JP2000161009A - Method and device for controlling steam turbine - Google Patents

Method and device for controlling steam turbine

Info

Publication number
JP2000161009A
JP2000161009A JP10331212A JP33121298A JP2000161009A JP 2000161009 A JP2000161009 A JP 2000161009A JP 10331212 A JP10331212 A JP 10331212A JP 33121298 A JP33121298 A JP 33121298A JP 2000161009 A JP2000161009 A JP 2000161009A
Authority
JP
Japan
Prior art keywords
steam
turbine
flow rate
value
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10331212A
Other languages
Japanese (ja)
Inventor
Toshihiko Ono
俊彦 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10331212A priority Critical patent/JP2000161009A/en
Publication of JP2000161009A publication Critical patent/JP2000161009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a steam turbine at the maximum operating point by always supplying the available maximum steam flow to the steam turbine. SOLUTION: Means 51-53 are arranged which measure steam flow extracted from each stage of a steam turbine middle stage, a set value of a steam turbine inlet steam flow is corrected based on the total value of a correction value by the linear function of the total value of the steam flow and the set value of the steam turbine inlet steam flow, and steam turbine inlet steam flow control means is controlled according to deviation between the corrected set value and the actually measured value of the steam turbine inlet steam flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービンの制
御方法及び装置に係り、特に、発電プラントにおける蒸
気タービン発電設備に用いるのに好適な、蒸気タービン
中段から蒸気を抽出するようにされた蒸気タービンの制
御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a steam turbine, and more particularly, to a method for extracting steam from a middle stage of a steam turbine, which is suitable for use in a steam turbine power generation facility in a power plant. The present invention relates to a method and an apparatus for controlling a turbine.

【0002】[0002]

【従来の技術】図1に、コークス炉ガス(Cガス)及び
高炉ガス(Bガス)を燃料とする五缶のボイラ11〜1
5で構成される蒸気タービン発電プラントの系統図を示
す。この発電プラントの各ボイラ11〜15では、Cガ
スとBガスを混合したガスを燃焼し、その熱を利用して
水を水蒸気に変換して、蒸気タービン22を回転させる
ための高圧蒸気を発生している。
2. Description of the Related Art FIG. 1 shows a five-can boiler 11 to 1 using coke oven gas (C gas) and blast furnace gas (B gas) as fuel.
5 shows a system diagram of a steam turbine power plant constituted by No. 5. In each of the boilers 11 to 15 of this power plant, a gas in which C gas and B gas are mixed is burned, and water is converted into steam using the heat to generate high-pressure steam for rotating the steam turbine 22. are doing.

【0003】図において、16は、燃焼用の空気をボイ
ラ内に送り込むための押込通風機(FDF)、18は、
各ボイラ11〜15で燃焼された後の排ガスを煙突(図
示省略)に導くための誘引通風機(IDF)、20は、
各ボイラ11〜15で発生された高圧蒸気を受け入れる
蒸気レシーバ、24は、該蒸気レシーバ20から供給さ
れる高圧蒸気によって回転される前記タービン22に直
結されて駆動される発電機、28は、前記タービン22
でエネルギを失った蒸気を水に戻すための復水器、30
は、該復水器28によって生成された水から気体を除い
て、前記ボイラ11〜15に供給するための脱気器、3
2は、前記蒸気レシーバ20からタービン22に供給さ
れる蒸気の流量(タービン入口蒸気流量)を制御するた
めの蒸気加減弁、34は、該加減弁32の開度を制御す
るための調速機(ガバナ)、36は、該ガバナ34を制
御して、タービン入口蒸気流量を調節するための発電量
調節計である。
[0003] In the drawing, reference numeral 16 denotes a forced air ventilator (FDF) for feeding combustion air into the boiler, and 18 denotes
An induction ventilator (IDF) 20 for guiding the exhaust gas after being burned in each of the boilers 11 to 15 to a chimney (not shown) includes:
The steam receiver 24 for receiving the high-pressure steam generated in each of the boilers 11 to 15 is a generator that is directly connected to and driven by the turbine 22 that is rotated by the high-pressure steam supplied from the steam receiver 20. Turbine 22
Condenser for returning steam that has lost energy in water to water, 30
Is a deaerator for removing gas from the water generated by the condenser 28 and supplying it to the boilers 11 to 15;
Reference numeral 2 denotes a steam control valve for controlling the flow rate of steam (turbine inlet steam flow rate) supplied from the steam receiver 20 to the turbine 22, and reference numeral 34 denotes a governor for controlling the opening of the control valve 32. (Governors) and 36 are power generation controllers for controlling the governor 34 to adjust the turbine inlet steam flow rate.

【0004】このような蒸気タービン発電設備の制御方
法には、いろいろな方法があるが、任意の発電量を確保
したいときは、発電量調節計36によって、タービン入
口蒸気流量を制御するためのガバナ34の設定値を制御
し、発電量を任意の一定値に保つ発電量制御を行う。
又、任意の発電量を一定に保つ必要がなく、常に設備能
力一杯の最大の発電量で発電しておきたい場合には、ガ
バナ34の弁開度を全開で固定し、タービン入口蒸気流
量を最大にして最大発電を行う。これらは、設備の運用
方法によって、いろいろな制御方法が考案されている。
There are various methods of controlling the steam turbine power generation equipment. When it is desired to secure an arbitrary power generation, a governor for controlling the turbine inlet steam flow by the power generation controller 36 is used. The power generation amount control for maintaining the power generation amount at an arbitrary constant value is performed by controlling the set value of No. 34.
If it is not necessary to maintain a constant power generation amount, and if it is desired to always generate power at the maximum power generation capacity that is full of the equipment capacity, the valve opening of the governor 34 is fixed at full open and the turbine inlet steam flow rate is reduced. Maximize power generation by maximizing. For these, various control methods have been devised depending on the operation method of the equipment.

【0005】例えば、特開昭53−90544には、蒸
気タービン中段から蒸気を抽出するようにした抽気式タ
ービンを使用した発電プラントの出力変動を検出し、そ
の検出値と予め設定された出力設定値との比較により偏
差値を求め、この偏差値をタービンへの流入蒸気制御信
号としてガバナ34に入力することにより、偏差値を零
にするべく加減弁32の開閉調節によりタービン22へ
の流入蒸気量を加減して、発電出力を一定に保持するこ
とが記載されている。
[0005] For example, Japanese Patent Application Laid-Open No. 53-90544 discloses that a power fluctuation of a power generation plant using a bleed-type turbine in which steam is extracted from a middle stage of a steam turbine is detected, and the detected value is set to a predetermined output setting. A deviation value is determined by comparing the deviation value with the value, and the deviation value is input to the governor 34 as a flow control signal for the steam flowing into the turbine. It is described that the power generation output is kept constant by adjusting the amount.

【0006】又、特開平3−31882には、最大限発
電時に最終段抽気加減弁開度を最大一定開度に制御する
ことにより、工場で使用する抽気流量の如何によらず常
に抽気圧力を一定に保った上で、その時の抽気流量に応
じて取り得る最大の発電機出力が得られるようにするこ
とが記載されている。
[0006] Japanese Patent Application Laid-Open No. 3-31882 discloses that the maximum bleed pressure is always controlled regardless of the bleed flow rate used in the factory by controlling the last-stage bleed control valve opening to the maximum constant opening during maximum power generation. It is described that the maximum generator output that can be obtained in accordance with the bleed air flow rate at that time is obtained while keeping it constant.

【0007】又、特公昭61−20686には、抽気加
減弁制御信号及び蒸気加減弁制御信号系に設けられ、こ
れらの信号を抽気流量の変動に対してタービン出力の変
動を避けるよう決定する定数を可変とし、主蒸気流量最
大運転の場合は、蒸気加減弁制御信号系定数を零とする
と共に、この定数の減少分を抽気加減弁制御信号に加え
合せ、復水流量ミニマム運転の場合は、抽気加減弁制御
信号系定数を零にすると共に、この定数の減少分を蒸気
加減弁制御信号に加え合せ、主蒸気流量最大運転時には
抽気流量の変動は全て復水流量の変動とし、又、復水流
量ミニマム運転時には、抽気流量の変動は全て主蒸気流
量の変動とすることによって、抽気流量の変動において
も、主蒸気流量又は復水流量のいずれかのみに変動を与
え、いずれか一方は一定流量運転を可能とすることが記
載されている。
In Japanese Patent Publication No. 61-20686, there are provided a bleed control valve control signal and a steam control valve control signal system, and these signals are used to determine the fluctuation of the bleed flow to avoid the fluctuation of the turbine output. In the case of the main steam flow rate maximum operation, the steam control valve control signal system constant is set to zero, and the decrease of this constant is added to the bleed air control valve control signal. The bleed control valve control signal system constant is set to zero, and the decrease of this constant is added to the steam control valve control signal. At the time of the water flow minimum operation, all the fluctuations of the bleed air flow are the fluctuations of the main steam flow, so that even in the fluctuation of the bleed air flow, only the main steam flow or the condensate flow is changed. It is described that allows the constant flow rate operation.

【0008】又、特公昭61−53528には、ボイラ
発生蒸気流量あるいは抽気加減弁開度が上下限値を逸脱
しないようにして、送受電電力制御を行うことにより、
安定した送受電電力制御と、安定した工場内への蒸気量
の供給を可能とすることが記載されている。
In Japanese Patent Publication No. 61-53528, power transmission / reception is controlled by controlling the flow rate of steam generated by the boiler or the opening of the bleed control valve so as not to exceed the upper and lower limits.
It describes that stable power transmission and reception power control and stable supply of steam into a factory can be performed.

【0009】[0009]

【発明が解決しようとする課題】通常、発電量を任意の
値に保つ必要がなく、運用として最大発電を行っておき
たい場合には、ガバナの弁開度を全開で固定し、タービ
ン入口蒸気流量を最大にしておくが、このタービン入口
蒸気流量は、復水器28の持つ処理能力で設定されてお
り、基本的に復水器28で処理できるだけの蒸気流量を
タービン22の中に通過させることができる。
Normally, when it is not necessary to maintain the power generation amount at an arbitrary value and it is desired to generate the maximum power as an operation, the governor valve opening is fixed at full open and the turbine inlet steam is fixed. Although the flow rate is kept at a maximum, the turbine inlet steam flow rate is set by the processing capacity of the condenser 28, and basically the steam flow rate that can be processed by the condenser 28 is passed through the turbine 22. be able to.

【0010】しかしながら、一般に復水式蒸気タービン
では、タービン効率を向上させるために、タービン中段
よりいくつかの抽気を行って、その蒸気を脱気器30用
の蒸気や給水加熱器用蒸気として使用し、プラント全体
の効率を向上させている。このため、最後まで仕事を
し、最終的に復水器28に水となって帰還する蒸気量は
常に一定ではなく、タービン抽気流量によって絶えず変
化することになる。タービン抽気流量は、プラント全体
の負荷条件によって変化するものであるため、その定量
的な値を計算で算出することは困難であり、通常は、プ
ラント全体の負荷の成り行きで決まる。従って、蒸気タ
ービンの運転に際しては、タービン入口蒸気流量の最大
値から、経験的に知られているタービン抽気流量の変動
量を補正した値で運転されている。このため、負荷変動
が激しいプラントでは、常に蒸気タービンの最大効率の
運転点では運転できていないという問題があった。
However, in general, in the condensing steam turbine, in order to improve the turbine efficiency, some bleeding is performed from the middle stage of the turbine, and the steam is used as steam for the deaerator 30 and steam for the feed water heater. , Improving the efficiency of the entire plant. For this reason, the amount of steam that works until the end and finally returns as water to the condenser 28 is not always constant, but constantly changes depending on the turbine bleed flow rate. Since the turbine bleed flow rate varies depending on the load conditions of the entire plant, it is difficult to calculate its quantitative value by calculation, and is usually determined by the load of the entire plant. Therefore, when the steam turbine is operated, the steam turbine is operated at a value obtained by correcting the empirically known fluctuation amount of the turbine extraction flow rate from the maximum value of the turbine inlet steam flow rate. For this reason, there is a problem that the plant in which the load fluctuation is severe cannot always be operated at the operating point of the maximum efficiency of the steam turbine.

【0011】本発明は、前記従来の問題点を解消するべ
くなされたもので、蒸気タービンに、常に復水器で処理
可能な最大蒸気量を供給して、最大の運転点で運転でき
るようにすることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and always supplies a steam turbine with a maximum steam amount which can be processed by a condenser so that the steam turbine can be operated at a maximum operating point. The task is to

【0012】[0012]

【課題を解決するための手段】本発明は、蒸気タービン
中段から蒸気を抽出するようにされた蒸気タービンの制
御方法において、蒸気タービン中段からの抽気流量を測
定し、その値を用いてタービン入口蒸気流量制御の設定
値を補正することによって、常に蒸気タービンに供給可
能な最大蒸気量を供給するようにして、前記課題を解決
したものである。
SUMMARY OF THE INVENTION The present invention relates to a method for controlling a steam turbine in which steam is extracted from a middle stage of a steam turbine. The above problem is solved by correcting the set value of the steam flow control so as to always supply the maximum steam amount that can be supplied to the steam turbine.

【0013】又、前記蒸気タービン中段の各段からの抽
気流量を測定し、その合計値を一次関数で補正して補正
値を求め、該補正値を前記タービン入口蒸気流量制御の
設定値に加算するようにしたものである。
Further, the flow rate of the extracted air from each of the middle stages of the steam turbine is measured, the total value is corrected by a linear function to obtain a correction value, and the correction value is added to the set value of the turbine inlet steam flow control. It is something to do.

【0014】又、前記一次関数の補正係数を、タービン
入口蒸気流量を手動で変化させ、タービンの回転数を一
定に保ち、その時のタービン入口蒸気流量とタービン抽
気流量のデータから、一次回帰を行って求めるようにし
たものである。
Further, the correction coefficient of the linear function is changed by manually changing the turbine inlet steam flow to keep the turbine rotation speed constant, and performing a linear regression from the data of the turbine inlet steam flow and the turbine extraction flow at that time. Is to ask for it.

【0015】本発明は、又、蒸気タービン中段から蒸気
を抽出するようにされた蒸気タービンの制御装置におい
て、タービン入口蒸気流量を測定するタービン入口蒸気
流量計測手段と、該タービン入口蒸気流量計測手段で測
定されたタービン入口蒸気流量と、その設定値との偏差
に応じて、タービン入口蒸気流量を制御するタービン入
口蒸気流量調節手段と、蒸気タービン中段の各段からの
抽気流量を測定する抽気流量計測手段と、該抽気流量計
測手段で測定された抽気流量を加算して合計値を求める
加算手段と、該合計値を一次関数で補正して補正値を求
め、前記タービン入口蒸気流量調節手段の設定値を補正
する抽気流量補正演算手段とを備え、常に蒸気タービン
に供給可能な最大蒸気量を供給するようにして、前記課
題を解決したものである。
According to the present invention, there is further provided a steam turbine control apparatus for extracting steam from a middle stage of a steam turbine, wherein a turbine inlet steam flow rate measuring means for measuring a turbine inlet steam flow rate, and the turbine inlet steam flow rate measuring means. A turbine inlet steam flow rate controlling means for controlling the turbine inlet steam flow rate in accordance with the deviation between the turbine inlet steam flow rate measured in step 1 and the set value, and a bleed air flow rate for measuring the bleed air flow rate from each of the middle stages of the steam turbine. Measuring means, adding means for adding the bleed air flow rate measured by the bleed air flow rate measuring means to obtain a total value, and correcting the total value by a linear function to obtain a correction value, wherein the turbine inlet steam flow rate adjusting means A bleed air flow rate correction calculation means for correcting a set value, wherein the maximum steam amount that can be supplied to the steam turbine is always supplied to solve the above problem. A.

【0016】本発明においては、前記問題を解決するた
めに、タービン入口蒸気流量調節手段(例えばタービン
入口蒸気流量調節器)を用いて、タービン入口蒸気流量
の値を一定に制御できるようにし、なお且つ、各段のタ
ービン抽気流量の値を計測して、その値の合計値を一次
関数が補正した補正値を、タービン入口蒸気流量調節計
の設定値に加算して補正し、蒸気タービンに、常に復水
器で処理可能な最大蒸気量を供給して、最大の運転点で
運転できるようにしたものである。
In the present invention, in order to solve the above problem, the turbine inlet steam flow rate adjusting means (for example, a turbine inlet steam flow rate regulator) is used so that the value of the turbine inlet steam flow rate can be controlled to be constant. In addition, the value of the turbine extraction flow rate of each stage is measured, and a correction value obtained by correcting the sum of the values by a linear function is added to the set value of the turbine inlet steam flow controller to correct the value. The maximum steam amount that can be processed by the condenser is always supplied to enable operation at the maximum operating point.

【0017】タービン抽気流量による一次関数の補正に
際しては、流量計測方法の誤差や圧力変動による誤差
等、各種誤差要因があるため、単純な加減算で補正がで
きない。そこで、タービン入口蒸気流量を手動で変化さ
せ、タービンによって駆動される負荷、例えば発電機の
出力を一定に保ち、その時のタービン入口蒸気流量とタ
ービン抽気流量のデータから、一次回帰を行い、一次関
数の補正係数を求めることができる。
In the correction of the linear function based on the flow rate of the turbine bleed air, there are various error factors such as an error in the flow rate measuring method and an error due to the pressure fluctuation, and therefore cannot be corrected by simple addition and subtraction. Therefore, the turbine inlet steam flow rate is manually changed, and the load driven by the turbine, for example, the output of the generator is kept constant.From the data of the turbine inlet steam flow rate and the turbine bleed flow rate at that time, a linear regression is performed to obtain a linear function Can be obtained.

【0018】[0018]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図2は、本発明を適用した蒸気タービンの
制御装置の実施形態における制御系統を示す系統図であ
る。
FIG. 2 is a system diagram showing a control system in a steam turbine control device according to an embodiment of the present invention.

【0020】ボイラ(図示省略)で製造された発電用水
蒸気は、蒸気加減弁32を経由して、蒸気タービン22
に供給される。この蒸気タービン22は、発電機24を
駆動して発電を行う。蒸気タービン22を経由したター
ビン入口蒸気は、蒸気タービン22を駆動させる仕事を
行った後、復水器28に帰還し、復水となって、再び発
電プラント内で循環使用される。このとき、タービン入
口蒸気流量の一部は、タービン抽気流量となって、ター
ビン中段から抽気され、脱気器用蒸気や給水加熱器用の
蒸気となって有効利用され、結果として蒸気タービン効
率を向上させている。
The steam for power generation produced by a boiler (not shown) passes through a steam control valve 32 and passes through a steam turbine 22.
Supplied to The steam turbine 22 drives a generator 24 to generate power. The turbine inlet steam that has passed through the steam turbine 22 performs the work of driving the steam turbine 22, returns to the condenser 28, becomes condensed water, and is circulated and used again in the power plant. At this time, part of the turbine inlet steam flow rate becomes the turbine bleed flow rate, is extracted from the middle stage of the turbine, and is effectively used as steam for the deaerator and steam for the feed water heater, thereby improving the steam turbine efficiency. ing.

【0021】しかし、このタービン抽気流量は、プラン
トの負荷によって常に変化し、一定ではない。このた
め、復水器28に帰還する蒸気量は、タービン抽気流量
の変化に応じて変動し、復水器28の持つ最大処理能力
を満足させ、復水器28の処理能力に余裕が出る場合が
ある。
However, the flow rate of the turbine bleed air constantly varies depending on the load of the plant, and is not constant. For this reason, the amount of steam returned to the condenser 28 fluctuates according to the change in the turbine bleed flow rate, and satisfies the maximum processing capacity of the condenser 28, and the processing capacity of the condenser 28 has a margin. There is.

【0022】そこで、本発明においては、タービン入口
蒸気流量を測定するタービン入口蒸気流量発信器40
と、該タービン入口蒸気流量発信器40で測定されたタ
ービン入口蒸気流量とその設定値との偏差に応じて、タ
ービン入口蒸気流量を制御するタービン入口蒸気流量調
節計42と、蒸気タービン22中段の各段からの抽気流
量をそれぞれ測定するための、一段抽気流量発信器5
1、二段抽気流量発信器52及び三段抽気流量発信器5
3と、該抽気流量発信器51〜53で測定された抽気流
量を加算してタービン抽気流量合計値Xを求める加算器
56と、該合計値Xを一次関数(補正係数a、b)で補
正してタービン入口蒸気流量補正値Yを求め、前記ター
ビン入口蒸気流量調節計42の設定値を補正する抽気流
量補正演算器58とを設けている。
Accordingly, in the present invention, a turbine inlet steam flow transmitter 40 for measuring the turbine inlet steam flow is provided.
And a turbine inlet steam flow controller 42 for controlling the turbine inlet steam flow according to the deviation between the turbine inlet steam flow measured by the turbine inlet steam flow transmitter 40 and the set value. One-stage bleed flow transmitter 5 for measuring the bleed flow from each stage
1. Two-stage bleed flow transmitter 52 and three-stage bleed flow transmitter 5
3, an adder 56 that adds the bleed flow rates measured by the bleed flow transmitters 51 to 53 to obtain a turbine bleed flow total value X, and corrects the total value X with a linear function (correction coefficients a and b). And a bleed flow correction arithmetic unit 58 for determining the turbine inlet steam flow correction value Y and correcting the set value of the turbine inlet steam flow controller 42.

【0023】前記タービン入口蒸気流量発信器40は、
タービン入口蒸気流量を計測し、タービン入口蒸気流量
調節計42の実測値(PV値)に入力し、設定値(SV
値)との偏差にPID演算を行った後、その出力値でガ
バナ34の設定値を増減し、ガバナ34の出力で蒸気加
減弁32の操作を行うことによって、タービン入口蒸気
流量の一定値制御を行う。
The turbine inlet steam flow transmitter 40 is
The turbine inlet steam flow rate is measured and input to the actual measured value (PV value) of the turbine inlet steam flow controller 42, and the set value (SV
After the PID calculation is performed on the deviation from the control value, the set value of the governor 34 is increased or decreased by the output value, and the steam control valve 32 is operated by the output of the governor 34 to control the turbine inlet steam flow at a constant value. I do.

【0024】各タービン抽気の段毎に設置された前記抽
気流量発信器51〜53は、タービン抽気流量の値を計
測し、その値を加算器56で合計して、加算結果がター
ビン抽気流量合計値Xとして抽気流量補正演算器58に
入力される。
The bleed flow transmitters 51 to 53 installed at each turbine bleed stage measure the value of the turbine bleed flow, add the values by an adder 56, and add the result to the total turbine bleed flow. The value X is input to the bleed flow correction calculator 58.

【0025】抽気流量補正演算器58では、合計値Xに
対して、補正係数a、bを有する一次関数による補正を
行い、タービン入口蒸気流量補正値Yを出力する。この
補正値Yは、タービン入口蒸気流量調節計42のSV値
に加算され、設定値が補正される。これにより、タービ
ン抽気流量の変動分が補正され、蒸気タービン22に供
給される蒸気流量は、常に復水器28の能力一杯となる
ようにされる。
The bleed flow correction calculator 58 corrects the total value X by a linear function having correction coefficients a and b, and outputs a turbine inlet steam flow correction value Y. This correction value Y is added to the SV value of the turbine inlet steam flow controller 42 to correct the set value. As a result, the variation of the turbine extraction flow rate is corrected, and the steam flow rate supplied to the steam turbine 22 is always set to the full capacity of the condenser 28.

【0026】このとき、抽気流量補正演算器58の補正
係数a、bは、流量検出方法の誤差や圧力変動による誤
差等、各種誤差要因があるため、単純な加減算では補正
ができないので、事前に試験を行って、タービン入口蒸
気流量を手動で変化させ、タービン22の回転数を一定
に保つことによって発電機24の出力を一定に保ち、そ
のときのタービン入口蒸気流量とタービン抽気蒸気流量
のデータから、一次回帰を行って、求めておく。
At this time, since the correction coefficients a and b of the bleed flow correction arithmetic unit 58 have various error factors such as errors in the flow rate detection method and errors due to pressure fluctuations, they cannot be corrected by simple addition and subtraction. A test was conducted to manually change the turbine inlet steam flow rate and keep the output of the generator 24 constant by keeping the rotation speed of the turbine 22 constant. At that time, the data of the turbine inlet steam flow rate and the turbine extraction steam flow rate were used. First, perform a first-order regression and find it.

【0027】以上の動作により、常に蒸気タービン22
の入口蒸気流量は、タービン抽気流量を加味した値とな
り、復水器28の能力一杯の蒸気流量を蒸気タービン中
に通過させることが可能となり、蒸気タービンが最大の
運転点で運転できるようになる。この結果、蒸気タービ
ン発電設備は、処理可能な最大量の蒸気流量を常に供給
されていることになり、最大発電を行うことが可能にな
る。
With the above operation, the steam turbine 22
Is a value that takes into account the turbine bleed air flow rate, it is possible to pass the full steam flow rate of the condenser 28 into the steam turbine, and the steam turbine can be operated at the maximum operating point. . As a result, the steam turbine power generation equipment is always supplied with the maximum amount of steam that can be processed, and it is possible to perform maximum power generation.

【0028】なお、前記実施形態においては、本発明
が、蒸気タービン発電設備に適用されていたが、本発明
の適用対象はこれに限定されず、例えば蒸気タービン2
2によって、発電機24の代りにブロワを回転するよう
にした、送風プラントにも同様に適用できることは明ら
かである。
In the above embodiment, the present invention is applied to a steam turbine power generation facility, but the present invention is not limited to this.
Obviously, the invention can be similarly applied to a blower plant in which a blower is rotated instead of the generator 24 according to FIG.

【0029】[0029]

【発明の効果】本発明によれば、常に蒸気タービンに供
給可能な最大蒸気量を供給することが可能となり、蒸気
タービンを最大の運転点で運転できるようになる。従っ
て、発電プラントの発電量や送風プラントの送風量を最
大に維持することが可能となる。
According to the present invention, the maximum amount of steam that can be supplied to the steam turbine can always be supplied, and the steam turbine can be operated at the maximum operating point. Therefore, it is possible to maintain the amount of power generated by the power plant and the amount of air blown by the blowing plant to the maximum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の適用対象である蒸気タービン発電プラ
ントの全体構成を示す系統図
FIG. 1 is a system diagram showing the overall configuration of a steam turbine power plant to which the present invention is applied.

【図2】本発明が適用された蒸気タービン発電設備の制
御系統を示す系統図
FIG. 2 is a system diagram showing a control system of a steam turbine power plant to which the present invention is applied.

【符号の説明】[Explanation of symbols]

22…蒸気タービン 24…発電機 28…復水器 32…蒸気加減弁 34…ガバナ 40…タービン入口蒸気流量発信器 42…タービン入口蒸気流量調節計 51〜53…抽気流量発信器 56…加算器 58…抽気流量補正演算器 Reference Signs List 22 steam turbine 24 generator 28 condenser 32 valve governor 40 turbine inlet steam flow transmitter 42 turbine inlet steam flow controller 51-53 extraction air flow transmitter 56 adder 58 … Bleed flow correction calculator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】蒸気タービン中段から蒸気を抽出するよう
にされた蒸気タービンの制御方法において、 蒸気タービン中段からの抽気流量を測定し、 その値を用いてタービン入口蒸気流量制御の設定値を補
正することによって、 常に蒸気タービンに供給可能な最大蒸気量を供給するこ
とを特徴とする蒸気タービンの制御方法。
1. A method for controlling a steam turbine in which steam is extracted from a middle stage of a steam turbine, wherein a flow rate of bleed air from the middle stage of the steam turbine is measured, and a set value of turbine inlet steam flow control is corrected using the measured value. A method for controlling a steam turbine, characterized in that the maximum steam amount that can be supplied to the steam turbine is always supplied.
【請求項2】請求項1において、前記蒸気タービン中段
の各段からの抽気流量を測定し、 その合計値を一次関数で補正して補正値を求め、 該補正値を前記タービン入口蒸気流量制御の設定値に加
算するようにしたことを特徴とする蒸気タービンの制御
方法。
2. The steam flow control according to claim 1, wherein the flow rate of the extracted air from each of the middle stages of the steam turbine is measured, and the total value is corrected by a linear function to obtain a correction value. A control method for a steam turbine, characterized in that the control value is added to a set value of the steam turbine.
【請求項3】請求項2において、前記一次関数の補正係
数を、 タービン入口蒸気流量を手動で変化させ、タービンの回
転数を一定に保ち、その時のタービン入口蒸気流量とタ
ービン抽気流量のデータから、一次回帰を行って求める
ようにしたことを特徴とする蒸気タービンの制御方法。
3. The correction coefficient of the linear function according to claim 2, wherein the turbine inlet steam flow rate is manually changed, the turbine rotation speed is kept constant, and the turbine inlet steam flow rate and turbine bleed air flow rate data at that time are maintained. A method for controlling a steam turbine, wherein the method is performed by performing a first-order regression.
【請求項4】蒸気タービン中段から蒸気を抽出するよう
にされた蒸気タービンの制御装置において、 タービン入口蒸気流量を測定するタービン入口蒸気流量
計測手段と、 該タービン入口蒸気流量計測手段で測定されたタービン
入口蒸気流量と、その設定値との偏差に応じて、タービ
ン入口蒸気流量を制御するタービン入口蒸気流量調節手
段と、 蒸気タービン中段の各段からの抽気流量を測定する抽気
流量計測手段と、 該抽気流量計測手段で測定された抽気流量を加算して合
計値を求める加算手段と、 該合計値を一次関数で補正して補正値を求め、前記ター
ビン入口蒸気流量調節手段の設定値を補正する抽気流量
補正演算手段とを備え、 常に蒸気タービンに供給可能な最大蒸気量を供給するこ
とを特徴とする蒸気タービンの制御装置。
4. A steam turbine control device adapted to extract steam from a middle stage of a steam turbine, wherein a turbine inlet steam flow rate measuring means for measuring a turbine inlet steam flow rate, and the steam flow rate is measured by the turbine inlet steam flow rate measuring means. Turbine inlet steam flow rate, a turbine inlet steam flow rate adjusting means for controlling the turbine inlet steam flow rate in accordance with a deviation from the set value, a bleed air flow rate measuring means for measuring a bleed air flow rate from each stage of the steam turbine middle stage, Adding means for adding a bleed air flow rate measured by the bleed air flow rate measuring means to obtain a total value; correcting the total value by a linear function to obtain a correction value; and correcting a set value of the turbine inlet steam flow rate adjusting means. A control device for a steam turbine, comprising: a bleed air flow rate correction calculating means for supplying a maximum amount of steam that can always be supplied to the steam turbine.
JP10331212A 1998-11-20 1998-11-20 Method and device for controlling steam turbine Pending JP2000161009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331212A JP2000161009A (en) 1998-11-20 1998-11-20 Method and device for controlling steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331212A JP2000161009A (en) 1998-11-20 1998-11-20 Method and device for controlling steam turbine

Publications (1)

Publication Number Publication Date
JP2000161009A true JP2000161009A (en) 2000-06-13

Family

ID=18241158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331212A Pending JP2000161009A (en) 1998-11-20 1998-11-20 Method and device for controlling steam turbine

Country Status (1)

Country Link
JP (1) JP2000161009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121024A (en) * 2003-10-16 2005-05-12 General Electric Co <Ge> Method and device for controlling steam turbine inlet flow for limiting thermal stress of shell and rotor
US7392656B2 (en) 2006-05-18 2008-07-01 Hitachi, Ltd. Steam turbine plant
CN102278148A (en) * 2010-06-12 2011-12-14 中国电力工程顾问集团华东电力设计院 Full-period steam inlet steam turbine generator unit and primary frequency adjusting method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121024A (en) * 2003-10-16 2005-05-12 General Electric Co <Ge> Method and device for controlling steam turbine inlet flow for limiting thermal stress of shell and rotor
JP4684614B2 (en) * 2003-10-16 2011-05-18 ゼネラル・エレクトリック・カンパニイ Method and apparatus for controlling steam turbine inlet flow to limit shell and rotor thermal stresses
US7392656B2 (en) 2006-05-18 2008-07-01 Hitachi, Ltd. Steam turbine plant
CN102278148A (en) * 2010-06-12 2011-12-14 中国电力工程顾问集团华东电力设计院 Full-period steam inlet steam turbine generator unit and primary frequency adjusting method thereof

Similar Documents

Publication Publication Date Title
US4577270A (en) Plant control method
CN102374519B (en) Dynamic tuning of dynamic matrix control of steam temperature
US20120166375A1 (en) Power plant control device which uses a model, a learning signal, a correction signal, and a manipulation signal
JP5030384B2 (en) Drum water level control method and apparatus for drum type boiler
CN102224380B (en) Oxygen trim controller tuning during combustion system commissioning
US8887747B2 (en) System and method for drum level control
CN102374520B (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
CN102374518B (en) Steam temperature control using dynamic matrix control
JP6005252B2 (en) Gas turbine system, control device, and operation method of gas turbine
CN106861407B (en) It is a kind of for avoiding the blower of paired running from tacking the control method of phenomenon
US20120167581A1 (en) Method of controlling a combined-cycle system in single-shaft configuration, and combined-cycle system in single-shaft configuration
CN103791482A (en) Thermal power generating unit hearth pressure segmentation control method
JP4929226B2 (en) Gas turbine control device and method for single-shaft combined cycle plant
NO145900B (en) NUCLEAR POWER CONTROL SYSTEM
JP6684453B2 (en) Extraction control method and control device for steam turbine generator
JP2000161009A (en) Method and device for controlling steam turbine
US6230495B1 (en) Method for optimizing fossil-fueled power stations
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JPH0215761B2 (en)
CN113653607B (en) Intelligent power station fan stall early warning diagnosis method based on system efficiency model
JP2021528590A (en) How to operate a power plant
JP4064842B2 (en) Air-cooled condenser, vacuum control system, and control method
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JP2000274603A (en) Water supply controller
JPH1047013A (en) Control device for exhaust heat utilization generating plant