JPH0582320A - R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity - Google Patents

R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity

Info

Publication number
JPH0582320A
JPH0582320A JP3239461A JP23946191A JPH0582320A JP H0582320 A JPH0582320 A JP H0582320A JP 3239461 A JP3239461 A JP 3239461A JP 23946191 A JP23946191 A JP 23946191A JP H0582320 A JPH0582320 A JP H0582320A
Authority
JP
Japan
Prior art keywords
permanent magnet
electrolytic
plating
corrosion resistance
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3239461A
Other languages
Japanese (ja)
Inventor
Atsushi Tagaya
敦 多賀谷
Motoharu Shimizu
元治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3239461A priority Critical patent/JPH0582320A/en
Publication of JPH0582320A publication Critical patent/JPH0582320A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To remarkably improve corrosion resistance and film thickness uniformity insufficient in conventional plating in a magnet containing rare earth elements and iron as main ingredients. CONSTITUTION:An R-TM-B series permanent magnet having improved corrosion resistance and film thickness uniformity comprises double layers formed of an electrolytic Cu-plated layer and an electrolytic Ni-plated layer on the surface of the R-TM-B series permanent magnet substantially containing by weight 5-40% of R (R is a combination of one or more types of rare earth elements including Y), 50-90% of TM (TM is transition metal containing Fe as a main ingredient) and 0.2-8% of B (boron).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−TM−B系永久磁
石であって、磁石体において電解によるCuめっき層を
設けることにより耐食性及び膜厚均一性を著しく改善し
たものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-TM-B type permanent magnet having a corrosion-resistant and film-thickness remarkably improved by providing a Cu plating layer by electrolysis in a magnet body.

【0002】[0002]

【従来の技術】電気・電子機器の高性能・小型化に伴な
って、その一部品たる永久磁石にも同様の要求が強まっ
てきた。すなわち以前の最強の永久磁石は希土類・コバ
ルト(R−Co)系であったが、近年、より強力なR−
TM−B系永久磁石が台頭してきた(特開昭59−46
008号)。ここにRはYを含む希土類元素の1種又は
2種以上の組合わせであり、TMはFe,Co等の遷移
金属中心として、一部を他の金属元素又は非金属元素で
置換したもの、Bは硼素である。しかし、R−TM−B
系永久磁石は極めて錆やすいという問題点があった。そ
のため、耐食性を改善するために、永久磁石体表面に耐
酸化性の被覆層を設ける手段がとられきた。被覆層の種
類としては、電解Niめっき、耐酸化性樹脂、Alイオ
ンプレーティング等が提案されており、とりわけ電解N
iめっきは簡易な処理でR−TM−B系永久磁石の耐食
性を向上するものとして注目されている(特開昭60−
54406号)。電解Niめっきは、耐酸化性樹脂と比
較して表面被覆層の機械的強度に優れており、また被覆
層自体の吸湿性がほとんどないという長所を有してい
る。
2. Description of the Related Art As electric and electronic devices have become more sophisticated and smaller in size, the same requirements have been increased for a permanent magnet, which is one of the components. That is, the strongest permanent magnet before was a rare earth / cobalt (R-Co) system, but in recent years, a stronger R-co
TM-B system permanent magnets have emerged (Japanese Patent Laid-Open No. 59-46).
No. 008). Here, R is one or a combination of two or more rare earth elements including Y, TM is a transition metal center such as Fe or Co, and a part thereof is replaced with another metal element or non-metal element, B is boron. However, R-TM-B
The system permanent magnet has a problem that it is extremely rusty. Therefore, in order to improve the corrosion resistance, a measure has been taken to provide an oxidation resistant coating layer on the surface of the permanent magnet body. As the type of coating layer, electrolytic Ni plating, oxidation resistant resin, Al ion plating, etc. have been proposed.
The i-plating has been attracting attention because it improves the corrosion resistance of the R-TM-B type permanent magnet with a simple treatment (Japanese Patent Laid-Open No. 60-
54406). Electrolytic Ni plating has the advantage that the surface coating layer is superior in mechanical strength to the oxidation resistant resin, and that the coating layer itself has almost no hygroscopicity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電解N
iめっきによる手法は、めっき電流が磁石体のコーナ部
などの周辺部に集中しやすいことから周辺部の膜厚が厚
くなり、内穴及び内径部には電流が流れにくいことから
内穴及び内径部の膜厚が薄くなるという傾向を有してい
た。そのため電解Niめっきのままでは十分な膜厚均一
化を図ることができず、特に円筒状の様な異形品に関し
ては内径部にNiめっき層をほとんど被覆することがで
きず耐食性の面で問題となっていた。そこで本発明の目
的は、信頼性の高い耐食性及び膜厚均一性を改善したR
−TM−B系永久磁石を提供することにある。
However, the electrolytic N
In the method using i-plating, the plating current tends to concentrate on the peripheral parts such as the corners of the magnet body, and the film thickness on the peripheral parts becomes thicker. There was a tendency that the film thickness of the part became thin. Therefore, it is not possible to achieve a sufficient film thickness homogeneity with electrolytic Ni plating, and in particular for irregularly shaped products such as cylinders, the Ni plating layer can hardly be coated on the inner diameter portion, which poses a problem in terms of corrosion resistance. Was becoming. Therefore, an object of the present invention is to improve the corrosion resistance and the film thickness uniformity with high reliability.
-To provide a TM-B system permanent magnet.

【0004】[0004]

【課題を解決するための手段】本発明は重量比でR(こ
こでRはYを含む希土類元素の1種又は2種以上組合わ
せ)5〜40%,TM(ここでTMはFeを主体とする
遷移金属)50〜90%,B(硼素)0.2〜8%から
なるR−TM−B系永久磁石において、耐食性改善を目
的として設ける電解Niめっき層の下地めっきとして、
電解によるCuめっき層を設けることを特徴とする耐食
性及び膜厚均一性を改善したR−TM−B系永久磁石及
びその製造方法である。また、本発明は、前記した電解
によるCuめっきを施すに際して、その前処理として電
解によるNiストライクめっきを施すことも特徴として
いる。Cuは空気中で変色しやすいが、AlやZn等と
は異なり電気化学的に貴で腐食しにくいことから、防錆
用として重要な金属となっている。またCuは電気伝導
性に優れ、柔軟性・展延性に富んでいることから電解に
よるめっき方法でも、膜のつき回り性が良好であるとい
う長所を有している。この傾向はアルカリ性浴において
特に顕著であり、これによりNiの電解めっきでは膜厚
均一化が困難だった円筒上の様な異形品に関しても、内
外径に関係なく均一にめっきを被覆できるものと考えら
れる。本発明は、前記した様に電解によるCuめっきを
施すことにより、R−TM−B系永久磁石の耐食性及び
膜厚均一性を向上するものである。本発明において、F
e,Co,Ni等のTMの一部を置換する元素は、その
添加目的に応じて、Ga,Al,Ti,V,Cr,M
n,Zr,Hf,Nb,Ta,Mo,Ge,Sb,S
n,Bi,Ni他を添加でき、本発明はいかなるR−T
M−B系磁石にも適用できる。また、その製造方法は焼
結法、溶湯急冷法、あるいはそれらの変形法のいずれの
方法でもよい。めっき前処理に関しては、加工変質層の
除去及びめっき前活性化を図る上で、酸性溶液を用いる
のが良い。硫酸や塩酸等の強酸がめっき前活性化にとっ
て有効であるが、めっき前処理の材質への影響を極力避
けるためには、2〜10vol%の硝酸による第1エッ
チング、その後過酸化水素5〜10vol%、酢酸10
〜30vol%の混酸による第2エッチングが最も望ま
しい。次いで、電解によるNiストライクめっき処理を
行なう。電解によるCuめっき処理を行なう前に、電解
によるNiストライクめっき処理を行なうのがより好ま
しい。これはR−TM−B系永久磁石を電解めっき液に
直接浸漬すると、Cuの非常に薄い置換めっき皮膜が磁
石体表面に形成され、めっき皮膜と磁石体表面との密着
性が悪くなるためである。そのため、電解によるNiス
トライクめっき層を設けることにより置換めっきを防ぐ
ことが、密着性を向上させる上でより望ましい。電解N
iめっきの種類としては、ワット浴、スルファミン酸
浴、アンモン浴のいずれでも良い。また電流密度は1〜
10A/dm2が良く、Niめっき層の厚さは0.5〜
5μmが好ましい。次に電解によるNiストライクめっ
き処理後の水洗の後に、電解によるCuめっき処理を行
なう。電解Cuめっきの浴としては、前記した様に膜の
回り性の良さという観点からアルカリ性浴が良く、特に
ピロリン酸Cu浴が良い。また電流密度は1〜5A/d
2がよく、Cuめっき層の厚さは5〜15μm、好ま
しくは10〜15μmである。次いで、電解によるNi
めっき処理を行なう。電解によるCuめっき処理後の水
洗の後に、電解によるNiめっき処理を行なうのが好ま
しい。Cuめっきのままでは、前記した様に空気中での
変色が容易なため、表面酸化を発生しやすく好ましくな
い。また、Cuめっき層の上に電気化学的に卑なNiめ
っき層を被覆することにより、下層Cuと上層Niの両
層の特性めっきによる防食機構の効果も期待できること
から、電解によるCuめっき処理を行なった後には、電
解によるNiめっき処理を行なうことが望ましい。電解
Niめっきの種類としては、ワット浴、スルファミン酸
浴、アンモン浴のいずれでも良い。また電流密度は1〜
5A/dm2が良く、Niめっき層の厚さは5〜15μ
m、好ましくは5〜10μmである。めっき層の総厚と
しては、15〜25μmが適当である。
In the present invention, the weight ratio of R (where R is one or a combination of two or more rare earth elements including Y) is 5 to 40%, TM (here, TM is mainly Fe). In the R-TM-B based permanent magnet composed of 50 to 90% of transition metal) and 0.2 to 8% of B (boron), as a base plating of an electrolytic Ni plating layer provided for the purpose of improving corrosion resistance,
It is an R-TM-B system permanent magnet with improved corrosion resistance and film thickness uniformity, characterized by providing a Cu plating layer by electrolysis, and a method for producing the same. Further, the present invention is characterized in that, when performing the above-mentioned electrolytic Cu plating, electrolytic Ni strike plating is performed as a pretreatment. Cu is easily discolored in the air, but unlike Al and Zn, it is electrochemically noble and less corrosive, and is therefore an important metal for rust prevention. Further, since Cu is excellent in electric conductivity and rich in flexibility and spreadability, it has an advantage that the film throwing power is good even by an electroplating method. This tendency is particularly noticeable in alkaline baths, and it is thought that this enables uniform coating of the plating regardless of the inner and outer diameters even for irregularly shaped products such as cylinders where it was difficult to make the film thickness uniform by Ni electrolytic plating. Be done. The present invention improves the corrosion resistance and film thickness uniformity of the R-TM-B based permanent magnet by performing Cu plating by electrolysis as described above. In the present invention, F
Elements such as e, Co, and Ni that partially replace TM are Ga, Al, Ti, V, Cr, and M depending on the purpose of addition.
n, Zr, Hf, Nb, Ta, Mo, Ge, Sb, S
n, Bi, Ni, etc. can be added to the present invention, and any RT
It can also be applied to MB magnets. Further, the manufacturing method thereof may be a sintering method, a molten metal quenching method, or a modification thereof. Regarding the pre-plating treatment, it is preferable to use an acidic solution in order to remove the work-affected layer and activate the pre-plating. A strong acid such as sulfuric acid or hydrochloric acid is effective for pre-plating activation, but in order to avoid the influence of pre-plating treatment on the material as much as possible, the first etching with 2 to 10 vol% nitric acid, and then 5 to 10 vol. %, Acetic acid 10
The second etching with a mixed acid of ˜30 vol% is most desirable. Then, Ni strike plating treatment by electrolysis is performed. It is more preferable to perform electrolytic Ni strike plating before performing electrolytic Cu plating. This is because when the R-TM-B system permanent magnet is directly immersed in the electrolytic plating solution, a very thin Cu displacement plating film is formed on the surface of the magnet body, and the adhesion between the plating film and the surface of the magnet body deteriorates. is there. Therefore, it is more desirable to prevent displacement plating by providing a Ni strike plating layer by electrolysis in order to improve adhesion. Electrolysis N
The type of i plating may be a Watt bath, a sulfamic acid bath, or an ammonium bath. The current density is 1 to
10 A / dm 2 is good, and the thickness of the Ni plating layer is 0.5-
5 μm is preferable. Next, after the electrolytic Ni strike plating treatment is followed by washing with water, electrolytic Cu plating treatment is performed. As a bath for electrolytic Cu plating, an alkaline bath is preferable from the viewpoint of good turning property of the film as described above, and a Cu pyrophosphate bath is particularly preferable. The current density is 1 to 5 A / d
m 2 is good, and the thickness of the Cu plating layer is 5 to 15 μm, preferably 10 to 15 μm. Then Ni by electrolysis
Perform plating process. It is preferable to perform electrolytic Ni plating treatment after washing with water after electrolytic Cu plating treatment. If the Cu plating is left as it is, the discoloration in the air is easy as described above, and thus surface oxidation is likely to occur, which is not preferable. Further, by coating an electrochemically base Ni plating layer on the Cu plating layer, it is possible to expect an effect of a corrosion prevention mechanism by characteristic plating of both lower Cu layer and upper Ni layer. After that, it is desirable to perform electrolytic Ni plating treatment. The type of electrolytic Ni plating may be a Watt bath, a sulfamic acid bath, or an ammonium bath. The current density is 1 to
5A / dm 2 is good, and the thickness of the Ni plating layer is 5-15μ
m, preferably 5 to 10 μm. The total thickness of the plated layer is preferably 15 to 25 μm.

【0005】[0005]

【実施例】Nd(Fe0.7Co0.20.07Ga0.036.5
なる組成の合金をアーク溶解にて作製し、得られたイン
ゴットをスタンプミル及びディスクミルで粗粉砕した。
粉砕媒体としてはN2ガスを用いジェットミルで微粉砕
を行なう粉砕粒度3.5μm(FSSS)の微粉砕を得
た。得られた原料粉を15kOeの磁場中で配向し、2
トン/cm2の圧力で円筒体に成形した。本成形体を真
空中で1090℃×2時間焼結した。焼結体を外径20
×内径16×高さ10mm寸法の円筒体に切り出し次い
で900℃のアルゴン雰囲気中に2時間加熱保持した後
に急冷し温度を600℃に保持したアルゴン雰囲気中で
1時間保持した。こうして得られた試料について、めっ
き前処理として5vol%の硝酸による第1エッチン
グ、その後過酸化水素10vol%、酢酸25vol%
の混酸による第2エッチングを行なった。その後、表1
に示す条件で、円筒体外径部のめっき層の厚みが表1に
示した値となる様に各種表面処理を施した。
EXAMPLES Nd (Fe 0.7 Co 0.2 B 0.07 Ga 0.03 ) 6.5
An alloy having the following composition was produced by arc melting, and the obtained ingot was roughly crushed by a stamp mill and a disc mill.
N 2 gas was used as the grinding medium to carry out fine grinding with a jet mill to obtain fine grinding having a grinding particle size of 3.5 μm (FSSS). The obtained raw material powder was oriented in a magnetic field of 15 kOe, and 2
It was molded into a cylinder at a pressure of ton / cm 2 . The compact was sintered in vacuum at 1090 ° C for 2 hours. Outer diameter of the sintered body is 20
It was cut out into a cylinder having dimensions of inner diameter 16 × height 10 mm and then heated and held in an argon atmosphere at 900 ° C. for 2 hours and then rapidly cooled and held in an argon atmosphere in which the temperature was kept at 600 ° C. for 1 hour. For the sample thus obtained, the first etching with 5 vol% nitric acid was performed as a pretreatment for plating, followed by 10 vol% hydrogen peroxide and 25 vol% acetic acid.
The second etching was performed using the mixed acid of. Then Table 1
Under the conditions shown in Table 1, various surface treatments were performed so that the thickness of the plating layer on the outer diameter portion of the cylindrical body would be the value shown in Table 1.

【0006】[0006]

【表1】 [Table 1]

【0007】表1に示した試料に関して、円筒体内径部
のめっき層の厚みを測定し、119.6℃100%RH
2気圧での100時間の耐食試験および80℃90%R
Hでの500時間の耐湿試験を行なった。結果を表2に
示す。
With respect to the samples shown in Table 1, the thickness of the plating layer on the inner diameter of the cylinder was measured and was 119.6 ° C. and 100% RH.
Corrosion resistance test at 2 atm for 100 hours and 80 ° C 90% R
A humidity resistance test was conducted at H for 500 hours. The results are shown in Table 2.

【0008】[0008]

【表2】 [Table 2]

【0009】表2において、耐食試験結果及び耐湿試験
結果は試料の外観変化を示したものである。表2より、
本発明による永久磁石は、従来の磁石と比較して、耐食
性及び膜厚均一性を著しく向上し得ることがわかる。
In Table 2, the corrosion resistance test results and the humidity resistance test results show changes in the appearance of the samples. From Table 2,
It can be seen that the permanent magnet according to the present invention can significantly improve the corrosion resistance and the film thickness uniformity as compared with the conventional magnet.

【0010】[0010]

【発明の効果】本発明により、希土類と鉄を主体とした
磁石において、従来のめっきでは不十分であった耐食性
及び膜厚均一性の顕著な向上が図られた。
According to the present invention, in a magnet mainly composed of rare earth and iron, the corrosion resistance and the film thickness uniformity, which were insufficient by the conventional plating, were remarkably improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でR(ここでRはYを含む希土類
元素の1種又は2種以上組合わせ)5〜40%,TM
(ここでTMはFeを主体とする遷移金属)50〜90
%,B(硼素)0.2〜8%から実質的になるR−TM
−B系永久磁石の表面に電解Cuめっき層および電解N
iめっき層からなる二重層を有する耐食性及び膜厚均一
性を改善したR−TM−B系永久磁石。
1. A weight ratio of R (where R is one or a combination of two or more rare earth elements including Y) 5 to 40%, TM
(Here, TM is a transition metal mainly composed of Fe) 50 to 90
%, B (boron) 0.2 to 8%, which is substantially R-TM
-Electrolytic Cu plating layer and electrolytic N on the surface of the B-based permanent magnet
An R-TM-B system permanent magnet having a double layer composed of an i-plated layer and having improved corrosion resistance and film thickness uniformity.
【請求項2】 重量比でR(ここでRはYを含む希土類
元素の1種又は2種以上の組合せ)5〜40%,TM
(ここでTMはFeを主体とする遷移金属)50〜90
%,B(硼素)0.2〜8%から実施的になるR−TM
−B系永久磁石の表面に電解Niストライクめっき層,
電解Cuめっき層及び電解Niめっき層からなる三重層
を有する耐食性及び膜厚均一性を改善したR−TM−B
系永久磁石。
2. A weight ratio of R (where R is one or a combination of two or more rare earth elements containing Y) 5 to 40%, TM
(Here, TM is a transition metal mainly composed of Fe) 50 to 90
%, B (boron) 0.2-8% R-TM practically
-Electrolytic Ni strike plating layer on the surface of B type permanent magnet,
R-TM-B having a triple layer consisting of an electrolytic Cu plating layer and an electrolytic Ni plating layer and having improved corrosion resistance and film thickness uniformity
System permanent magnet.
JP3239461A 1991-09-19 1991-09-19 R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity Pending JPH0582320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239461A JPH0582320A (en) 1991-09-19 1991-09-19 R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239461A JPH0582320A (en) 1991-09-19 1991-09-19 R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity

Publications (1)

Publication Number Publication Date
JPH0582320A true JPH0582320A (en) 1993-04-02

Family

ID=17045109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239461A Pending JPH0582320A (en) 1991-09-19 1991-09-19 R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity

Country Status (1)

Country Link
JP (1) JPH0582320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
US9905345B2 (en) 2015-09-21 2018-02-27 Apple Inc. Magnet electroplating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219492A (en) * 1983-05-27 1984-12-10 Nisshin Steel Co Ltd Manufacture of one-side copper plated stainless steel sheet
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219492A (en) * 1983-05-27 1984-12-10 Nisshin Steel Co Ltd Manufacture of one-side copper plated stainless steel sheet
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles
US9905345B2 (en) 2015-09-21 2018-02-27 Apple Inc. Magnet electroplating

Similar Documents

Publication Publication Date Title
US7517555B2 (en) Copper plating solution and method for copper plating
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH0582320A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP3135174B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method for producing the same
JP3377605B2 (en) Corrosion resistant magnetic alloy
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance
JPH0582321A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
US5348639A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JPH01268004A (en) R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JP2894816B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method of manufacturing the same
JPH0582322A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JPH07106109A (en) R-tm-b permanent magnet of improved corrosion resistance, and its manufacture
JPH08325677A (en) Corrosion resistant sintered magnetic alloy
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JPH05335124A (en) Corrosion-proof property improved r-tm-b permanent magnet and manufacture thereof
JPH04287302A (en) Permanent magnet and its manufacture
JP2617117B2 (en) Rare earth permanent magnet and method of manufacturing the same
JPH06231927A (en) Manufacture of r-tm-b permanent magnet with improved corrosion resistance
JPH04276603A (en) R-tm-b permanent magnet improved in corrosion resistance