JPS5966979A - Submerged arc welding of spiral steel pipe - Google Patents

Submerged arc welding of spiral steel pipe

Info

Publication number
JPS5966979A
JPS5966979A JP16724682A JP16724682A JPS5966979A JP S5966979 A JPS5966979 A JP S5966979A JP 16724682 A JP16724682 A JP 16724682A JP 16724682 A JP16724682 A JP 16724682A JP S5966979 A JPS5966979 A JP S5966979A
Authority
JP
Japan
Prior art keywords
steel pipe
arc welding
submerged arc
spiral steel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16724682A
Other languages
Japanese (ja)
Inventor
Kiyoteru Hirabayashi
平林 清照
Kazutaka Akao
赤尾 一孝
Hideo Toma
当麻 英夫
Naoki Okuda
直樹 奥田
Takashi Wada
俊 和田
Kaoru Hase
薫 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
JFE Engineering Corp
Original Assignee
Kobe Steel Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Kobe Steel Ltd
Priority to JP16724682A priority Critical patent/JPS5966979A/en
Publication of JPS5966979A publication Critical patent/JPS5966979A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To produce a spiral steel pipe having no joint defect with good productivity by using a sintered flux having a specific compsn. and specific grain size and adjusting the eccentricity of the 1st electrode in an adequate range in performing multielectrode submerged arc welding. CONSTITUTION:A sintered flux which contains 20-40wt% SiO2, 20-50% TiO2, 5-20% MgO, 2-20% amount expressed in terms of MnO, Mn source such as metallic Mn, Fe-Mn, MnO2 or the like and 3-20% inorg. fluoride as essential components, satisfies 64%<=(SiO2+TiO2+MgO)<=90% and contains the particles of the grain sizes consisting of <=20% coarse grain of >=10 mesh and <=50% fine grain of <=70 mesh is used. The inner side of a spiral steel pipe produced by coiling a steel strip is subjected to high speed submerged arc welding with multiple electrodes under the conditions satisfying the equation l-pi/20R<=x<=l-pi/ 60R (wherein x: the eccentricity of the 1st electrode, R: the radius of the spiral steel pipe, l: the length of a crater).

Description

【発明の詳細な説明】 本発明はヌバイヲル鋼管の潜弧溶接方法に関し、詳細に
は、帯鋼を螺旋状に巻回しながら両側縁を潜弧溶接して
ヌバイラル鋼管を製造する方法において、フラックスの
成分組成を特定すると共に、多電極のうち第1電極の偏
心量を適正に調整することによって溶接性を改善し、高
性能のスバイヲ/l/Wi管を生産性良く製造すること
のできる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for submerged arc welding of Nuviral steel pipes, and more specifically, in a method of manufacturing Nuviral steel pipes by submerged arc welding both edges of a steel strip while spirally winding the steel pipe. This invention relates to a method for manufacturing high-performance Subaio/l/Wi pipes with high productivity by improving weldability by specifying the component composition and appropriately adjusting the eccentricity of the first electrode among multiple electrodes. It is something.

溶接によるヌバイヲ/l/鋼管の製造方法は、m1図に
略示する通りであって、帯鋼1’(r矢印方向へ供給し
ながらスバイラ)v杖に巻回し、トーチ2を用いて内面
側を溶接した後、トーチ8′に用いて外面側を溶接する
。この場合、溶接作業性及び継手性能を高め得る様、一
般に内面側は上シ傾斜で、外面側は下シ傾斜で溶接され
るが、溶融プールの凝固開始点でみると実質的には内面
側が下り傾斜、外面側が上り傾斜溶接となる。従って内
面側はビードが凹型になシ易く、アンダーカット、オー
バ−ラップ、異常な凹み、スラグ巻込み等の欠陥が発生
し易く、一方外面側は凸型の2段ビードとなシ易く、ヌ
ヲグ巻込み、アンダーカット、異常な2段ビード等の欠
陥が発生し易い。この様な継手欠陥は溶接速度を高める
につれて著しくなる傾向があり、特に内面側の継手欠陥
は増速させるにつれで急激に増大する傾向が見られる。
The manufacturing method of Nubaio/l/ steel pipe by welding is as shown schematically in Fig. m1, and the steel strip is wound around a v cane (while being fed in the direction of the arrow r), and the inner side is cut using a torch 2. After welding, the outer surface side is welded using a torch 8'. In this case, in order to improve welding workability and joint performance, the inner surface is generally welded with an upward slope and the outer surface is welded with a downward slope, but from the point of view of the solidification start point of the molten pool, the inner surface is actually welded. The weld slopes downward, and the outside surface side slopes upward. Therefore, on the inner side, the bead tends to form a concave shape, which causes defects such as undercuts, overlaps, abnormal dents, and slag entrainment, while on the outer side, the bead tends to form a convex two-step bead, resulting in the formation of a concave bead. Defects such as curling, undercuts, and abnormal two-step beads are likely to occur. Such joint defects tend to become more significant as the welding speed increases, and in particular, joint defects on the inner surface tend to increase rapidly as the welding speed increases.

従って要求品質を満たずスパイフμ鋼管を確保する為に
は溶接速度を犠牲にせざるを得す、生産性を高めること
ができなかった。
Therefore, in order to obtain a spiff μ steel pipe that does not meet the required quality, the welding speed has to be sacrificed, and productivity cannot be increased.

本発明者等は上記の様な事情に着目し、特に前述の様な
継手欠陥を生じることなく内面側を高速で溶接し得る様
な技術の確立を期して、大入熱溶接の可能な潜弧溶接法
を採用することによって目的を達成すべく鋭意研究を進
めてきた。
The present inventors focused on the above-mentioned circumstances, and aimed to establish a technology that would enable high-speed welding of the inner surface without causing joint defects such as those described above. We have been conducting intensive research to achieve this goal by adopting the arc welding method.

本発明はこうした研究の結果完成されたものであって、
その構成は、5lO3:20〜40%(重量%:以下同
じ、5、TlO2:20〜55%、MgO:5〜20%
、金属Mn、Fe−Mn。
The present invention was completed as a result of such research, and
Its composition is 5lO3: 20-40% (weight%: the same below, 5, TlO2: 20-55%, MgO: 5-20%
, metal Mn, Fe-Mn.

MrlO%MnO2等のMn源: M n O換算で2
〜20%、無機弗化物:8〜20%を必須成分として含
有し、且つ 64%≦(SlO+TlO2+Mg0)≦90%を満足
すると共に、粒度構成社、10メツシュ以上の粗粒物:
20%以下、70メツシユ以下の微粒物:50%以下、
を満足する焼結型フヲツクヌを使用し、スパイフル鋼管
の内面側を下記(I)式を満足する条件にて多電極で高
速潜弧溶接を行なうところに要旨が存在する。
Mn source such as MrlO%MnO2: 2 in terms of MnO
-20%, inorganic fluoride: 8 to 20% as an essential component, and satisfies 64%≦(SlO+TlO2+Mg0)≦90%, and coarse grains with a grain size of 10 mesh or more:
20% or less, fine particles of 70 mesh or less: 50% or less,
The gist lies in the use of a sintered type fuse that satisfies the following, and performs high-speed latent arc welding on the inner surface of a spiffle steel pipe using a multi-electrode under conditions that satisfy the following formula (I).

式中 X:第1!極の偏心員 R:スバイヲルW!管の半径 e:クレータの長さ 以下本発明においてフラッフ7の成分組成等を決めた理
由について説明する。
In the formula: X: 1st! Extreme Eccentric R: Subaiworu W! Radius of tube e: Length of crater Below, the reason why the composition of the fluff 7 was determined in the present invention will be explained.

まずフフツクヌの成分組成を決めた理由は以下に列記す
る通りである。
First of all, the reasons for deciding on the composition of Fufutsuknu are listed below.

5IO2:20〜40% スラグ形成剤として不可欠の成分であシ、20%未満で
はビード表面にポックマークが発生し易くなると共にビ
ードがオーバーラツプ気味になり、且つビード幅が不均
一になる。一方40%を越えると7ラグの巻込みが著し
くなると共にアンダーカットが発生し易くなり、また下
り傾斜溶接におけるビードの凹みが著しくなる。
5IO2: 20-40% This is an essential component as a slag forming agent. If it is less than 20%, pock marks tend to occur on the bead surface, the beads tend to overlap, and the bead width becomes uneven. On the other hand, if it exceeds 40%, the rolling of the 7 lugs becomes significant, undercuts are likely to occur, and the bead becomes conspicuous in downward slope welding.

]゛ 量 0 2 :  2 0〜55%ヌラグ形成剤
及び粘性調整剤としての機能を有しており、iF’+速
溶接速溶確性する上で極めて重要な成分であるが、20
%未満では上記の機能が十分に発揮さ宕ず、ピットやオ
ーバーラツプが発生し易くなると共にビード幅も不均一
になる。一方55%を越えるとヌッグ量が過多になると
共に粘性が大きくなりすぎる為、スラグの巻込み及びア
ンダーカットが発生し易くなる。
]゛ Amount 0 2: 20 to 55% It functions as a nlag forming agent and a viscosity modifier, and is an extremely important component for iF'+ fast welding, but 20%
If it is less than %, the above-mentioned functions will not be fully exhibited, pits and overlaps will easily occur, and the bead width will become non-uniform. On the other hand, if it exceeds 55%, the amount of nug becomes too large and the viscosity becomes too large, making it easy for slag entrainment and undercutting to occur.

MgO:5〜20% TIO□と同様スラグ形成剤及び粘性調整剤としての作
用を有しており、5%未満ではオーバーラツプ欠陥が発
生し易く、一方20%を越えるとポックマーク及びアン
ダーカットが発生し易くなる。
MgO: 5 to 20% Like TIO It becomes easier to do.

金属Mn、Fe−Mn、Mn05M n 02等のMn
源:MnO換算で2〜20% これらは粘性調整剤として作用すると共に、金属Mnや
Fe−Mnとして配合すると脱酸剤としての作用も発揮
するもので、2%未満ではピット及びアンダーカットが
発生し易くなると共にスラグの巻込みが著しくなる。一
方20%を越えるとオーバーラツプ欠陥が発生し易くな
ると共にビード幅の安定性が極端に悪化してくる。
Mn such as metal Mn, Fe-Mn, Mn05Mn02, etc.
Source: 2 to 20% as MnO These act as viscosity modifiers, and when blended as metal Mn or Fe-Mn, they also act as deoxidizers, and if it is less than 2%, pits and undercuts will occur. As it becomes easier to remove the slag, the entrainment of slag becomes more noticeable. On the other hand, if it exceeds 20%, overlap defects tend to occur and the stability of the bead width becomes extremely poor.

無機弗化物二8〜20% 最も代表的なのはCaF 2であり、スラグの流動性を
81めると共にシールド効果を高める作用がある。8%
未満ではシールド不足になってピットやブローホールが
多発し、一方20%金越えるとアンダーカット及びスラ
グの巻込みが著しくなると共にスラグの剥離性が悪くな
る。
Inorganic fluoride 28-20% The most typical one is CaF2, which has the effect of increasing the fluidity of the slag and increasing the shielding effect. 8%
If it is less than 20% gold, there will be insufficient shielding and pits and blowholes will occur frequently, while if it exceeds 20% gold, undercutting and slag entrainment will become significant and the slag releasability will deteriorate.

(810+TiO2+Mg0):64〜90%これらは
何れもスラグ形成剤として作用するものであって、64
%未満ではビードが凹気味になり易く、且つオーバーラ
ツプ欠陥が発生し易い。
(810+TiO2+Mg0): 64-90% All of these act as slag forming agents, and 64%
If it is less than %, the bead tends to be concave and overlap defects are likely to occur.

−・方90%を越えるとアンダーカットが発生し易くな
る。
- If it exceeds 90%, undercuts are likely to occur.

本発明で使用するフラックスの成分組成は以上の通りで
あるが、目的達成の為には更に粒度構成とじ又、IOメ
ツシュ以上の粗粒物:20%以下、70メツシユ以下の
微粒物:50%以下、の波性を満たすものを使用しなけ
ればならない。しかして粗粒物が多すぎると、フラッフ
7の嵩比重が小さくなシすぎてオーバーラツプが発生し
易くなると共にビードの凹状化が著しくなる。−万機粒
物が多ずぎるとフラックス全体の嵩比重が大きくカリす
ぎてアンダーカットが発生し易くなる。尚本発明ではフ
ラックスの種類を焼結型に限定しているが、この理由は
次の通りである。即ち溶融型フラックスは、嵩比重が大
きすぎる点と、フラックスの融点が低すぎるため、ヌヲ
グ生成量が多くなり、オーバーラツプや凹状化が著しい
。従って、焼結型フラックスに限定した。
The component composition of the flux used in the present invention is as above, but in order to achieve the purpose, the particle size composition is further adjusted.Coarse particles of IO mesh or more: 20% or less, fine particles of 70 mesh or less: 50% You must use one that satisfies the following wave characteristics. However, if there are too many coarse particles, the bulk specific gravity of the fluff 7 is too small, which tends to cause overlapping and makes the bead concave. - If there are too many milling particles, the bulk specific gravity of the entire flux will be too strong and undercuts will easily occur. In the present invention, the type of flux is limited to sintered type, and the reason for this is as follows. That is, since the molten type flux has too large a bulk density and too low melting point, a large amount of nwog is produced, resulting in significant overlap and concavity. Therefore, we limited ourselves to sintered flux.

次に本発明では溶接速度を高める為に多電極にて潜弧溶
接を行なうが、ここで極めて重要で且つ注目すべき点は
、第1電極の位置(即ちヌバイヲ)v鋼管の最下点から
の父位量)である。即ち第2図の要部概略図に示す如く
内面溶接は下向き姿勢で行なわれるが、種々実験の結果
溶融金属の凝固開始位置における傾斜角度が継手欠陥と
密接に関係していることが分かった。即ち第2図におい
て1tよ帯鋼、2a、2biit[Th、4は溶融金属
(クレータ)、5は凝固金属、Rは成形されるスバイラ
/I/#1管の半径、0は同ヌバイラ/I’m管の最下
点、Qは第1電極2aのアーク発生点、PHコ溶溶金金
属凝固開始位置、ABはP点における接線、θは接線A
Hが水平面となす角度(傾斜角度)、Xはアーク発生点
Qからスパイラル鋼管最下点Oまでの円周長さ〔但し最
下点Oよシ左側の方向を←)、右側の方向を(ト)とす
る〕、eはクレータの円周長さ、を夫々示すが、上記傾
斜角度0が8度未満では溶融金属の先行が起こってアン
ダーカットが発生し易く、一方9度を越えると溶融金属
が逆方向に流れてオーバーラツプ及びビードの凹みが著
しくなることが確認された。換言すれば上記傾斜角度θ
が8〜9度の範囲となる様に溶接条件を設定すれは、多
電極による高速潜弧溶接法を採用した場合でも他全な継
手を得ることができるのである。
Next, in the present invention, submerged arc welding is performed using multiple electrodes in order to increase the welding speed, but what is extremely important and worth noting here is the position of the first electrode (i.e., the position of the first electrode) from the lowest point of the steel pipe. is the paternal amount). That is, as shown in the schematic diagram of the main part of FIG. 2, internal welding is performed in a downward position, but as a result of various experiments, it has been found that the angle of inclination at the solidification start position of the molten metal is closely related to joint defects. That is, in Fig. 2, 1t is the steel strip, 2a, 2biit [Th, 4 is the molten metal (crater), 5 is the solidified metal, R is the radius of the Svaira/I/#1 pipe to be formed, and 0 is the Nubaira/I 'm lowest point of the tube, Q is the arc generation point of the first electrode 2a, PH co-molten metal solidification start position, AB is the tangent at point P, θ is the tangent A
The angle that H makes with the horizontal plane (inclination angle), g)], and e is the circumferential length of the crater. If the above-mentioned inclination angle 0 is less than 8 degrees, molten metal tends to advance and undercuts occur, whereas if it exceeds 9 degrees, melting occurs. It was confirmed that metal flows in the opposite direction, resulting in significant overlap and bead depression. In other words, the above inclination angle θ
If the welding conditions are set so that the angle is in the range of 8 to 9 degrees, all other joints can be obtained even when high-speed submerged arc welding using multiple electrodes is employed.

しかしながらこの適正傾斜角度θは極めて小さいので、
これを常時正確に検知しながら溶接を行なうということ
は容易でなく、しかも潜弧溶接法を採用する本発明の溶
接法にあっては外部から溶融プールを確認することがで
きないので、上記傾斜角度0會肉眼で検知することは不
可能である。従ってこの様な知見を有効に活用する為に
は、外部から確認することのできる要素を元にして前記
傾斜角度θ全適正にコントロールする方策を確立する必
要がある。そこで更に研究を進めたところ、第1電極2
8の偏心量Xを二前記(I)式を満足する様に調整して
やれば、傾斜角度θを8〜9度の範囲に納め得ることが
明確になった。CI)式においてRはスパイラル鋼管の
半径であるから予め決まっており、またlは予備実験で
予め確認しておくことができるので、これらの数値に応
じて第1電極2aの偏心量Xを調整することができる。
However, since this appropriate inclination angle θ is extremely small,
It is not easy to perform welding while accurately detecting this at all times, and furthermore, in the welding method of the present invention, which uses submerged arc welding, it is not possible to confirm the molten pool from the outside. 0 It is impossible to detect with the naked eye. Therefore, in order to make effective use of such knowledge, it is necessary to establish a method for properly controlling the entire inclination angle θ based on factors that can be confirmed from the outside. After further research, we discovered that the first electrode 2
It has become clear that the inclination angle θ can be kept within the range of 8 to 9 degrees by adjusting the eccentricity X of 8 so as to satisfy the equation (I). In the CI) formula, R is the radius of the spiral steel pipe, so it is determined in advance, and l can be confirmed in advance through preliminary experiments, so the eccentricity X of the first electrode 2a is adjusted according to these values. can do.

本発明は概略以上の様に構成されておシ、特定成分組成
のフラックスを使用すると共に第1tJMの偏心量を適
正範囲に@整して多電極潜弧溶接を行なうことによって
、継手欠陥のないスパイラル鋼管を生産性良く製造し得
ることになった。
The present invention is roughly constructed as described above, and uses a flux with a specific composition and adjusts the eccentricity of the first tJM to an appropriate range to perform multi-electrode latent arc welding, thereby eliminating joint defects. It became possible to manufacture spiral steel pipes with high productivity.

次に実験例を挙げて本発明の構成及び作用効果を明確に
する。
Next, experimental examples will be given to clarify the structure and effects of the present invention.

実施例 厚さ12朋 の帯鋼(STK−41材)を用いて外径が
900鶴 のスパイラル鋼管を製造するに当り、第1表
に示す成分組成のフラックスな使用し、第2表に示す条
件で多電極潜弧溶接を行ない、第8表の結果を得た。
Example: In manufacturing a spiral steel pipe with an outer diameter of 900 mm using a steel strip (STK-41 material) with a thickness of 12 mm, a flux having the composition shown in Table 1 was used, and the flux shown in Table 2 was used. Multi-electrode latent arc welding was performed under the following conditions, and the results shown in Table 8 were obtained.

但し第8表中のM号は下記の意味である。However, M in Table 8 has the following meaning.

OL=オーバーヲップ UC:アンダーカット Pock :ポックマーク plt  :ピット (本行゛謡函−) 第1〜8表より次の様に考察することができる。OL = Overwop UC: Undercut Pock: Pockmark plt: pit (Main line゛Uutabox-) From Tables 1 to 8, the following considerations can be made.

実験)k l〜6及び17:何れも本発明の要件をすべ
て満足する実施例であシ、ビード外観・形状及び1((
:手性能のいずれも極めて良t7fである。
Experiment) k 1 to 6 and 17: All of them are examples that satisfy all the requirements of the present invention.
: Both hand performances are extremely good at t7f.

実験ff16 、7 :フラックスの成分組成は要件を
満足しているが粒度構成が規定範囲を外れる比較例であ
り、微粒物が多すぎるもの(隘6)ではメーバーヲップ
が多発すると共にビードの凹みが大きく、−労組粒物が
多すぎるものではアンダーカットが発生すると共に一部
に7フグの巻込みが生じている。
Experiments ff16 and 7: This is a comparative example in which the component composition of the flux satisfies the requirements, but the particle size structure is outside the specified range, and when there are too many fine particles (6), there is frequent maver wop and large bead dents. , - If there are too many union grains, undercuts occur and 7 puffer rolls occur in some parts.

火験隘8〜14:フフツクヌ成分組成のうチ一部が規定
要件を外れる比較例であり、ビードの外観・形状及びX
線透過性能の一部又は双方が不十分である。
Fire test points 8 to 14: This is a comparative example in which a portion of the Fufutsuknu component composition deviates from the specified requirements, and the appearance and shape of the bead and
Some or both of the light transmission properties are insufficient.

実験隘15 : 74′4電極で溶接を行なった場合の
比較例であり、他の要件を満足しても彬電極ではアンダ
ーカットの発生及びスラグの巻込みを無くすことができ
ない。
Experiment 15: This is a comparative example in which welding is performed using a 74'4 electrode, and even if other requirements are met, the occurrence of undercuts and the entrainment of slag cannot be eliminated with the Akira electrode.

火験隘16:第1″FJ1.極の偏位址Xが大きすぎて
傾斜角度θが大きすぎる為、オーバーラツプが生じると
共にビードの凹みが大きく、しかもオーバーラツプ発生
位fitでスラグの巻込みが見られる。
Fire Test 16: 1st FJ1. Pole deflection X is too large and the inclination angle θ is too large, causing overlap and large bead dents. Moreover, slag entrainment was observed at the overlap occurrence position. It will be done.

丈験隘18,19:第1電極の偏位是が不足し傾斜角度
θが小さすぎる為、アンダーカットが多発すると共に一
部にスラグの巻込みが生じている。
Difficulties 18 and 19: The deflection of the first electrode is insufficient and the inclination angle θ is too small, resulting in frequent undercuts and slag entrainment in some areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスバイラμ鋼管の溶接例を示す概略見取り図、
第2図は本発明に係る適正傾斜角度調整法金示す説明図
である。 1・・・帯鋼       2,8・・・電極4・・・
溶融金属     5・・・凝固金属出願人  日本鋼
管株式会社 同   株式会社神戸製鋼7y? 代理人  弁理士 植木久←′□/パ、。 1口□ 11
Figure 1 is a schematic diagram showing an example of welding Svaira μ steel pipe;
FIG. 2 is an explanatory diagram showing a proper tilt angle adjustment method according to the present invention. 1... Steel strip 2, 8... Electrode 4...
Molten metal 5... Solidified metal applicant Nippon Steel Tube Co., Ltd. Kobe Steel Co., Ltd. 7y? Agent: Patent attorney Hisashi Ueki←′□/Pa. 1 mouth□ 11

Claims (1)

【特許請求の範囲】[Claims] (1)S102:20〜40%(布量%:以下同じ]、
1゛IO□:20〜55%、MgO:5〜20%、金属
M n 、 F e −1114n %M 102等の
Mn源:M n O換券で2〜20%、無機弗化物:8
〜20%を必須成分として含イ]し、且つ 64%≦(SlO−11′MO□+MgO)≦90%を
満足すると共に、粒戊椛成が、10メツシュ以上の粗粒
物:20%以下、70メツシユ以下の微粒物:50%以
丁、である焼結型フラックスを使方1し、ヌバイヲル鋼
管の内面側を下記(I)式を満足する条件にて多電(4
(で高速潜弧溶接を行なうことを特徴とするヌバイヲル
6tj管の潜弧溶接方法。 e−−R≦X≦e・−−R・・・・・・CI)20  
        60 式中 X:第1電極の偏心量 R:スバイヲ1vW4管の半径 e:クレータの長嘆
(1) S102: 20-40% (cloth amount %: same below),
1゛IO□: 20-55%, MgO: 5-20%, Mn source such as metal Mn, Fe-1114n%M102: 2-20% in MnO exchange ticket, inorganic fluoride: 8
~20% as an essential component], and satisfies 64%≦(SlO-11′MO□+MgO)≦90%, and coarse grains with a grain size of 10 mesh or more: 20% or less , 70 mesh or less fine particles: 50% or less, using a sintered flux, the inner surface of the Nubaiworu steel pipe was subjected to multi-electrification (4
(A submerged arc welding method for Nubaiworu 6tj pipe characterized by performing high-speed submerged arc welding at e--R≦X≦e・--R...CI) 20
60 In the formula
JP16724682A 1982-09-25 1982-09-25 Submerged arc welding of spiral steel pipe Pending JPS5966979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16724682A JPS5966979A (en) 1982-09-25 1982-09-25 Submerged arc welding of spiral steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16724682A JPS5966979A (en) 1982-09-25 1982-09-25 Submerged arc welding of spiral steel pipe

Publications (1)

Publication Number Publication Date
JPS5966979A true JPS5966979A (en) 1984-04-16

Family

ID=15846163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16724682A Pending JPS5966979A (en) 1982-09-25 1982-09-25 Submerged arc welding of spiral steel pipe

Country Status (1)

Country Link
JP (1) JPS5966979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332472A (en) * 1989-06-28 1991-02-13 Kawasaki Steel Corp Submerged arc welding method for spiral steel pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155166A (en) * 1978-05-27 1979-12-06 Mitsubishi Heavy Ind Ltd Manufacture of spirally welded steel tube
JPS5548910A (en) * 1978-10-05 1980-04-08 Toshiba Corp Automatic monitoring method and device for abnormal gas condition in high voltage equipment
JPS5633196A (en) * 1979-08-27 1981-04-03 Kawasaki Steel Corp High speed submerged arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155166A (en) * 1978-05-27 1979-12-06 Mitsubishi Heavy Ind Ltd Manufacture of spirally welded steel tube
JPS5548910A (en) * 1978-10-05 1980-04-08 Toshiba Corp Automatic monitoring method and device for abnormal gas condition in high voltage equipment
JPS5633196A (en) * 1979-08-27 1981-04-03 Kawasaki Steel Corp High speed submerged arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332472A (en) * 1989-06-28 1991-02-13 Kawasaki Steel Corp Submerged arc welding method for spiral steel pipe

Similar Documents

Publication Publication Date Title
JPS607578B2 (en) Pipe manufacturing and welding method for thick-walled steel pipes
JP2006272377A (en) Submerged arc welding method of steel material
JP2007283363A (en) Method of manufacturing uoe steel pipe
CN107921569A (en) Stand to narrow groove gas-shielded arc welding method
TW201039964A (en) Welding flux for stainless steels
JPH08243754A (en) Inner face welding method of clad steel tube
JP2002011575A (en) Welding method for steel pipe
JPS5966979A (en) Submerged arc welding of spiral steel pipe
JPH10216934A (en) Gas shielded metal arc welding method for circumferential joint of steel tube, and wire for gas shielded metal arc welding
JP3589917B2 (en) Flux-cored wire for duplex stainless steel welding
JPS6225069B2 (en)
JP6579249B2 (en) Welded steel pipe for line pipe excellent in low temperature toughness and its manufacturing method
JPS6216747B2 (en)
CN108290239A (en) Vertical narrow groove gas-shielded arc welding method
JP3889897B2 (en) Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
JPH08309527A (en) Production of clad welded steel pipe
JPH07328795A (en) Flux cored wire for gas shield arc welding
JPH08276273A (en) Butt welding method for clad steel
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JP4697693B2 (en) Two-electrode vertical electrogas arc welding method for extra heavy steel
JPH07266039A (en) Method for automatically welding circumference of circle of steel pipe
JPS636315B2 (en)
JPH06328255A (en) Manufacture of thick and large diameter steel pipe by welding
JP2003311470A (en) Method of producing flux cored wire
JPH0484676A (en) One-side submerged arc welding method at high speed