JPS5967304A - Operating method of blast furnace - Google Patents

Operating method of blast furnace

Info

Publication number
JPS5967304A
JPS5967304A JP17578982A JP17578982A JPS5967304A JP S5967304 A JPS5967304 A JP S5967304A JP 17578982 A JP17578982 A JP 17578982A JP 17578982 A JP17578982 A JP 17578982A JP S5967304 A JPS5967304 A JP S5967304A
Authority
JP
Japan
Prior art keywords
turbine
pressure
blower
furnace
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17578982A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
正弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17578982A priority Critical patent/JPS5967304A/en
Publication of JPS5967304A publication Critical patent/JPS5967304A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/007Controlling or regulating of the top pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To economize the energy required for blasting by determining the optimum blast pressure at which the difference between the power consumption of a driving source of a blower in a set blast quantity and the quantity of the power recovered by a furnace top pressure turbine is minimized by using the performance curve, etc. of said turbine and controlling the driving source of the blower so that said blast pressure is obtd. CONSTITUTION:The highly pressurized air to be blown into a blast furnace 20 is generated by using a blower 16, and the energy of the furnace top gas discharged from the top of the furnace 20 is recovered by using a furnace top turbine 26, by which the blast furnace is operated. The optimum blast pressure at which the difference between the power consumption of the driving source for the blower in a set blast quantity and the quantity of the power recovered by the turbine 26 is minimized is determined by using the performance curve, etc. of the turbine 26. The driving source of the blower 16 is controlled with a control device 40 so that said optimum blast pressure is obtd.

Description

【発明の詳細な説明】 本発明は、高炉操業方法に係り、特に、送風機及び炉頂
圧タービンを備えた高炉設備に用いるのに好適な、送風
機を用いて高炉に吹込むための高圧空気を発生させると
共に、炉頂圧タービンを用いて高炉炉頂より排出される
炉頂ガスのエネルギを回収するようにした高炉操業方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating a blast furnace, and in particular, a method for generating high-pressure air to be blown into a blast furnace using a blower, which is suitable for use in blast furnace equipment equipped with a blower and a furnace top pressure turbine. The present invention also relates to an improved method of operating a blast furnace in which the energy of top gas discharged from the top of a blast furnace is recovered using a top pressure turbine.

最近の高炉においては、省エネルギの一環として、炉頂
圧タービンが設置されており、高炉炉頂より排出される
炉頂ガスを前記炉頂圧タービンに導き、炉頂ガスのもつ
エネルギを電力として回収するようにしている。
In recent blast furnaces, top pressure turbines have been installed as part of energy saving efforts, and the top gas discharged from the top of the blast furnace is guided to the top pressure turbine, and the energy in the top gas is converted into electricity. I'm trying to collect it.

即ち、従来の送風方法及び炉頂圧タービンによるエネル
ギ回収方法が採用された高炉設備においては、第1図に
示す如く、送風用ボイラ10により高温・高圧の蒸気を
発生させ、ガバナ弁12により蒸気量を調鮨して送風タ
ービン14に導き、該送風タービン14と連動して回転
するようにされた、プロワ等の送風機16を回転させて
、高炉に吹込むだめの高圧空気を発生させている。なお
送風機16の駆動源は、第1図の例では蒸気タービンと
しているが、ガスタービンや電動機等が用いられること
もある。
That is, in blast furnace equipment that employs the conventional air blowing method and energy recovery method using a furnace top pressure turbine, as shown in FIG. The amount of air is adjusted and guided to a blower turbine 14, and a blower 16 such as a blower, which rotates in conjunction with the blower turbine 14, is rotated to generate high-pressure air to be blown into the blast furnace. . Although the drive source for the blower 16 is a steam turbine in the example of FIG. 1, a gas turbine, an electric motor, or the like may also be used.

前記送風機16で発生された高圧空気は、熱風炉18に
導かれて高温にされた後、高炉20に吹込寸れる。高炉
20に吹込才れた高温・高圧空気は、コークスの燃焼に
使われ、鉄石の還元反応を経て、炉頂より炉頂ガスとし
て排出される。この排出された炉頂ガスは、まだ、圧力
が高いので、ダストキャツチャ等の除塵器22及びベン
チュリ・スクラバ24に導かれ、炉頂ガス中の除塵が行
われてから、例えば輻流式の炉頂圧タービン26に導か
れて、発′市磯28を回転することにより、電力が回収
される。この時、炉頂圧タービン26の回転数を一定と
する必要があるので、炉頂圧タービン26の入口側に、
タービン入口ガス圧力を調整するだめの調速弁30が設
けられると共に、炉頂圧タービン26をバイパスする流
路に、タービン入口ガス量を調整するだめのセプタム弁
32前記炉頂圧タービン26或いはセプタム弁32を通
過した炉頂ガスは、電気集塵器34で更に清浄化され、
ガスホルダ36に貯蔵される。
The high-pressure air generated by the blower 16 is guided to a hot stove 18 and heated to a high temperature, and then blown into a blast furnace 20. The high-temperature, high-pressure air blown into the blast furnace 20 is used to burn coke, undergoes a reduction reaction of ironstone, and is discharged from the top of the furnace as top gas. Since the discharged furnace top gas still has a high pressure, it is guided to a dust remover 22 such as a dust catcher and a venturi scrubber 24, where the dust in the furnace top gas is removed, and then, for example, a radial type Electric power is recovered by being led to the furnace top pressure turbine 26 and rotating the starting point 28. At this time, it is necessary to keep the rotation speed of the furnace top pressure turbine 26 constant, so on the inlet side of the furnace top pressure turbine 26,
A regulating valve 30 for adjusting the turbine inlet gas pressure is provided, and a septum valve 32 for adjusting the turbine inlet gas amount is provided in the flow path bypassing the furnace top pressure turbine 26 or the septum. The furnace top gas that has passed through the valve 32 is further purified by an electrostatic precipitator 34.
It is stored in the gas holder 36.

このような、炉頂圧タービンを用いた高炉の操業方法に
よれば、炉頂ガスのエネルギの一部を回収することがで
きるものであるが、従来は、前記炉頂圧タービン26の
制御を、該炉頂圧タービンの性能曲線をもとに、単独に
行っていたため、高炉操業の変更により、炉頂ガス量や
炉頂圧が変動すると、これに追従することができず、最
適な電力回収が行われていないというのが現状であった
According to such a method of operating a blast furnace using a furnace top pressure turbine, a part of the energy of the furnace top gas can be recovered, but conventionally, the control of the furnace top pressure turbine 26 is Since this was done independently based on the performance curve of the furnace top pressure turbine, it was not possible to follow the fluctuations in the furnace top gas amount and furnace top pressure due to changes in blast furnace operation, and it was not possible to optimize the power output. The current situation was that no collection was taking place.

即ち、前記炉頂圧タービン26の性能曲線は、例えば第
2図に実線Aで示す如くであり、この性能曲線A上に高
炉の操業点(・印B)がある場合、例えば、第2図(5
)に示す如く、炉頂ガス量がQ、TIであり、炉頂圧P
TIである時は、タービンの運転点(・印C)も、その
!!まで性能曲線Aに乗って、タービン効率が最大とな
る。
That is, the performance curve of the furnace top pressure turbine 26 is, for example, as shown by the solid line A in FIG. (5
), the furnace top gas amounts are Q and TI, and the furnace top pressure P
When it is TI, the operating point of the turbine (marked C) is also that! ! The turbine efficiency reaches its maximum when the performance curve A is reached.

しかしながら、炉頂圧PTが小さすぎる場合、例えば、
第2図03)に示す如く、炉頂圧がPTI→PT2(P
Tl>J−’T2)になったときは、炉頂圧タービン2
6が飲込めるガス量はQT2 しかないため、余剰ガス
△Q、T=Q、T 1−QT 2を、セプタム弁32を
通してバイパスさせる必要がある。従って、炉頂圧ター
ビン26の運転点は、(Q、T2、]’T2)となるが
、余剰ガス△QTの−持つ圧力エネルギは、無駄に捨て
られることになる。
However, if the furnace top pressure PT is too small, e.g.
As shown in Figure 2 (03), the furnace top pressure changes from PTI to PT2 (P
When Tl>J-'T2), the furnace top pressure turbine 2
Since the amount of gas that 6 can swallow is only QT2, it is necessary to bypass the surplus gas ΔQ, T=Q, T1-QT2 through the septum valve 32. Therefore, the operating point of the furnace top pressure turbine 26 is (Q, T2, ]'T2), but the pressure energy of the surplus gas ΔQT is wasted.

一方、炉頂圧PTが太きすぎる場合、例えば、第2図(
qに示す如く、炉頂圧がPTI→PT3(PTl(PT
3)Kなったときは、炉頂圧タービン26が飲込めるガ
ス(2)はQ、T3  となるのに対し、実際の炉頂ガ
ス量はQT t Lかないので、調速弁30を調節して
、タービン入口ガス圧力をPT3→PTIまで、△PT
だけ下げてやる必要がある。従って1炉頂圧タービン2
6の運転点は、(QT t、PTI)となるが、調速弁
30を絞ることによる偏流のために、タービン効率が低
下する。このタービン効率は、ガスl比QTI/Q、T
a  が小さいほど、低下する程度が大きい。従って、
調速弁30を絞ることによる圧力損失及びタービン効率
の低下により、回収電力は、そのエネルギ損失の分だけ
減少してし21E う 。
On the other hand, if the furnace top pressure PT is too large, for example, as shown in Figure 2 (
As shown in q, the furnace top pressure changes from PTI→PT3(PTl(PT
3) When the temperature reaches K, the gas (2) that the furnace top pressure turbine 26 can swallow is Q, T3, but the actual furnace top gas amount is not QT t L, so the regulating valve 30 is adjusted. Then, increase the turbine inlet gas pressure from PT3 to PTI, △PT
I just need to lower it. Therefore, 1 furnace top pressure turbine 2
The operating point of No. 6 is (QT t, PTI), but the turbine efficiency decreases due to the drift caused by throttling the governor valve 30. This turbine efficiency is determined by the gas l ratio QTI/Q, T
The smaller a is, the greater the degree of reduction. Therefore,
Due to the pressure loss and the reduction in turbine efficiency due to throttling the governor valve 30, the recovered power is reduced by the amount of energy loss 21E.

このように、炉頂ガスの一部をバイパスさせたり、調速
弁30を絞って圧力を下げたりすることは、炉頂圧ター
ビン26による電力回収にとってエネルギ損失であり、
これは結局送風機16で余分なエネルギを消費している
ことになるわけであるが、従来は、炉頂圧タービン26
の運転状態と関連させて送風機16の駆動源、例えばガ
バナ弁12を制御することは、行われていなかった。
In this way, bypassing a part of the furnace top gas or lowering the pressure by throttling the regulating valve 30 is an energy loss for power recovery by the furnace top pressure turbine 26.
This ends up consuming extra energy in the blower 16, but conventionally, the furnace top pressure turbine 26
The driving source of the blower 16, for example, the governor valve 12, has not been controlled in relation to the operating state of the blower.

本発明は、前記従来の欠点を解消するべくなされたもの
で、送風に要する総合的な消費エネルギを最少にするこ
とができる高炉操業方法を提供することを目的とする。
The present invention was made to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide a blast furnace operating method that can minimize the overall energy consumption required for air blowing.

本発明は、送風機を用いて高炉に吹込むだめの高圧空気
を発生させると共に、炉頂圧タービンを用いて高炉炉頂
よシ排出される炉頂ガスのエネルギを回収するようにし
た高炉操業方法において、前記炉頂圧タービンの性能曲
線等を用いて、設定送風IHにおける、送風機駆動源の
消費動力量と炉JII圧タービンの回収動力Mとの差が
最小になるような最適送風圧を求め、該最適送風圧が得
られるよう前記送風機の、駆動源を制御するようにして
、前記目的を達成したものである。
The present invention provides a method for operating a blast furnace in which a blower is used to generate high-pressure air to be blown into a blast furnace, and a top pressure turbine is used to recover the energy of top gas discharged from the top of the blast furnace. In this step, using the performance curve of the furnace top pressure turbine, etc., find the optimum blowing pressure that minimizes the difference between the power consumption of the blower drive source and the recovery power M of the furnace JII pressure turbine at the set blower IH. The above object is achieved by controlling the drive source of the blower so that the optimum blowing pressure is obtained.

又、前記最適送風圧による送風機駆動源の制御を、高炉
の炉況が不安定なときは行わないようにして、炉況回復
を迅1−(!に行うことができるようにしだものである
In addition, the control of the blower drive source using the optimum air blowing pressure is not performed when the furnace condition of the blast furnace is unstable, so that the furnace condition can be recovered quickly. .

更に、前記炉頂圧〃−ビンの性能曲線等を、実際の操業
データに応じて修正するようにして、実際の操業状況に
即した制御が行われるようにしだものである。
Furthermore, the performance curve of the furnace top pressure bin, etc. is modified in accordance with actual operating data, so that control is performed in accordance with actual operating conditions.

以下図面を参照して、前記従来例と同様の、高湿・高圧
蒸気により送風タービンを廻し、輻流式炉頂圧タービン
を用いて電力を回収する場合を例にとって、本発明に係
る高炉操業方法を詳細に説明中る。
Referring to the drawings, the blast furnace operation according to the present invention will be explained below by taking as an example a case where a blower turbine is rotated by high-humidity, high-pressure steam and electricity is recovered using a radial furnace top pressure turbine, similar to the conventional example. The method is explained in detail.

本発明に係る高炉操業方法を実施するに際しては、第3
図に示す如く、従来例と同様の、送風用ボイラ10.ガ
バナ弁12、送風タービン14、送風機16、熱風炉1
8、高炉20、除塵器22、ベンチュリ・スクラバ24
、炉頂圧タービン26、発電機28、調速弁30、セプ
タム弁32、電気集塵器34、ガスボルダ36を有する
高炉設備においで、更に、送風量、送風圧、炉頂圧、炉
頂ガス量、炉頂圧タービンの入口圧の測定値などが入力
され、前記炉頂圧タービン26の性能曲線等を用いて設
定送風量における、送風機駆動源(送風タービン14)
の消費動力量T1と炉頂圧タービン26の回収動力量T
2との 差Ta=T1−T2(正味消費動力量に対応)
が最小になるような最適送風圧を求め、該最適送風圧が
得らねるように前記送風タービン14のガバナ弁12の
開度を制御する制御装置40が設けられている。
When carrying out the blast furnace operating method according to the present invention, the third
As shown in the figure, a blower boiler 10 similar to the conventional example. Governor valve 12, blower turbine 14, blower 16, hot air stove 1
8, Blast furnace 20, Dust remover 22, Venturi scrubber 24
, a furnace top pressure turbine 26, a generator 28, a speed regulating valve 30, a septum valve 32, an electric precipitator 34, and a gas boulder 36. The measured value of the inlet pressure of the furnace top pressure turbine 26, etc. are input, and the blower drive source (air blower turbine 14) at the set air flow rate is determined using the performance curve of the furnace top pressure turbine 26, etc.
The amount of power consumed T1 and the amount of recovered power T of the furnace top pressure turbine 26
Difference between 2 and Ta=T1-T2 (corresponds to net power consumption)
A control device 40 is provided which determines the optimum blowing pressure such that the minimum blowing pressure is obtained and controls the opening degree of the governor valve 12 of the blowing turbine 14 so that the optimum blowing pressure is not obtained.

以下、前記制御装置40の作用について説明する。Hereinafter, the operation of the control device 40 will be explained.

高炉20の操業条件(送風量、送風圧、送風温度など)
の変更により、炉頂ガス量、炉頂圧が変動するが、ある
送風量Qbにおける送風圧Pbと正1未消費動力i、Y
r T 3 との関係を図示すると、第4図に示す如く
となる。即ち、送風タービン14における消費動力量T
1は、送風圧pbが大きくなれば中、調に増加していく
が、一方、炉頂圧タービン26により回収される回収動
力量T2は、前出第2図を用いて説明したように、性能
曲線上の運転点を越えてし甘うと、調速弁30を絞って
タービン入口圧を下げてし1うし、タービン効率も低下
するので、ある送風圧Pb*  をピークにして、以後
は減少する。従って、正味消費動力量T3は、最小値を
もつ曲線となる。つ1す、各送風tQbに対して、正味
消費動力量T3が最小となるような最適送風圧Pb* 
 が存在するととKなる。とこで、各送風量Qbと最適
送風圧Pb* との関係を例示すると、第5図に示す如
くとなる。
Operating conditions of blast furnace 20 (air volume, air pressure, air temperature, etc.)
The amount of gas at the top of the furnace and the pressure at the top of the furnace fluctuate due to the change in the amount of air flow Qb.
The relationship with r T 3 is illustrated in FIG. 4. That is, the power consumption T in the blower turbine 14
1 increases gradually as the blowing pressure pb increases, but on the other hand, the amount of recovered power T2 recovered by the furnace top pressure turbine 26, as explained using FIG. 2 above, If the operating point on the performance curve is exceeded, the regulating valve 30 will be throttled down to lower the turbine inlet pressure, and the turbine efficiency will also decrease, so the blowing pressure Pb* will peak at a certain point and then decrease. do. Therefore, the net power consumption amount T3 becomes a curve having the minimum value. 1st, for each air blowing tQb, the optimum air blowing pressure Pb* that minimizes the net power consumption T3
If exists, then K. Now, an example of the relationship between each air blowing amount Qb and the optimum air blowing pressure Pb* is as shown in FIG.

即ち、高炉20の操業条件の変更にともない、送風量Q
)+が設定されれば、送風に関するエネルギコストが最
小となるような最適送風圧Pb* が求捷り、これに応
じて送風機16の駆動派、例えばガバナ弁12を調整す
れば、炉頂圧タービン26のタービン効率は常に最大と
なり、送風タービンI4に送る蒸気附も必要最少限です
むことになる。
That is, as the operating conditions of the blast furnace 20 change, the amount of air blown Q
) + is set, the optimum air blowing pressure Pb* is determined so that the energy cost related to air blowing is minimized, and if the drive force of the blower 16, for example, the governor valve 12 is adjusted accordingly, the furnace top pressure can be adjusted. The turbine efficiency of the turbine 26 is always maximized, and the amount of steam sent to the blower turbine I4 is also kept to a minimum.

制御装置40は、これらの演算を行い、ガバナ弁12の
開度を調整するだめのものであり、正味消費動力量T3
が最小となるよう力最適送風圧Pb*を求め、該最適送
風圧P b *と設定送風圧pbとの間に差があるとき
には、前記送風タービン14のガバナ弁12の開度を調
節して、送風圧Pbが最適送風圧P b *  に近づ
くように制御するような操作を行うシーケンスを組込ん
だ制御回路を具備していればよい。
The control device 40 performs these calculations and adjusts the opening degree of the governor valve 12, and is used to adjust the net power consumption T3.
The optimum blowing pressure Pb* is determined so that the force is minimized, and when there is a difference between the optimum blowing pressure Pb* and the set blowing pressure pb, the opening degree of the governor valve 12 of the blowing turbine 14 is adjusted. , it is only necessary to include a control circuit that incorporates a sequence of operations for controlling the blowing pressure Pb to approach the optimum blowing pressure P b *.

なお、高炉の炉況が不安定なときは、エネルギコストを
最少にするよりも、炉況を迅速に回復する方が重要であ
るので、一時的に、前記最適送風圧PI)*による送風
機駆動源の制御を停止させた方がよい。一方、炉況が安
定しているときには。
In addition, when the condition of the blast furnace is unstable, it is more important to quickly recover the condition than to minimize energy costs, so temporarily drive the blower at the optimum blow pressure PI)*. It is better to stop controlling the source. On the other hand, when the furnace condition is stable.

前記最適送風圧Pbネ による送風機駆動源の制御を行
う。
The blower drive source is controlled based on the optimum air blowing pressure Pbne.

又、送風量Q bが一定でも、送風温度や装入条件、或
いは、各設備の圧力損失が変化するので、炉頂圧、炉頂
圧タービンの入口圧、弁開度、余剰ガス量などの測定値
から、炉頂圧タービン26の性能曲線等を修正し、修正
された性能曲線を用いて最適送風圧■月〕ネ を修正し
てやればよい。
In addition, even if the air flow rate Q b is constant, the air blowing temperature, charging conditions, or pressure loss of each equipment changes, so the furnace top pressure, furnace top pressure turbine inlet pressure, valve opening, surplus gas amount, etc. From the measured values, the performance curve of the furnace top pressure turbine 26, etc. may be corrected, and the optimum blowing pressure may be corrected using the corrected performance curve.

本発明によれば、炉頂圧タービン26のタービン効率は
常に最大となり、制御装置40によるガバナ弁12の調
整によって、送風用ボイラ10からの蒸気量を必要最少
限に抑えることができるので、送風コストを下げること
ができる。この蒸気量゛の節約による省エネルギ効果は
非常に大きなものである。
According to the present invention, the turbine efficiency of the furnace top pressure turbine 26 is always maximized, and by adjusting the governor valve 12 by the control device 40, the amount of steam from the blower boiler 10 can be suppressed to the necessary minimum. Costs can be lowered. The energy saving effect due to this saving in the amount of steam is very large.

なお前記説明においては、送風タービン14の駆動源が
送風用ボイラ10であったが、送風機の駆動源は、これ
に限定されず、ガスタービンや電動機など他の駆動源で
あっても構わ女い。この場合、制御装置f40の制御対
象は、ガバナ弁12でガく、それらの駆動源が対象とな
る。
In the above description, the drive source for the blower turbine 14 is the blower boiler 10, but the drive source for the blower is not limited to this, and may be any other drive source such as a gas turbine or an electric motor. . In this case, the control target of the control device f40 is the governor valve 12, and its drive source is the target.

又、前記説明においては、炉頂圧タービンとして輻流式
炉頂圧タービンが用いられていたが、タービンの種類も
これに限定されず、軸流式タービンや羽根角度可変式タ
ービンなどについても、タービン効率が最大となる性能
曲線が与えられるので、本発明による制御方法を適用可
能である。
Further, in the above description, a radial flow type furnace top pressure turbine was used as the furnace top pressure turbine, but the type of turbine is not limited to this, and axial flow type turbines, variable blade angle turbines, etc. may also be used. The control method according to the invention is applicable because a performance curve is provided that maximizes the turbine efficiency.

つぎに、本発明に係る高炉操業方法が採用された高炉設
備の実施例について詳細に説明する。
Next, examples of blast furnace equipment in which the blast furnace operating method according to the present invention is adopted will be described in detail.

本実施例は、第6図に示す如く、前記従来例と同様の、
送風用ボイラ10、ガバナ弁12、送風タービン14、
送風機16、熱風炉18、高炉20、除塵器22、ベン
チュリ・スクラバ24、炉頂圧タービン26、発電機2
8、調速弁30、セプタム弁32、電気集塵器34、ガ
スホルダ36を有する高炉設備において、前記熱風炉1
8の出側に配設された。送風量Q +)及び送風圧pb
を検出するだめの送風検出器42と、前記送風機16の
出側に配設された、送風機16の吐出圧1) b d 
 及び消費動力tT1を検出するだめの送風機検出器4
4と、前記高炉20の炉頂に配設された、炉頂圧PTを
検出するための炉頂圧検出器46と、前記炉頂圧タービ
ン26の入側に配設された、タービン入口ガス圧Ptr
及びタービン入口ガス量Q、tr  を検出するだめの
タービン入側検出器48と、前記炉頂圧タービン2Gの
出側に配設された、回収動力%l: T 2にQ″j応
するタービン出力を検出するだめのタービン出力検出器
50と、タービン入(」ガス圧Ptr、タービン出力(
回収kb力限T 2)等の実際の操業データに応じて修
正された、前記送風タービン14及び炉頂圧タービン2
6の性能曲線を用いで、設定送風r−i: Q 11に
おける、送風タービン14の消費動力量′I゛1と炉頂
圧タービン26の回収動力量T2 との差’[、’ a
 (=T +−’v2 )が最小になるような最適送風
圧P l) *を求め、該最適送風圧P]〕*が?Uら
れるよう前記ガバナ弁12を制御する制御架rJ、 5
2とを設けだものである。
As shown in FIG. 6, this embodiment is similar to the conventional example,
Blowing boiler 10, governor valve 12, blowing turbine 14,
Blower 16, hot stove 18, blast furnace 20, dust remover 22, venturi scrubber 24, furnace top pressure turbine 26, generator 2
8. In the blast furnace equipment having a regulating valve 30, a septum valve 32, an electrostatic precipitator 34, and a gas holder 36, the hot blast furnace 1
It was placed on the exit side of 8. Blow volume Q +) and blow pressure pb
An air blower detector 42 for detecting the discharge pressure of the air blower 16, which is disposed on the outlet side of the air blower 16, b d
and a blower detector 4 for detecting power consumption tT1
4, a furnace top pressure detector 46 installed at the top of the blast furnace 20 for detecting the furnace top pressure PT, and a turbine inlet gas installed at the inlet side of the furnace top pressure turbine 26. Pressure Ptr
and a turbine inlet detector 48 for detecting the turbine inlet gas amount Q, tr, and a turbine corresponding to the recovered power %l: T2, which is disposed on the outlet side of the furnace top pressure turbine 2G. A turbine output detector 50 for detecting the output, turbine input gas pressure Ptr, turbine output (
The blower turbine 14 and the furnace top pressure turbine 2 are modified according to actual operational data such as recovery kb force limit T2).
Using the performance curve of No. 6, the difference between the power consumption 'I'1 of the blower turbine 14 and the recovered power amount T2 of the furnace top pressure turbine 26 at setting air r-i: Q11 '[,' a
(=T+-'v2) is minimized, and the optimum air blowing pressure P]]* is determined? a control rack rJ that controls the governor valve 12 so that the
2.

52rとから構成されている。52r.

以下実施例の作用を説明する。The operation of the embodiment will be explained below.

前記熱風炉18の出側に配設された送風検出器42によ
り検出された送風量Q、bけ、演算器52aに入力され
、送風圧Pbは、演算器5.2 bに入力される。演算
器52hでは、操業可能な送風圧Pbをある範囲内で設
定し、その範囲を細分して、各送風圧pbに対する送風
機消費動力′j#、T1を計算するように指令する。例
えば、操業可能な送風圧PI)の範囲を、2.7 kq
 / cl G < P b <4.5 kv /cr
l(3とし、送風圧Pb=2.70.2.72.2.7
4・・・・・・・・・4.48.4.50 ky / 
cr/I Gというように、0.02に9/’ctl 
G刻みで送風圧pbを設定して、以下の計算を行う。
The air blowing amount Q detected by the air blowing detector 42 disposed on the outlet side of the hot air stove 18 is inputted to a computing unit 52a, and the blowing pressure Pb is inputted to a computing unit 5.2b. The calculator 52h sets the operable blowing pressure Pb within a certain range, subdivides the range, and instructs to calculate the blower power consumption 'j#, T1 for each blowing pressure pb. For example, the range of operational air pressure PI) is 2.7 kq.
/ cl G < P b <4.5 kv /cr
l (3, blowing pressure Pb = 2.70.2.72.2.7
4・・・・・・・・・4.48.4.50 ky/
9/'ctl to 0.02, such as cr/I G
The following calculation is performed by setting the blowing pressure pb in steps of G.

IJI]ち、演算器52Cは、前記演算器52bより出
力された各送風圧Pbに対し、送風機16〜熱風炉18
間の圧損を加えて、送風機16の吐出圧Pbd  を算
出する。つぎに、送風量Qbに応じた送風機16の効率
曲線を記憶させている演算器52dに、吐出圧Pbd 
 を入力して、送風機効率ηを計算させ、演算器52e
で、送風機効率ηと吐出圧Pbd  の値から、各送風
圧pbにおける送風機の消費動力tT1を計算する。
IJI] Then, the computing unit 52C calculates the blower 16 to the hot air stove 18 for each blowing pressure Pb output from the computing unit 52b.
By adding the pressure loss between, the discharge pressure Pbd of the blower 16 is calculated. Next, the discharge pressure Pbd is stored in the computing unit 52d that stores the efficiency curve of the blower 16 according to the air flow rate Qb.
is input to calculate the blower efficiency η, and the calculation unit 52e
Then, the power consumption tT1 of the blower at each blowing pressure pb is calculated from the values of the blower efficiency η and the discharge pressure Pbd.

一方、各送風圧1)b  に対して、演算器52fによ
り炉頂圧piを計算し、炉頂〜ベンチュリ・スクラバ2
4間の圧損を加えて、演算器52Fにより、ベンチュリ
・スクラバ出口圧P v s  を計算する。
On the other hand, for each blowing pressure 1)b, the furnace top pressure pi is calculated by the calculator 52f, and
By adding the pressure drop between 4 and 4, the venturi scrubber outlet pressure P v s is calculated by the calculator 52F.

父、演算器521]を用いて、炉頂ガス組成と送風騎Q
bから炉頂ガス量Q、 tを計算し、演算器521によ
シ、ベンチュリ・スクラバ24の水蒸気を加えて、ベン
チュリ・スクラバ出ロガス州″Qvsを求める。
Father, calculation unit 521] was used to determine the top gas composition and the wind blower Q.
The top gas amounts Q and t are calculated from b, and the water vapor from the venturi scrubber 24 is added to the calculation unit 521 to obtain the venturi scrubber output log gas state ``Qvs''.

つぎに、炉頂圧タービン26の性能曲線を記憶させてい
る演算器52jを用いて、ベンチュリ・スクラバ出口圧
Pvs  が、そのまま炉頂圧タービン26の入口圧P
 f、 r  として加わったときの、炉頂圧タービン
26の受入れ可能なガスIn: Qt r oを計算す
る。
Next, using the computing unit 52j that stores the performance curve of the furnace top pressure turbine 26, the venturi scrubber outlet pressure Pvs is directly determined as the inlet pressure P of the furnace top pressure turbine 26.
Calculate the acceptable gas In: Qt r o for the top pressure turbine 26 when added as f, r.

つぎに、演算器521(を用いて、ベンチュリ・スクラ
バ出口ガス量Q、 v s 、受入れ可能なガス量Q、
 t r o及び前記セプタム弁32の制御のために必
要な最低ガス量Q sm i nを比較して、次の3つ
の場合に分ける。
Next, using the calculator 521, the venturi scrubber outlet gas amount Q, v s , the acceptable gas amount Q,
t r o and the minimum gas amount Q smin required for controlling the septum valve 32 are compared and divided into the following three cases.

(1)  Q、vs−Qsmin=Qtroの場合この
場合は、炉頂圧タービン26が、前出第2図(5)に示
した如く、性能曲線上の運転点で運転されているので、
ベンチュリ・スクラバ出口圧Pvs  をそのまま受入
れるようにする。
(1) When Q, vs-Qsmin=Qtro In this case, the furnace top pressure turbine 26 is operated at the operating point on the performance curve as shown in FIG. 2 (5) above, so
The venturi scrubber outlet pressure Pvs is accepted as is.

具体的には、演算器52tでタービン効率ηtr=1.
0とし、演算器52mでタービン人口圧Ptr=Pvs
  とし、演算器52nでタービン入口ガス量Q t 
r=Qv s−Qsm i nとし、演算器52oでセ
プタム弁通過ガス量Qs −Qsminとする。
Specifically, the computing unit 52t calculates the turbine efficiency ηtr=1.
0, and the turbine population pressure Ptr=Pvs using the calculator 52m.
Then, the turbine inlet gas amount Q t is determined by the calculator 52n.
r=Qvs-Qsmin, and the amount of gas passing through the septum valve Qs-Qsmin is set by the calculator 52o.

(1)  Qvs−Qsmin)Qtroの場合この場
合は、前出第2図(ハ)に示した如く、余剰ガス△Q 
、、 Qv 5−Qt r oが発生し、この余剰ガス
△Qが前記セプタム弁32を流れている。従って、演算
器52tでは、タービン効率ηtr=1.0 とし、演
算器52m−cti、タービン人口圧Ptr=Pvs 
 とし、演算器52nでは、タービン入口ガス−51)
Qtr=Qtroとし、演算器52oでは、セプタム弁
通過ガス量Qs=Q、vs−Qtro  とする。
(1) Qvs-Qsmin) Qtro In this case, as shown in Figure 2 (c) above, the surplus gas △Q
,,Qv 5 -Qt r o is generated, and this surplus gas ΔQ is flowing through the septum valve 32. Therefore, in the computing unit 52t, the turbine efficiency ηtr=1.0, and in the computing unit 52m-cti, the turbine population pressure Ptr=Pvs
In the computing unit 52n, the turbine inlet gas -51)
Let Qtr=Qtro, and in the calculator 52o, the amount of gas passing through the septum valve Qs=Q, vs-Qtro.

[)  Qvs−Qsmin(Qtroの場合この場合
は、前出第2図(Q K示した如く、ベンチュリ・スク
ラバ出口圧P v s  が高すぎるので、(Qv s
−Qsm i n )のガス喰に応じたタービン人口圧
Ptr−4で、前記調速弁30を絞ることにより、その
ガス量を炉頂圧タービン26が飲みこむ。しかしながら
、調速弁30を絞ることにより、ガス量比 (Q、v Fl−QSIHi n ) /Qt r o
に応じて、タービン効率ηtrが下がるので、効率は悪
くなる。
[) Qvs-Qsmin (In the case of Qtro In this case, as shown in Figure 2 (QK) above, the venturi scrubber outlet pressure Pvs is too high, so (Qvs
By throttling the governor valve 30 at the turbine artificial pressure Ptr-4 corresponding to the gas intake of -Qsmin), the furnace top pressure turbine 26 swallows the amount of gas. However, by throttling the speed regulating valve 30, the gas amount ratio (Q, v Fl-QSIHi n )/Qtro
Since the turbine efficiency ηtr decreases accordingly, the efficiency deteriorates.

従って、前記演算器52tは、タービン効率曲線を用い
て、ガス量比からタービン効率ηtrを組算する。又、
前記演算器52mは、タービン性能曲線を用いて、ガス
t (Qvs−Q、5m1n)に応じたタービン人口圧
Ptrを計算する。更に、前記演算器52nは、タービ
ン入口ガス[I Q t r=Qv s−Qsm i 
nとし、前記演算器52oは、セプタム弁通過ガス量Q
s=Q、5m4nとする。
Therefore, the computing unit 52t calculates the turbine efficiency ηtr from the gas amount ratio using the turbine efficiency curve. or,
The computing unit 52m calculates the turbine population pressure Ptr according to the gas t (Qvs-Q, 5m1n) using the turbine performance curve. Further, the computing unit 52n calculates the turbine inlet gas [IQtr=Qvs-Qsmi
n, and the computing unit 52o calculates the amount of gas passing through the septum valve Q.
Let s=Q, 5m4n.

つぎに、各送風圧Pbに対する炉頂圧タービン2Gの回
収動力量(発電量)T2を演算器52pにより求める。
Next, the recovered power amount (power generation amount) T2 of the furnace top pressure turbine 2G for each blowing pressure Pb is determined by the calculator 52p.

先に求めた送風機の消費動力量Tlと炉頂圧タービンの
回収動力量T2の差T3=TI−T2が正味消費動力量
となるが、演算器52qは、各送風圧pbに対して、正
味消費動力量T3の値を求め、ついで、各送風圧pbに
対する正味消費動力(,1,、+173の中から最小正
味消費動力量T a m i nを選択し、このときの
送風圧を最適送風圧Pb* とする。
The difference T3 = TI - T2 between the power consumption Tl of the blower and the recovery power T2 of the furnace top pressure turbine obtained previously is the net power consumption. Find the value of power consumption T3, then select the minimum net power consumption T a min from among the net power consumption (,1,, +173) for each blowing pressure pb, and set the blowing pressure at this time to the optimum blowing pressure. Let the wind pressure be Pb*.

制御器52[は、演算器52qで算出された最適送風圧
Pb*と、前記送風検出器42で検出された実際の送風
圧pbとを比較して、Pb*〉Pbである場合には、ガ
バナ弁12の開度を大きくし、pb*−pbである場合
には、そのままとし、pb*<pb  である場合には
、ガバナ弁12を絞りこむことによって、送風機16の
吐出圧Pbd  を制御し、送風圧1) bが最適送風
圧Pb* に近づくように制御する。具体的には、送風
機16の吐出圧Pbd  の変更量を、最適送風圧Pb
ネと送風圧pbとの差に、送風機16から熱風炉18間
の圧損の増減を加えることによって求め、送風機吐出圧
Pbd  の変更量に応じて、ガバナ弁12の開度を1
1川棺1jする。
The controller 52[ compares the optimum blowing pressure Pb* calculated by the calculator 52q with the actual blowing pressure pb detected by the blowing detector 42, and if Pb*>Pb, The discharge pressure Pbd of the blower 16 is controlled by increasing the opening degree of the governor valve 12, leaving it as it is when pb*-pb, and narrowing down the governor valve 12 when pb*<pb. Then, the blowing pressure 1) b is controlled so as to approach the optimum blowing pressure Pb*. Specifically, the amount of change in the discharge pressure Pbd of the blower 16 is set to the optimum blowing pressure Pb.
It is calculated by adding the increase/decrease in pressure loss between the blower 16 and the hot blast stove 18 to the difference between the blower discharge pressure Pbd and the blower pressure Pbd, and the opening degree of the governor valve 12 is adjusted by 1 depending on the amount of change in the blower discharge pressure Pbd.
1 river coffin 1j.

送風1マ1(1)bが変一つな、ときには、以−ヒの演
算を再興行い、新しい最適送賦圧1.’ l:) * 
 を算出し、この最滴送風用門)* と送風圧の測定値
P +)との差に応じて、ガバナ弁12を制御する。
If the air blowing pressure 1(1)b is different, the above calculation may be repeated and a new optimum blowing pressure 1. 'l:) *
is calculated, and the governor valve 12 is controlled according to the difference between this maximum droplet blowing gate) * and the measured value P + ) of the blowing pressure.

なお、演算器52d、52j、52を等に記憶されてい
る送風機効率η、炉頂圧タービン26の性能曲線、ター
ビン効率ηtr  などは、現実の操業に合ったもので
ないと、最適送風圧P b t  が実際の最適値から
ずれてし1う恐れがある。又、設唱時点での性能曲線と
、実際に操業させた時の性能曲線とは完全に一致するも
ので(ト)なく、経年変化によってタービン特性も変化
し、通常は、機械部品の劣化等によりタービン効率が低
下する。従って、前記送風検出器42、送風機検出器4
4、炉頂圧検出器46、タービン入側検出器48、ター
ビン出力検出器50により、タービン人ロ圧Ptrター
ビン出力(発電)il)Tzなどの操業データを測定し
、演算器52sで各送風量Qbに対する性能曲線、効率
曲線等を計算しなおして、前記各演算器52(1,52
j、52j等に入力して、実際のタービン特性に合った
性能曲線等に変更し、新しい性能曲線により、前記最適
送風圧Pb* を計算するようにしている。
Note that if the blower efficiency η, the performance curve of the furnace top pressure turbine 26, the turbine efficiency ηtr, etc. stored in the computing units 52d, 52j, 52, etc. do not match the actual operation, the optimum blowing pressure P b There is a possibility that t may deviate from the actual optimum value. In addition, the performance curve at the time of installation and the performance curve when actually operated do not completely match (g), and turbine characteristics change over time, and usually due to deterioration of mechanical parts etc. This reduces turbine efficiency. Therefore, the air blower detector 42, the air blower detector 4
4. The furnace top pressure detector 46, turbine inlet detector 48, and turbine output detector 50 measure operational data such as turbine pressure Ptr, turbine output (power generation) il)Tz, and the computing unit 52s calculates each transmission. The performance curve, efficiency curve, etc. for the air volume Qb are recalculated, and each of the arithmetic units 52 (1, 52
j, 52j, etc., the performance curve is changed to match the actual turbine characteristics, and the optimum blowing pressure Pb* is calculated using the new performance curve.

なお、前記説明においては、空気、ガス共温度について
の説明は省略しているが、実際の計算では、各温度に対
する温度補正を考慮した計算式を用いる。
Note that in the above description, a description of the common temperatures of air and gas is omitted, but in actual calculations, a calculation formula that takes into account temperature correction for each temperature is used.

以上説明した通り、本発明によれば、高炉の送風、に際
してのエネルギコストを最小限に抑えることかできると
いう優れた効果ケ有する。
As explained above, the present invention has the excellent effect of minimizing the energy cost for blowing air into the blast furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の送風方法及び炉頂圧タービンによるエ
ネルギ回収方法が採用された高炉設備の概略構成を示す
ブロック線図、第2図(6)%(ハ)、0は、炉頂圧タ
ービンの性能曲線と、高炉の操業点及び炉頂圧タービン
の運転点の関係の例を示す線図、第3図は、本発明に係
る高炉操業方法が実施される高炉設備の基本的な構成を
示すブロック線図、第4図は、本発明に係る高炉操業方
法に際しての最適送風圧を示す、送風圧と消骨動力量、
回収動力隈及びiE味消費動力量の関係の例を示す線図
、第5図シよ、同じく、送風量と最適送風圧の関係の例
を示す線図、第6図は、本発明に係る高炉操業方法が採
用された高炉設備の実施例の構成を示すブロック5腺図
である。 10・・・送風用ボイラ、 12・・ガバナ弁、 14・・・送風タービン、 16・・・送風機、 18・・・熱風炉、 20・・・高炉、 22・・・除塵器、 24・・・ベンチュリ・スクラバ、 26・・・炉頂圧タービン、 28・・・発電機、 30・・・調速弁、 32・・・セプタム弁、 40.52・・・制御装置。
Fig. 1 is a block diagram showing a schematic configuration of blast furnace equipment in which a conventional air blowing method and an energy recovery method using a top pressure turbine are adopted; A diagram showing an example of the relationship between the performance curve of the turbine, the operating point of the blast furnace, and the operating point of the furnace top pressure turbine, and FIG. 3 shows the basic configuration of blast furnace equipment in which the blast furnace operating method according to the present invention is implemented. FIG. 4 is a block diagram showing the optimum blowing pressure for the blast furnace operating method according to the present invention;
Figure 5 is a diagram showing an example of the relationship between recovered power and iE consumption power, and Figure 6 is a diagram illustrating an example of the relationship between air blowing volume and optimal air blowing pressure according to the present invention. It is a block 5 diagram showing the configuration of an embodiment of blast furnace equipment in which the blast furnace operating method is adopted. 10...Blower boiler, 12...Governor valve, 14...Blower turbine, 16...Blower, 18...Hot blast furnace, 20...Blast furnace, 22...Dust remover, 24... - Venturi scrubber, 26... Furnace top pressure turbine, 28... Generator, 30... Governor valve, 32... Septum valve, 40.52... Control device.

Claims (3)

【特許請求の範囲】[Claims] (1)送風機を用いて高炉に吹込むだめの高圧空気を発
生させると共に、炉頂圧タービンを用いて高炉炉頂よυ
排出される炉頂ガスのエネルギを回収するよう圧した高
炉操業方法において、前記炉頂圧タービンの性能曲線等
を用いて、設定送風量における、送風機駆動源の消費動
力量と炉頂圧タービンの回収動力量との差が最小になる
ような最適送風圧を求め、該最適送風圧が得られるよう
前記送風機の駆動源を制御するようにしたことを特徴と
する高炉操業方法。
(1) Use a blower to generate high-pressure air to be blown into the blast furnace, and use a furnace top pressure turbine to
In a blast furnace operation method that uses pressure to recover the energy of the top gas discharged, the performance curve of the top pressure turbine is used to calculate the power consumption of the blower drive source and the top pressure turbine at a set air flow rate. A method for operating a blast furnace, characterized in that the optimum blowing pressure is determined such that the difference from the amount of recovered power is minimized, and the driving source of the blower is controlled so as to obtain the optimum blowing pressure.
(2)前記最適送風圧による送風機駆動源の制御を、高
炉の炉況が不安定なときは行わないようにした特許請求
の範囲第1項に記載の高炉操業方法。
(2) The blast furnace operating method according to claim 1, wherein the control of the blower drive source using the optimum blowing pressure is not performed when the furnace condition of the blast furnace is unstable.
(3)前記炉頂圧タービンの性能曲線等を、実際の操業
データに応じて修正するようにした特許請求の範囲第1
項に記載の高炉操業方法。
(3) The performance curve, etc. of the furnace top pressure turbine is modified according to actual operational data.
Blast furnace operating method described in section.
JP17578982A 1982-10-06 1982-10-06 Operating method of blast furnace Pending JPS5967304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17578982A JPS5967304A (en) 1982-10-06 1982-10-06 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17578982A JPS5967304A (en) 1982-10-06 1982-10-06 Operating method of blast furnace

Publications (1)

Publication Number Publication Date
JPS5967304A true JPS5967304A (en) 1984-04-17

Family

ID=16002274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17578982A Pending JPS5967304A (en) 1982-10-06 1982-10-06 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS5967304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534076A (en) * 2011-12-31 2012-07-04 杭州哲达科技股份有限公司 Online energy efficiency analytic method and analyzer for blast furnace blower
CN102559969A (en) * 2012-01-13 2012-07-11 杭州哲达科技股份有限公司 Energy efficiency analysis method for air blast system of blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534076A (en) * 2011-12-31 2012-07-04 杭州哲达科技股份有限公司 Online energy efficiency analytic method and analyzer for blast furnace blower
CN102559969A (en) * 2012-01-13 2012-07-11 杭州哲达科技股份有限公司 Energy efficiency analysis method for air blast system of blast furnace

Similar Documents

Publication Publication Date Title
CA1068492A (en) Combined gas turbine and steam turbine power plant
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
CN100365135C (en) Furnance top pressure control method based on resistance coefficient equivalent
JPS5967304A (en) Operating method of blast furnace
JP5711795B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JPS59134331A (en) Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant
JP3707089B2 (en) Plant control system in an exhaust-fired combined cycle plant
JP3697731B2 (en) Main steam temperature controller in exhaust recombustion combined cycle plant
JPS6154927B2 (en)
JPH11132675A (en) Control method for condenser
JP3765430B2 (en) Exhaust gas fired boiler
JP2878872B2 (en) Load control device for multi-shaft combined cycle plant
JPS58124010A (en) Controller for gas turbine
JP2003065069A (en) Control device for gas turbine equipment
JPS58105306A (en) Water supply controller
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH048829A (en) Gas turbine control device
JP3061881B2 (en) Control device for coal gasification power plant
JPS5835234A (en) Operating method of generating equipment for recovering top pressure of blast furnace
JPS62267527A (en) Air flow control device for combined cycle
SU840422A1 (en) Heat generating turbine operation mode control method
JP2591524B2 (en) Gas turbine device control method and gas turbine device using the method
JP2507426B2 (en) Coal gasification combined cycle controller
JP2000161009A (en) Method and device for controlling steam turbine
JPH0674401A (en) Pressurized fluidized bed boiler composite generating plant, load control method and device thereof