JPS5967353A - Hard alloy and its manufacture - Google Patents

Hard alloy and its manufacture

Info

Publication number
JPS5967353A
JPS5967353A JP58115464A JP11546483A JPS5967353A JP S5967353 A JPS5967353 A JP S5967353A JP 58115464 A JP58115464 A JP 58115464A JP 11546483 A JP11546483 A JP 11546483A JP S5967353 A JPS5967353 A JP S5967353A
Authority
JP
Japan
Prior art keywords
alloy
metals
group
metal
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58115464A
Other languages
Japanese (ja)
Inventor
Naoharu Fujimori
直治 藤森
Takeshi Asai
浅井 毅
Takaharu Yamamoto
山本 孝春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58115464A priority Critical patent/JPS5967353A/en
Publication of JPS5967353A publication Critical patent/JPS5967353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a hard alloy with superior plastic deformation resistance at high temp., superior thermal fatigue resistance and toughness, by carrying out part of a sintering stage for manufacturing a sintered hard alloy consisting of a hard phase made of oxycarbonitride of IVa, VIa and Va group metals and a phase made of a high m.p. metal in an atmosphere under high partial pressure of CO. CONSTITUTION:This sintered hard alloy consists of a hard phase made of oxycarbonitride of IVa, VIa and Va group metals and a phase made of a high m.p. metal, and it has a composition represented by the formula [where M1 is >=1 kind of IVa group metal, M2 is >=1 kind of VIa group metal, M3 is >=1 kind of Va group metal, a+b+c=1, 0.1<=a+c<=0.7, c/(a+c)<=0.3, 0.07<=a<=0.7, 0.3<=b<= 0.9, 0<c<=0.21, 0.05<=x+y<=0.6, 0.05<=x<=0.5, 0.005<=y<=0.5, and 0.1<=z<=0.5]. Powdered starting materials for said constituent components are mixed, die- pressed, and sintered. At the time, part of the temp. raising stage in the sintering is carried out in an atmosphere under >=0.5 Torr partial pressure of CO to enrich the alloy with oxygen. Thus, the desired hard alloy is manufactured.

Description

【発明の詳細な説明】 Ti、 Zr、 Hf、 V、Nb、 Ta、 Crl
Mo1Wc;r)硬質炭化物を鉄族金族で結合したいわ
ゆる超硬合金は切削工具、ロールダイス等の耐摩工具に
広く使われている。近年炭化物のみならず窒化物あるい
は炭窒化物が利用されはじめている。
[Detailed description of the invention] Ti, Zr, Hf, V, Nb, Ta, Crl
Mo1Wc;r) So-called cemented carbide, which is made by bonding hard carbides with iron group metals, is widely used in wear-resistant tools such as cutting tools and roll dies. In recent years, not only carbides but also nitrides and carbonitrides have begun to be used.

工具として超硬合金に要求される特性は2種類に大別さ
れることが判っている。すなわち靭性と耐摩耗性とであ
る。このうち靭性に関しては発明者等の長年の研究によ
り、さらに2種類に大別されることが判って来た。それ
は機械的強度と熱疲労強度とである。
It is known that the characteristics required of cemented carbide as a tool are roughly divided into two types. That is, toughness and wear resistance. Regarding toughness, it has been found through many years of research by the inventors that it can be further divided into two types. These are mechanical strength and thermal fatigue strength.

機械的強度と耐摩耗性関係は」二記超硬合金においては
相反する性質であり、鉄族結合金属(多くの場合Co)
を増加させ、機械的強度を」−昇させれば耐摩耗性は減
少してしまう。
The relationship between mechanical strength and wear resistance is contradictory in cemented carbides.
If the mechanical strength is increased by increasing the wear resistance, the wear resistance will decrease.

熱疲労強度の変化はかなり複雑である。Co量の増大に
ともない熱疲労強度の増加が起るが、co量が多すぎる
とかえって塑性変形が起り、熱疲労強度の低下をまねく
。従ってCo量増による熱疲労強度向りにもおのずから
限界がある。
Changes in thermal fatigue strength are quite complex. As the amount of Co increases, the thermal fatigue strength increases, but if the amount of Co is too large, plastic deformation occurs instead, leading to a decrease in the thermal fatigue strength. Therefore, there is naturally a limit to the thermal fatigue strength due to an increase in the amount of Co.

一方、切削工具においては、その能率向上のため、切込
み、送りの大きな重切削に耐え4耐熱疲労強度の高い工
具がますます要求されて来ている。
On the other hand, in order to improve the efficiency of cutting tools, there is an increasing demand for tools that can withstand heavy cutting with large depths of cut and feed and have high thermal fatigue strength.

また耐摩工具の市場においても、モルガンロールに代表
される熱間塑性加工用としてきひしい熱サイクルに耐え
る工具が要求されて来ている。
Furthermore, in the market for wear-resistant tools, there is a growing demand for tools that can withstand severe thermal cycles for hot plastic working, such as Morgan rolls.

しかるにすでに述べたように、これらの要求を満たすに
は現状の超硬合金ではおのずから限界がある。
However, as already mentioned, there are limits to the ability of the current cemented carbide to meet these requirements.

本発明はWC−Co系合金では到達し得ない高温耐塑性
変形性と耐熱疲労靭性とを有する工具を提案することに
最大の特徴がある。以下にその考え方について述べる。
The greatest feature of the present invention is that it proposes a tool that has high-temperature plastic deformation resistance and thermal fatigue toughness that cannot be achieved with WC-Co alloys. The idea is described below.

Coを結合相とした従来の超硬合金においてはCo相の
軟化温度が低いため高温での耐塑性変形性実用切削条件
においてもすでに問題となっているし、耐熱疲労靭性も
以下に述べる材料に比べ低い。
In conventional cemented carbide with Co as a binder phase, the softening temperature of the Co phase is low, so the plastic deformation resistance at high temperatures is already a problem under practical cutting conditions, and the thermal fatigue toughness of the materials described below is low. Comparatively low.

従って、これを防ぐためにはCoのかわりにWに代表さ
れる高融点金属を結合金属として用いればよいことにな
る。実際このような考えに基づいた合金の試作は2〜3
行われており、特公昭51−47645号にはTi−W
−Cの共晶点を利用して(Ti 、 W ) C+−x
 −Wの合金を250℃前後の温度に加熱、溶融し、こ
れを鋳造するいわゆる溶製法で作成することが提案され
ている。
Therefore, in order to prevent this, a high melting point metal such as W may be used as the bonding metal instead of Co. In fact, two to three prototype alloys were produced based on this idea.
Ti-W
Using the eutectic point of -C (Ti, W) C+-x
It has been proposed to produce the alloy by a so-called melting method in which an alloy of -W is heated to a temperature of about 250° C., melted, and then cast.

この合金(以下鋳造合金と記す)の耐摩耗性や高温での
耐塑性変形性は超硬合金に比べはるかに優れているもの
\、以下のような欠点があって広く使用されるには至ら
なかった。第1に靭性、特に機械的強度が著しく劣って
いる。第2にきわめて難研削材料であるにもか\わらず
、鋳造によって作られるため粉末冶金法で製造される超
硬合金のことき複雑形状の製品を安価に製造することが
できない。第3に鋳造温度の関係上融点の低い共晶組成
付近に限定された合金しか得られない。
Although the wear resistance and plastic deformation resistance at high temperatures of this alloy (hereinafter referred to as cast alloy) are far superior to that of cemented carbide, it has the following drawbacks that prevent it from being widely used. There wasn't. First, the toughness, especially the mechanical strength, is extremely poor. Second, although it is an extremely difficult material to grind, it is made by casting, so products with complex shapes cannot be manufactured at low cost compared to cemented carbide manufactured by powder metallurgy. Thirdly, due to the casting temperature, only alloys with low melting points near eutectic compositions can be obtained.

また(Ti、W)(CSN)−W鋳造合金の提案(特開
昭47−9603号)もあるが同じような理由から実用
には供されていない。
There is also a proposal for a (Ti, W) (CSN)-W casting alloy (Japanese Unexamined Patent Publication No. 47-9603), but it has not been put to practical use for the same reason.

そこでこれ等の該鋳造合金の組成で粉末冶金法で製造で
きれば、前述の欠点のうち第2、第3の2つの欠点をカ
バーできるということは当業者において容易に考えつく
ところである。しかし、この試みは数々行われながら実
際に優れた合金は作成されていない。その理由はこの組
成の合金は炭化物やMo、Wといった高融点金属より成
っているので焼結性は著しく悪く、十分な強度が出なか
ったためである。
Therefore, those skilled in the art can easily think that if the cast alloy composition can be manufactured by powder metallurgy, the second and third drawbacks mentioned above can be overcome. However, although many attempts have been made to achieve this goal, no superior alloy has actually been created. The reason for this is that since the alloy with this composition is made of carbides and high melting point metals such as Mo and W, its sinterability is extremely poor and sufficient strength cannot be obtained.

本発明者等はこれ等の系の合金について、なかんずく硬
質相を形成する元素について詳細なる研究を行って驚く
べき知見を得るに至った。
The present inventors have conducted detailed research on these alloys, particularly on the elements that form the hard phase, and have obtained surprising findings.

すなわち、これまで硬質合金の常識で・は焼結を阻害す
るとされていた酸素を硬質相に入れることによって焼結
性が著しく向上し、さらには靭性の向上がみられること
を発見したのである。本発明はこの知見をもとに靭性に
優れた高融点金属バインダー硬質合金を、近年の高能率
化に応える工具として提°案するものである。
In other words, they discovered that by adding oxygen to the hard phase, which was conventionally thought to inhibit sintering in hard alloys, sinterability was significantly improved, and toughness was also improved. Based on this knowledge, the present invention proposes a high melting point metal binder hard alloy with excellent toughness as a tool that meets the recent demands for higher efficiency.

本発明は酸素及び窒素を硬質相に積極的に投入すること
に最大の特徴があるが、この合金においては酸素は硬質
相以外にはほとんどはいらず、硬質相は(Ml a、 
M2b ) (C,N、0)zといった組成となる。M
lは鳴期律表IVa族金属であるTi、 Zr、 Hf
より選ばれた1種又は2種以上の金属であり、M2は■
a族金川用あるCr、Mo、Wより選ばれた1種又は2
種以上の金属である。このことは第1図に示すX線回折
により明らかである。この図はW5050原子Ti25
原子%、C20原子%、05原子%の組成の合金のX線
回折のパターンであるか、WとTiC相のみ観察される
。図中1はWのピーク、2はTiC相のピークを示して
いる。このようなことはNを含有する合金においても同
じである。
The greatest feature of the present invention is that oxygen and nitrogen are actively introduced into the hard phase. However, in this alloy, almost no oxygen is present outside of the hard phase, and the hard phase consists of (Mla,
M2b) has a composition such as (C,N,0)z. M
l is Ti, Zr, Hf, which are group IVa metals in the ringing table;
M2 is one or more metals selected from ■
One or two selected from Cr, Mo, and W for Group A Kanagawa
It is a metal that is more than a species. This is clear from the X-ray diffraction shown in FIG. This figure shows W5050 atom Ti25
This is an X-ray diffraction pattern of an alloy having a composition of 20 at%, C20 at%, and 05 at%, or only W and TiC phases are observed. In the figure, 1 indicates the peak of W, and 2 indicates the peak of the TiC phase. This also applies to alloys containing N.

こ5で本発明合金の限定条件について説明する。In this section, the limiting conditions of the alloy of the present invention will be explained.

ます、酸素の含有量であるXは余り少ないとその効果は
表われず、又あまり多いと焼結性を悪くする。一般に酸
化物と金属の混合体の焼結性が劣るのはそれ等の界面の
ぬれが悪いためであるが、本発明の合金についても同じ
ことが考えられる。
If the oxygen content, X, is too small, the effect will not be exhibited, and if it is too large, the sinterability will be deteriorated. Generally, the sinterability of mixtures of oxides and metals is poor because of poor wetting of their interfaces, and the same can be considered for the alloys of the present invention.

0.05≦X≦0.5の範囲であれは酸素の添加効果を
損うことなく強度の高い合金が得られる。
Within the range of 0.05≦X≦0.5, a high-strength alloy can be obtained without impairing the effect of oxygen addition.

窒素についても酸素と同様のことが言えるが、耐摩耗性
を最下限に要求される場合は窒素は望ましくない場合が
あるので0.005≦y≦0.5が適当と考えられる。
The same thing can be said about nitrogen, but when the lowest wear resistance is required, nitrogen may not be desirable, so 0.005≦y≦0.5 is considered to be appropriate.

Ml及びM2の比率については、aく01であれば硬質
相の量が少なく硬質合金として適当てない。一方、a>
0.7となると高融点金属相が少なくなり脆くて実用性
がない。
Regarding the ratio of Ml and M2, if a is 01, the amount of hard phase is small and it is not suitable as a hard alloy. On the other hand, a>
When it is 0.7, the high melting point metal phase decreases, making it brittle and impractical.

さらにNと0の合計x 4− yも限度以」二になると
焼結性を損う。Oが0.05以」二含有することを要す
るので下限も定まって0.05≦x −) y≦0.6
であることが望ましい。
Furthermore, if the sum of N and 0 x 4 - y exceeds the limit, sinterability will be impaired. Since it is necessary to contain 0.05 or more O, the lower limit is also determined: 0.05≦x −) y≦0.6
It is desirable that

化学量論定数(金属に対するC、N、Oの合計のモル比
率)2については0.5を越えると硬質相と炭素の共存
域であり本発明の範囲ではない。又041以下では硬質
相が少なすぎて硬度が足りないため切削工具や耐摩耗材
料としての本発明の目的からはすれる。このため0.1
≦2≦0.5であることを要する。
When the stoichiometric constant (the molar ratio of the total of C, N, and O to the metal) 2 exceeds 0.5, the hard phase and carbon coexist, which is outside the scope of the present invention. Moreover, if it is less than 041, the hard phase is too small and the hardness is insufficient, so that the purpose of the present invention as a cutting tool or a wear-resistant material is lost. Therefore 0.1
It is required that ≦2≦0.5.

■a族元素の一部をVlNb、 TaのVa族元素によ
って置換することは靭性の向上に効果がある。しかし多
量に添加するとrva族、VIa族高融点元素の組合わ
せによって特徴的に表われるMe (C,N、 0 )
と高融点金属相の共存という組織からはずれやすくなる
(2) Substituting a part of the group A elements with the group Va elements of VlNb and Ta is effective in improving toughness. However, when added in large amounts, Me (C, N, 0), which is characteristically expressed by the combination of RVA group and VIa group high melting elements,
It becomes easy to deviate from the structure of coexistence of high melting point metal phase and high melting point metal phase.

(Ml a、 M2b、 M3c ) (C+−x−y
、 Ny 、 Ox )と表わすと(但し、Ml:IV
aVa族元素2:via族元素、M3:Va族元素)a
+Cは前述のこと< IVaVa族元素の範囲であるこ
とが望ましく01から0.7の間でありa−1−τは0
3以下であることが望ましい。
(Mla, M2b, M3c) (C+-x-y
, Ny, Ox) (however, Ml:IV
aVa group element 2: Via group element, M3: Va group element)a
+C is preferably in the range of <IVaVa group elements as described above, and is between 01 and 0.7, and a-1-τ is 0
It is desirable that it is 3 or less.

又a +b −1−c = lであり、従って0.07
≦a≦07.0.3≦b≦0.9.0<C≦021とな
る。
Also, a +b -1-c = l, so 0.07
≦a≦07.0.3≦b≦0.9.0<C≦021.

本発明の如き酸素を含有した合金を製造するには2つの
方法が考えられる。ひとつは酸素の入ったBl型硬質相
を作り、これと高融点金属を混合して焼結する方法であ
り、他のひとつは焼結中に雰囲気から酸素を入れる方法
である。
Two methods are possible for producing oxygen-containing alloys such as those of the present invention. One method is to create a Bl type hard phase containing oxygen, mix this with a high melting point metal, and sinter it, and the other method is to introduce oxygen from the atmosphere during sintering.

前者は本発明合金においては焼結性が劣り強靭な合金と
することがむつかしい」二に含有酸素量の厳密な調節も
むつかしい。
The former has poor sinterability in the alloy of the present invention, making it difficult to form a strong alloy.Secondly, it is also difficult to precisely control the amount of oxygen contained.

一方後者においては気相との反応により硬質相の組成が
次第に変化してゆくことによって焼結は促進される。さ
らに雰囲気の圧力調節によって上記反応の制御が可能で
あるので含有酸素量の調節も可能である。
On the other hand, in the latter case, sintering is promoted by the gradual change in the composition of the hard phase due to reaction with the gas phase. Furthermore, since the above reaction can be controlled by adjusting the pressure of the atmosphere, it is also possible to adjust the amount of oxygen contained.

ところで酸素を硬質相に導入するにはCOガス雰囲気が
最も優れている。これに関して発明者は詳細に研究した
結果COガス雰囲気中でIQQO’c付近に保持すると
、Bl型固溶体の炭化物、炭窒化物中にOが浸入するこ
とがわかった。この反応を利用してCO雰囲気中で昇温
すればよいと考え、実施例工に示すような焼結方法で焼
結したところ良好なる合金を作ることができた。COガ
スは低温では(3)式の分解反応をおこして炭素を析出
する。
Incidentally, a CO gas atmosphere is the best for introducing oxygen into the hard phase. As a result of detailed research on this matter, the inventors found that when maintained near IQQO'c in a CO gas atmosphere, O infiltrates into the carbides and carbonitrides of the Bl type solid solution. We thought that this reaction could be used to raise the temperature in a CO atmosphere, and when we sintered it using the sintering method shown in the example, we were able to produce a good alloy. At low temperatures, CO gas causes the decomposition reaction of formula (3) to precipitate carbon.

2CO−+ CO2+C・・・・・・・・・・・・(3
)このため昇温過程の最初からCO算囲気とすることは
好ましくない。
2CO-+ CO2+C・・・・・・・・・・・・(3
) Therefore, it is not preferable to set the atmosphere to include CO from the beginning of the heating process.

又窒素を含有させる目的で00分圧と同時もしくは単独
にN2分圧をかけた雰囲気で昇温することもよい方法で
ある。この場合は原料にNを含有する物質(例えばTi
N、 Ti (C,N)等)を使って真空焼結を行って
も必ずしも焼結性が悪くなるわけではない。
In addition, for the purpose of containing nitrogen, it is also a good method to raise the temperature in an atmosphere in which a partial pressure of N2 is applied simultaneously or independently with a partial pressure of 00. In this case, the raw material is a material containing N (for example, Ti
Even if vacuum sintering is performed using N, Ti (C, N), etc.), the sinterability does not necessarily deteriorate.

しかし、O,Nを必ずしも気相からだけ取り入れるはか
りでなく、酸素あるいは窒素又はその両者を含有したB
l型固溶体を原料に使って00分圧あるいはN2分圧の
かかったあるいは両者を利用した雰囲気で焼結すること
は空孔もなく酸素、窒素の調節も厳密にできて好ましい
結果を得られる。これ等については実施例2に示す。
However, it is not necessary to take in O and N only from the gas phase;
Sintering using an l-type solid solution as a raw material in an atmosphere with 00 partial pressure or N2 partial pressure, or using both, produces favorable results because there are no vacancies and oxygen and nitrogen can be precisely controlled. These are shown in Example 2.

さて、本発明の硬質合金が特に切削工具として良い結果
を示すことは以下の実施例1こよって明らかにする。超
硬合金において粒度等の調節のためしはしば用いられる
B、 AI、Si、 P等を微量添加することも本発明
の範囲である。
Now, it will be clear from Example 1 below that the hard alloy of the present invention shows particularly good results as a cutting tool. It is also within the scope of the present invention to add trace amounts of B, AI, Si, P, etc., which are often used in cemented carbide to adjust grain size and the like.

又■a族金匡中Crは必ずしも高融点とは言いがたいが
、Crを添加した合金は特に高い耐食性を示すので目的
によっては好ましい合金となる。
Furthermore, although it cannot be said that Cr of Group A metals has a high melting point, alloys to which Cr is added exhibit particularly high corrosion resistance, so they are preferable alloys depending on the purpose.

以下実施例を示すが、本発明範囲が以下の実施例に限ら
れるものではない。
Examples will be shown below, but the scope of the present invention is not limited to the following examples.

実施例1 市販の平均粒度1.、5 IIのW 85重社%と平均
粒度1μのTiC11,5重量%及びTiN3.5重量
%秤取し、これをアトライターで5時間湿式混合後、乾
燥型押工程を経て、W  −Tl  −C−N  (原
子%て表示した)の組成の原料粉を作成した。これを以
下の2種の焼結方法で試料を作成した。
Example 1 Commercially available average particle size 1. , 5 II, 85% by weight of W, 11.5% by weight of TiC with an average particle size of 1μ, and 3.5% by weight of TiN were weighed out, wet-mixed in an attritor for 5 hours, and then subjected to a dry embossing process to form W-Tl. A raw material powder having a composition of -CN (expressed in atomic %) was prepared. Samples were prepared using the following two sintering methods.

(A)真空焼結 10Torr以下 1800”CX1
hr(B)本発明 常温〜1000℃ 真空10Tor
r以下1000℃〜1800°CCo雰囲気50 To
rr1800°Cx1hr  真空5X10  Tor
r以下昇温速度は10°C/ mixてあり、冷却は1
0Torr以下の真空中で行った。得られた試料の炭素
と酸素の分析結果は表1に示すとおりである。
(A) Vacuum sintering 10 Torr or less 1800”CX1
hr (B) Invention Room temperature to 1000°C Vacuum 10 Torr
Below r1000℃~1800℃Co atmosphere 50 To
rr1800°Cx1hr Vacuum 5X10 Tor
The heating rate below r is 10°C/mix, and the cooling is 1
The test was carried out in a vacuum of 0 Torr or less. The analysis results for carbon and oxygen of the obtained sample are shown in Table 1.

表1 従って最終組成の概略は次のように表わされる。Table 1 Therefore, the final composition can be roughly expressed as follows.

gIl、plf2rr、’lq4/ (A)  W  −Ti  −C−N  −0又は(T
l6331 %7) (C1l、ill+&l N、a
、Q l O<aop)■)W”−Ti’ξ6−Ctg
、7−N右0o l 3又は(Tio、i3 + ”q
67) (Ca、&r + Nd、or + Oa、 
i )また上記の原料粉の焼結条件を次のように1部変
えたものを試験した。
gIl, plf2rr, 'lq4/ (A) W -Ti -C-N -0 or (T
l6331 %7) (C1l, ill+&l N, a
,Q l O<aop)■)W"-Ti'ξ6-Ctg
, 7-N right 0o l 3 or (Tio, i3 + ”q
67) (Ca, &r + Nd, or + Oa,
i) Tests were also conducted with the sintering conditions of the raw material powder above partially changed as follows.

常温〜1000°C真空10 rorr以下1000°
C〜1800°CCo雰囲気30 Torr1800°
Cx1hr    H2雰囲気 2 Torrなお、こ
れの最終組成は次のように表わされる。
Room temperature to 1000°C Vacuum 10 rorr or less 1000°
C~1800°CCo atmosphere 30 Torr1800°
Cx1hr H2 atmosphere 2 TorrThe final composition of this is expressed as follows.

wra、o−Ti2jT(+−c/iψ−N (4ol
wra, o-Ti2jT(+-c/iψ-N (4ol
.

これ等市販l5OP 30合金とW” −T 1L2−
 Z r”−C2′の組成を持つ該鋳造合金の4者でl
uJ削性能の比較を行った。切削条件は表2に示すごと
くであった。
These commercially available l5OP 30 alloys and W''-T 1L2-
The four cast alloys having the composition Z r''-C2'
The uJ cutting performance was compared. The cutting conditions were as shown in Table 2.

表2 この試験の結果は表3のとおりである。Table 2 The results of this test are shown in Table 3.

表3 表中下記の(※)は12J削時間7分この例から
明らかなことく、Wをノくインタ゛−とする合金ては刃
先後退量のデータカS示すこ゛とく、耐塑性変形性はす
ぐれている。しめ)し、酸素を含有しない八や市販鋳造
合金はフライスQJ削のことき断続切削ではチッピング
をおこして実用lこ1ま使用できない。
Table 3 The following (*) in the table indicates 12J cutting time of 7 minutes.As is clear from this example, the data on the cutting edge retraction amount S indicates that alloys with W as the interface have excellent plastic deformation resistance. There is. However, commercially available cast alloys that do not contain oxygen can not be used in practice because they cause chipping during interrupted cutting, such as QJ milling.

従来品である超硬合金P30は刃先後退験が著しく、こ
の試験1のごとき高能率切削には耐えられない。本発明
(B)は旋削、フライス切削共に良好であり摩耗も少な
いすくれた合金であることが明らかである。
The conventional product, cemented carbide P30, has significant cutting edge recession and cannot withstand high-efficiency cutting as in Test 1. It is clear that the present invention (B) is a low profile alloy that is good in both turning and milling and has little wear.

実施例2 表4に示す組成の合金を実施例1と同様の方法で作成し
た。これらの合金は5PV854の形状に仕」−けられ
、これを前すくいの角0°、横すくいの角6°で下記の
条件で切削試験を行い性能を比較した。
Example 2 An alloy having the composition shown in Table 4 was prepared in the same manner as in Example 1. These alloys were cut into the shape of 5PV854, and cutting tests were conducted under the following conditions with a front rake angle of 0° and a side rake angle of 6° to compare the performance.

被削材 845C(HB 240) 速     度       80 ツノ1 /mm送
送     リ        1.2 龍/rev切
り込み    5〜13 mm この被削材は鍛造品で凹凸が激しいので切り込みは5〜
13 mmの間で変動した。被削材のばらつきを考慮し
て2〜4回のくり返し試験を行い、表4のことき平均寿
命を示した。
Work material 845C (HB 240) Speed 80 Horn 1/mm feed rate 1.2 Dragon/rev depth of cut 5-13 mm This work material is a forged product and has severe irregularities, so the depth of cut is 5-13 mm.
It varied between 13 mm. The test was repeated 2 to 4 times in consideration of variations in the work material, and the average lifespan shown in Table 4 was shown.

本発明品は従来の超硬合金に比べ3〜5.倍の性能を持
っている。又、市販鍛造合金に比しても良い性質を有す
る組成を有する場合が多く、最もよいものは60%程性
能の向上がみられる。
The product of the present invention is 3 to 5 times smaller than conventional cemented carbide. It has twice the performance. In addition, they often have compositions that have better properties than commercially available forged alloys, and the best ones show about a 60% improvement in performance.

さらに本発明がより広い用途を持っていることを次の実
施例に示す。
Further, the broader applicability of the invention is illustrated in the following examples.

表4 10    .22     2 ※組成はW  −T+  −Zr  −C”実施例3 実施例1.2と同様にして作成した合金をフライス切削
を行って比較した。この場谷の工具形態はチャンファ−
ホーニングQ、4717WX−75°をつけたチップを
アキシャルレーキ+8°、ラジアルレーキ0°で10イ
ンチのカッターにっけて湿式フライス切削を行った。
Table 4 10. 22 2 *Composition is W -T+ -Zr -C'' Example 3 An alloy prepared in the same manner as in Example 1.2 was milled and compared.
Wet milling was performed using a 10-inch cutter with an axial rake of +8° and a radial rake of 0° using a tip equipped with Honing Q, 4717WX-75°.

被削材 555C(HB270) 速   度    120772 /mix送   リ
     o、 5 mm7刃切り込み   10M 表5にこの試験の結果を記す。
Work material 555C (HB270) Speed 120772/mix feed Reo, 5mm 7 blades depth of cut 10M Table 5 shows the results of this test.

表  5 本発明は従来品のl5OP30に比して2倍もの性能を
示1−でいる。市販鋳造合金が全く使用できないフライ
ス切削で高送りの要求に十分応えられる工具である。
Table 5 The present invention shows twice the performance as the conventional product 15OP30. This tool can fully meet the demands for high feed rates in milling, where commercially available cast alloys cannot be used at all.

実施例2.3によって本発明が広い汎用性を持っている
ことも明らかである。
It is also clear from Examples 2.3 that the present invention has wide versatility.

一ヒ記実施例では、原料としてTic、TjN、Wを使
用しているが、更にTiO等の酸化物や、炭化物、窒化
物、酸化物からなる化合物の粉末を利用しても同様の結
果が得られた。
In the first embodiment, Tic, TjN, and W are used as raw materials, but similar results can be obtained by using powders of oxides such as TiO, and compounds made of carbides, nitrides, and oxides. Obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

ダO、Aタ   λOタ 第1図はW −T+  −C−0の組成を持つ本発明合
金のX線回折パターンを示す。 1・・Wのピーク、2・・・TiO相のピーク手続補正
書C方式) 昭和5g年77月7日 特許庁長官 若杉和夫 殿 王事件の表示 昭和Sg年特許願第1istt乙を号 2、発明の名称 硬質合金及び製造法 ろ、補正をする者 事件との関係   特許出願人 住 所     大阪市東区北浜j丁目15@地名 称
      (,2/3)住友電気工業株式会社代表者
 社長 用上哲部 4、代理人 住 所  5乙0  大阪府豊中市螢池北町2丁目を査
乙号明細書 Z補正の内容 出廟時手書きの明細書を別紙のとおりタイプ印書とする
Figure 1 shows the X-ray diffraction pattern of the alloy of the present invention having the composition W -T+ -C-0. 1... W peak, 2... TiO phase peak Procedural amendment C method) July 7, 1955 Commissioner of the Japan Patent Office Kazuo Wakasugi Indication of the Tono case Showa Sg year patent application No. 1 istt No. 2, Name of the invention: Hard alloy and manufacturing method; Relationship with the amended case; Patent applicant address: 15 J-chome, Kitahama, Higashi-ku, Osaka @ Place name (, 2/3) Sumitomo Electric Industries, Ltd. Representative: President Satoshi Yogami Part 4, Agent Address 5 Otsu 0 2-chome, Hotaike Kitamachi, Toyonaka City, Osaka Prefecture Contents of Amendment to Specification No. Z The handwritten specification at the time of issuance is type-printed as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1、周期律表■a、■a、 Va族金属の炭酸窒化物か
らなる硬質相と高融点金属相より成り、合金の全組成が
式(1)で表わされることを特徴とする硬質合金。 (Mla 、 M2b 、 M3c ) (C+−x−
y 、 Ny 、 Ox) z−−−=−−−−(1)
但し、MlはIVa族金属の1種または2種以上、M2
はVIIa族金属の1種または2種以上、M3はVa族
金属であるV、Nl)、Taの1種又は2種以上であり
、a +b + c = 1で、0.1≦a 4− 、
c≦o、7、TTで≦0.3.0.07≦a≦0.70
3≦b≦0.9、O(c≦0.21であり、更に005
≦x 十y≦0.6.0.05≦X≦05.0.005
≦y≦05.0.1≦2≦0.5である。 又、a、b、c、x、yはモル分率、2は金属に対する
C、N、0合計のモル比率である。 2 周期律表■a、VIa、Va族金属の炭酸窒化物か
らなる硬質相と高融点金属相より成り、合金の全組成が
式(2)で表わされる硬質合金を製造するに際し、 (M1a1M2b1M3c ) (C+−x−ylNy
、 Ox ) z ・・・・・42)但し、MlはIV
a族金属の1種または2種以−4−1M2はVIa族金
属の1種または2種以上、M3は■族金属であるV、 
Nb、 Taの1種又は2種以上であり、a −1−b
 十c = 1で、01≦a+C≦0.7、TTT≦0
.3.0.07≦a≦0.7.0.3≦b≦0.9、o
<c≦0.21であり、更に005≦x+y≦06.0
.05≦X≦0.5.0.005≦y≦0.5.0.1
≦2≦0.5である。 又、a、b、c、xlyはモル分率、2は金属に対する
C、N、0合計のモル比率である。 式(2)の構成成分となる高融点金属、炭化物、窒化物
、酸化物及びこれらの化合物の粉末状原料を混合、型押
し、焼結より成るいわゆる粉末冶金法により製造し、焼
結工程の昇温過程の一部を一酸化炭素分圧0.5 To
rr以上の雰囲気とすることにより合金に酸素を富化す
ることを特徴とする硬質合金の製造法。 3、 特許請求の範囲第2項において、昇温過程の一部
又は全部を窒素分圧I Torr以上の雰囲気とするこ
とを特徴とする硬質合金の製造法。
[Claims] 1. The alloy is composed of a hard phase consisting of a carbonate nitride of a metal in Groups ■a and ■a of the periodic table, and a high melting point metal phase, and that the entire composition of the alloy is expressed by the formula (1). Hard alloy with special features. (Mla, M2b, M3c) (C+-x-
y, Ny, Ox) z−−−=−−−−(1)
However, Ml is one or more group IVa metals, M2
is one or more types of VIIa group metals, M3 is one or more types of Va group metals (V, Nl), Ta, a + b + c = 1, 0.1≦a 4- ,
c≦o, 7, TT≦0.3.0.07≦a≦0.70
3≦b≦0.9, O (c≦0.21, and further 005
≦x y≦0.6.0.05≦X≦05.0.005
≦y≦05.0.1≦2≦0.5. Further, a, b, c, x, and y are mole fractions, and 2 is the total molar ratio of C, N, and 0 to the metal. 2. When manufacturing a hard alloy consisting of a hard phase consisting of carbonitrides of metals in Groups a, VIa, and Va of the periodic table and a high-melting point metal phase, the total composition of the alloy is represented by formula (2), (M1a1M2b1M3c) (C+-x-ylNy
, Ox) z...42) However, Ml is IV
One or more group a metals -4-1 M2 is one or more group VIa metals, M3 is a group II metal V,
one or more of Nb and Ta, a-1-b
10c = 1, 01≦a+C≦0.7, TTT≦0
.. 3.0.07≦a≦0.7.0.3≦b≦0.9, o
<c≦0.21, and further 005≦x+y≦06.0
.. 05≦X≦0.5.0.005≦y≦0.5.0.1
≦2≦0.5. Further, a, b, c, and xly are mole fractions, and 2 is the total molar ratio of C, N, and 0 to the metal. The powdered raw materials of high-melting point metals, carbides, nitrides, oxides, and these compounds, which are the constituent components of formula (2), are manufactured by a so-called powder metallurgy method consisting of mixing, embossing, and sintering. Part of the heating process is carried out at a carbon monoxide partial pressure of 0.5 To
A method for producing a hard alloy, characterized by enriching the alloy with oxygen by creating an atmosphere of rr or more. 3. A method for manufacturing a hard alloy according to claim 2, characterized in that part or all of the temperature raising process is performed in an atmosphere with a nitrogen partial pressure of I Torr or higher.
JP58115464A 1983-06-27 1983-06-27 Hard alloy and its manufacture Pending JPS5967353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115464A JPS5967353A (en) 1983-06-27 1983-06-27 Hard alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115464A JPS5967353A (en) 1983-06-27 1983-06-27 Hard alloy and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56116615A Division JPS5933658B2 (en) 1981-07-26 1981-07-26 Hard alloys and manufacturing methods

Publications (1)

Publication Number Publication Date
JPS5967353A true JPS5967353A (en) 1984-04-17

Family

ID=14663184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115464A Pending JPS5967353A (en) 1983-06-27 1983-06-27 Hard alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS5967353A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446109A (en) * 1977-09-20 1979-04-11 Sumitomo Electric Ind Ltd Hard alloy and its preparation
JPS57174433A (en) * 1981-07-26 1982-10-27 Sumitomo Electric Ind Ltd Hard alloy and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446109A (en) * 1977-09-20 1979-04-11 Sumitomo Electric Ind Ltd Hard alloy and its preparation
JPS57174433A (en) * 1981-07-26 1982-10-27 Sumitomo Electric Ind Ltd Hard alloy and manufacture

Similar Documents

Publication Publication Date Title
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
GB2070646A (en) Sintered hardmetals
JPS594499B2 (en) Hard alloys and manufacturing methods
JPS5967353A (en) Hard alloy and its manufacture
JPS58213842A (en) Manufacture of high strength cermet
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS644989B2 (en)
JPS5913043A (en) Hard alloy and its production
JP2002292507A (en) Cutting tool made of cermet and its manufacturing method
JPS5933658B2 (en) Hard alloys and manufacturing methods
KR830001140B1 (en) Hard alloy
JPH01122970A (en) Cubic boron nitride sintered product
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPS5967352A (en) Hard alloy and its production
JPH0397866A (en) Coated cemented carbide tool
JPS59229430A (en) Production of cermet having high hardness and high toughness
JPS58213843A (en) Manufacture of high strength cermet
JPS5932539B2 (en) Hard alloys and manufacturing methods
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPS605664B2 (en) Sintered materials for cutting tools and wear-resistant tools with excellent high-temperature properties
JPS6056428B2 (en) Coated cemented carbide member and its manufacturing method
JPS6245290B2 (en)
JPS6160851A (en) High-hardness sintered body for tool and its production
JPS636617B2 (en)
JPS61119646A (en) Oxygen-containing high-hardness sintered body for tool and its production