reed piece plated with contact material is further heat-treated to bond the contact material and -(・Perform diffusion between pieces.

即ち接点材料がメッキされたり一ト片2.3を、炉に入
れζ800±100 ’cの温度で、15〜60分間、
水素(I(2)中で熱処理し、接点表面にCoを3〜l
O%原子量拡散させる。前記のように濃リン酸液でパリ
取りしたごとによりメッキの密着が向上し、更にリード
片と接点材料間が拡散処理されるので、リー1”片と接
点材料との密着は一層確実となる。
That is, the piece 2.3 on which the contact material is plated is placed in a furnace at a temperature of ζ800±100'C for 15 to 60 minutes.
Heat treated in hydrogen (I(2)) and added 3 to 1 Co on the contact surface.
0% atomic weight diffusion. As mentioned above, the adhesion of the plating is improved by deburring with concentrated phosphoric acid solution, and since the gap between the lead piece and the contact material is subjected to diffusion treatment, the adhesion between the lead piece and the contact material becomes even more reliable. .

最後にアルゴンガスの雰囲気中でガラス管中に封着し、
検査を行なうことによって、全製造工程が終了する。
Finally, it is sealed in a glass tube in an argon gas atmosphere.
The entire manufacturing process is completed by performing the inspection.

前記のようにしてリード片中のGoを全接点の表面まで
拡散させたときの、Co析出量と粘着特性および接触抵
抗との関係を第5図に示す。横軸は全接点表面へのCo
析出量(%)、縦軸は粘着特性(磁歪試験開放値変化率
)と接触抵抗値である。Coの拡散量が3%以上になる
と磁歪試験開放値変化率が20%以下になり、粘着性が
非常に向上する。一方接触抵抗は、COの拡散量が少な
くて全部金の方が好ましいが、析出量が6%以下であれ
ば金のみの場合の30Ωと殆ど変わらない。
FIG. 5 shows the relationship between the amount of Co precipitated, the adhesive property, and the contact resistance when the Go in the lead piece is diffused to the surfaces of all the contacts as described above. The horizontal axis is Co applied to all contact surfaces.
The amount of precipitation (%), the vertical axis is the adhesive property (magnetostriction test open value change rate) and contact resistance value. When the Co diffusion amount is 3% or more, the magnetostriction test open value change rate is 20% or less, and the adhesiveness is greatly improved. On the other hand, the contact resistance is preferably all gold because the amount of CO diffused is small, but if the amount of precipitation is 6% or less, the contact resistance is almost the same as 30Ω in the case of only gold.

10%程度までは60Ω以下となり、実用上さほど支障
はない。
Up to about 10%, it becomes 60Ω or less, which does not pose much of a problem in practice.

第6図はFe(10〜18%)−Go(残)合金の拡t
i&処理温度、時間とCOの析出量との関係を示す図で
、横軸はアニール温度、縦軸はCo析出量である。前記
のように粘着性も接触抵抗も許容値を示すc o +i
a量は3〜10%程度であるが、この程度のCo析出量
を得るには、アニール時間が15分の場合は、700〜
900°C程度の温度が適当で、60分の場合は、76
0℃以下が適当である。
Figure 6 shows an enlarged view of the Fe (10-18%)-Go (remainder) alloy.
This is a diagram showing the relationship between the i& treatment temperature and time and the amount of CO precipitated, where the horizontal axis is the annealing temperature and the vertical axis is the amount of Co precipitated. As mentioned above, both adhesion and contact resistance show acceptable values c o +i
The amount of a is about 3 to 10%, but in order to obtain this amount of Co precipitation, when the annealing time is 15 minutes, it is about 700 to 10%.
A temperature of about 900°C is appropriate and for 60 minutes, 76
A temperature of 0°C or lower is suitable.

第7図は]?e−Co合金の熱膨張率を示す図で、横軸
はコハルl−(Co)中の鉄(Fe)の含有率、縦軸ば
熱膨張イシである。Fe−Co合金のり−1・片2.3
を直接ガラス管lに封着するため、該リーl”片2.3
を従来の5270イなどと同様にガラス管1に封着した
場合にガラス管にクランクが発生したりしないように、
ソー1′片2.3とガラス管1との熱膨張率が等しいこ
とが要求される。
Figure 7]? This is a diagram showing the coefficient of thermal expansion of an e-Co alloy, where the horizontal axis is the content of iron (Fe) in cohar l-(Co), and the vertical axis is the thermal expansion coefficient. Fe-Co alloy glue-1/piece 2.3
In order to seal directly to the glass tube l, the reel l'' piece 2.3
In order to prevent a crank from occurring in the glass tube when it is sealed to the glass tube 1 in the same way as the conventional 5270I,
It is required that the saw 1' piece 2.3 and the glass tube 1 have the same coefficient of thermal expansion.

Fe−Co合金の場合は、Feの含有率によって、ガラ
ス管とほぼ等しい熱膨張率がi8られる。
In the case of an Fe-Co alloy, the coefficient of thermal expansion i8 is approximately equal to that of a glass tube depending on the Fe content.

7 即ちガラス管の熱膨張率は117.5±2.5X 10
/°C程度であるが、本発明で用いられるFe−C。
7 In other words, the coefficient of thermal expansion of the glass tube is 117.5±2.5X 10
/°C, but the Fe-C used in the present invention.

合金は、Feの含有率が8.5〜20%の領域では、ガ
ラスと同程度の熱膨張率となっている。
The alloy has a thermal expansion coefficient comparable to that of glass in the range of Fe content of 8.5 to 20%.

第8図はFe−Co合金の電気抵抗率を示J図で、横軸
はコバルト(Co)中の鉄(Fe)の含有率、縦軸は電
気抵抗率である。ガラスとの熱膨張率が等しい8.5〜
20%Feの領域では、電気抵抗率は12〜14μΩc
m程度で、従来量も多く使用されているリート片祠料で
ある52アロイの電気抵抗率の35μΩcmよりはるか
に優れている。このようにFe−Co合金は電気抵抗率
も低いため、通電した際の温度上昇が小さく、52アロ
イより優れていることが確認された。
FIG. 8 is a J diagram showing the electrical resistivity of the Fe--Co alloy, where the horizontal axis is the iron (Fe) content in cobalt (Co), and the vertical axis is the electrical resistivity. The coefficient of thermal expansion is equal to that of glass: 8.5~
In the 20% Fe region, the electrical resistivity is 12-14 μΩc
The electrical resistivity is about 35 μΩcm, which is far superior to the 35 μΩcm of 52 alloy, which is a conventionally widely used REIT abrasive material. As described above, since the Fe--Co alloy has a low electrical resistivity, the temperature rise when energized is small, and it was confirmed that it is superior to the 52 alloy.

第9図は12%Fe−88%CO合金と52アロイとの
、電流値に対する抵抗変化率を示す図で、12%FG−
88%Co合金の方が52アロイより優れている。第1
0図は12%Fe−88%C。
Figure 9 is a diagram showing the resistance change rate with respect to the current value of the 12%Fe-88%CO alloy and the 52 alloy.
88% Co alloy is better than 52 alloy. 1st
Figure 0 is 12%Fe-88%C.

合金の磁気特性を示すヒステリシスカーブである。This is a hysteresis curve showing the magnetic properties of the alloy.

以上の各特性をまとめると表・1の通りである。The above characteristics are summarized in Table 1.

表・1 第11図は従来の5270イと本発明によるFe(10
〜18%)−Co(残)合金ノり一ト片との寿命特性を
、窒素(N2)封入の場合と本発明によるアルゴン(A
r)封入の場合を比較する図である。この図から明らか
なように、本発明のFe(10〜18%)−Co(残)
合金を用いたり−Fスイッチは、窒素封止した場合でも
従来のアルゴン封止したものより優れており、Fe  
(10〜18%) −Co (残)合金の緒特性の効果
が現れている。またアルゴン封止したFe(10〜18
%)−Co(残)合金のり一トスイソチは、窒素封止し
たものより更に寿命が向上している。
Table 1 Figure 11 shows the conventional 5270I and the present invention Fe(10
~18%)-Co (remainder) alloy shavings were compared with nitrogen (N2) encapsulation and argon (A) according to the present invention.
r) A diagram comparing the case of inclusion. As is clear from this figure, the Fe (10-18%)-Co (remainder) of the present invention
-F switches using alloys are superior to conventional argon-sealed ones even when sealed with nitrogen;
(10 to 18%) -Co (remainder) The effect of the alloy properties appears. In addition, Fe (10 to 18
%)-Co (remainder) alloy paste has a longer lifespan than that sealed with nitrogen.

(g1発明の効果 以上の各特性図からも明らかなように、Fe(10〜1
8%) −Co (残)合金はガラス管との封着性、電
気的特性および磁気特性などのいずれも極めて優れてお
り、リード片としての特性は、52アロイよりも有望で
ある。本発明はこのようなFe (10〜18%)−〇
〇 (残)合金のり一1−片のパリ取りを濃リン酸液の
電解研摩で行ない、表面状態を均一にしたり−ト片に接
点材料をノ・ツキし拡nt処′理した構成になっている
。そのため、5270イなどと違って、接触抵抗を悪化
させるFeの析出量が少なく酸化に対し安定なCOが析
出するので、接触抵抗は極めて低く、且つアルゴン封止
により酸化が一層抑制され極めて長寿命となる。また接
点表面までコバルトが析出しているので接点の粘着性も
改善され、リード片のハリ取り時の表面荒れが改善され
、且つIJ −1−片と接点材料とが拡散されるので、
接点材料とリード片との密着性も極めて優れ、一層長寿
命となる。
(G1 As is clear from the characteristic diagrams described above, Fe(10 to 1
8%) -Co (remainder) alloy has excellent sealing properties with glass tubes, electrical properties, magnetic properties, etc., and its properties as a lead piece are more promising than 52 alloy. The present invention deburrs a piece of Fe (10 to 18%) -〇〇 (remaining) alloy paste by electrolytic polishing with a concentrated phosphoric acid solution to make the surface condition uniform and to form a contact point on the piece. It has a structure in which the material is punched and treated with an enlarged nt. Therefore, unlike 5270I, the amount of precipitated Fe that worsens contact resistance is small, and CO, which is stable against oxidation, is precipitated, so contact resistance is extremely low, and oxidation is further suppressed by argon sealing, resulting in an extremely long life. becomes. In addition, since cobalt is precipitated to the contact surface, the adhesion of the contact is improved, the surface roughness when removing the lead piece is improved, and the IJ-1 piece and the contact material are diffused.
The adhesion between the contact material and the lead piece is also extremely good, resulting in an even longer life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通電のリードスイッチの全体構成と接点部を示
す断面図、第2図はリード片のパリ取り工程を示す図、
第3図は本発明によるリードスイッチを示す断面図、第
4図は本発明によるリードスイッチの製造]2程を示す
工程図である。第5図以下は本発明によるリードスイッ
チの緒特性を示すもので、第5図は粘着特性と接触抵抗
特性を示す図、第6図はアニール温度・時間とCO析出
量の関係を示す図、第7図はFe含有量と熱膨張率との
関係を示す図、第8図はFe含有率と電気抵抗率との関
係を示す図、第9図は12Fe、C。 合金の抵抗変化率を示す図、第10図は12Fe、Co
合金のヒステリシスカーブを示す図、第11図は封入ガ
スの違いによる寿命特性を示す図である。 図において、■はガラス管、2.3はり−1−片、4は
励磁コイル、5は接点ギャップ、6は全接点、71はり
−1−片の平板状部、72はパリをそれぞれ示す。
Fig. 1 is a sectional view showing the overall structure and contact portion of the energized reed switch, Fig. 2 is a diagram showing the process of deburring the reed piece,
FIG. 3 is a sectional view showing a reed switch according to the present invention, and FIG. 4 is a process diagram showing Step 2 of manufacturing the reed switch according to the present invention. Figure 5 and the following diagrams show the initial characteristics of the reed switch according to the present invention; Figure 5 shows the adhesive properties and contact resistance characteristics; Figure 6 shows the relationship between the annealing temperature and time and the amount of CO precipitated; FIG. 7 is a diagram showing the relationship between Fe content and thermal expansion coefficient, FIG. 8 is a diagram showing the relationship between Fe content and electrical resistivity, and FIG. 9 is a diagram showing the relationship between Fe content and electrical resistivity. A diagram showing the resistance change rate of alloys, Figure 10 is 12Fe, Co
FIG. 11, which is a diagram showing the hysteresis curve of the alloy, is a diagram showing the life characteristics depending on the difference in filled gas. In the figure, ■ is a glass tube, 2.3 beam-1 piece, 4 is an excitation coil, 5 is a contact gap, 6 is all contacts, 71 is a flat part of beam-1 piece, and 72 is a paris, respectively.

Claims (1)

【特許請求の範囲】 (11リン酸濃度が90%以上のリン酸液で電解研摩し
てパリ取りしたFe(10〜18%) −C。 (残)合金の強磁性材料からなるリード片がその接点部
に接点を被着して密封容器に封入されていることを特徴
としたリードスイッチ。 (2)前記密封容器にはアルゴンガスが封入されている
ことを特徴とする特許請求の範囲第(11項記載のり一
]Sスイッチ。
[Claims] (11 Fe (10 to 18%) deburred by electrolytic polishing with a phosphoric acid solution with a phosphoric acid concentration of 90% or more) -C. A reed switch characterized in that the contact portion is covered with a contact and is enclosed in a sealed container. (2) The sealed container is filled with argon gas. (Node described in Section 11) S switch.
JP17890082A 1982-10-12 1982-10-12 Lead switch Granted JPS5968117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17890082A JPS5968117A (en) 1982-10-12 1982-10-12 Lead switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17890082A JPS5968117A (en) 1982-10-12 1982-10-12 Lead switch

Publications (2)

Publication Number Publication Date
JPS5968117A true JPS5968117A (en) 1984-04-18
JPH0113177B2 JPH0113177B2 (en) 1989-03-03

Family

ID=16056645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17890082A Granted JPS5968117A (en) 1982-10-12 1982-10-12 Lead switch

Country Status (1)

Country Link
JP (1) JPS5968117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014000A1 (en) * 2015-07-17 2017-01-26 住友電気工業株式会社 Lead switch wire rod, lead switch lead piece, and lead switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014000A1 (en) * 2015-07-17 2017-01-26 住友電気工業株式会社 Lead switch wire rod, lead switch lead piece, and lead switch
JP2017025364A (en) * 2015-07-17 2017-02-02 住友電気工業株式会社 Wire rod for lead switch, lead piece for lead switch and lead switch
CN107923002A (en) * 2015-07-17 2018-04-17 住友电气工业株式会社 Reed switch wire rod, reed switch reed and reed switch
EP3327160A4 (en) * 2015-07-17 2019-02-20 Sumitomo Electric Industries, Ltd. Lead switch wire rod, lead switch lead piece, and lead switch
US10731235B2 (en) 2015-07-17 2020-08-04 Sumitomo Electric Industries, Ltd. Wire for reed switch, reed piece for reed switch, and reed switch

Also Published As

Publication number Publication date
JPH0113177B2 (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US3686746A (en) Closing wire terminals
JPS6254048A (en) Copper alloy for lead frame
US4502031A (en) Electromagnet and method of producing the same
JPS5968117A (en) Lead switch
EP0132596A2 (en) Solderable nickel-iron alloy article and method for making same
WO2018117021A1 (en) Tape-like contact and method for manufacturing same
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPS5968116A (en) Lead switch
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JPS5968133A (en) Lead switch
US5348639A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPS61174344A (en) Copper alloy for lead frame
JPS5828115A (en) Method of producing contact for lead switch
JPH01286407A (en) Rare earth permanent magnet superior in corrosion resistance and its manufacture
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance
JPS5913237Y2 (en) reed switch
JP2883144B2 (en) Method for producing R-TM-B permanent magnet with improved corrosion resistance
JPS60136118A (en) Method of producing vacuum bulb
JPH08325677A (en) Corrosion resistant sintered magnetic alloy
JPH0582320A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JPH0425650B2 (en)
JPS61276950A (en) Fe-ni alloy having good plating property and solderability
JP3070805B2 (en) Method for manufacturing Ag-NiO electrical contact
JPS62263942A (en) Copper alloy for lead frame