JPS6216747B2 - - Google Patents

Info

Publication number
JPS6216747B2
JPS6216747B2 JP6343180A JP6343180A JPS6216747B2 JP S6216747 B2 JPS6216747 B2 JP S6216747B2 JP 6343180 A JP6343180 A JP 6343180A JP 6343180 A JP6343180 A JP 6343180A JP S6216747 B2 JPS6216747 B2 JP S6216747B2
Authority
JP
Japan
Prior art keywords
wire
welding
flux
iron powder
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6343180A
Other languages
Japanese (ja)
Other versions
JPS56160895A (en
Inventor
Yoshio Kanbe
Mikio Makita
Kikuo Ishitsubo
Harutoshi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6343180A priority Critical patent/JPS56160895A/en
Publication of JPS56160895A publication Critical patent/JPS56160895A/en
Publication of JPS6216747B2 publication Critical patent/JPS6216747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガスシールドアーク溶接用フラツクス
入りワイヤに関するもので、下向はもち論、水平
すみ肉、立向姿勢においても高い溶接能率の得ら
れるものである。 従来よりガスシールドアーク溶接用ワイヤとし
ては各種技術が公知であるが、これらを大別する
と特許第236948号に代表されるソリツドワイヤを
用いるものと、特許第299057号および特許第
288405号に代表されるフラツクス入りワイヤを用
いるものがある。この内ソリツドワイヤを用いる
ものは2.0mm以下の比較的細径で直流定電圧特性
を持つた電源とワイヤ送給装置を組合せ、極めて
広い範囲の電流域で使用することが可能であり、
さらにスラグの生成が微少で、高い溶着率の高能
率な溶接が可能である。 また生産性の面では大まかに見れば溶解し、伸
線するのみであり、工数が少なく一定品質のもの
が大量に生産可能であるため、低価格でかつ高能
率な自動・半自動溶接用として広く普及しつつあ
る。 反面、スラグの生成がほとんど無いためビード
表面状態および母材へのなじみが悪く、橋りよ
う、車両その他の溶接構造物で、疲労強度の要求
される部材への適用は制限される。 これはより高張力鋼を使用する最近の傾向から
も特に問題となつてくる所である。 また溶融金属の状態でスラグによる浄化作用が
乏しいため、特に厚板の多層溶接ではマクロおよ
びミクロ的欠陥の発生率も高い。 さらに、この種ワイヤではアーク安定化作用の
ある物質の使用が極端に制限されるため、安価な
溶接用炭酸ガスによるシールド溶接ではアーク
音、光などが強烈で、スパツタ量が多く、溶接者
の疲労が大となる傾向のあることなど、種々の問
題のあることが明らかとなつてきた。 一方、特許第299057号および特許第288405号に
代表されるフラツクス入りワイヤを用いるガスシ
ールドアーク溶接法は、上記ソリツドワイヤを用
いた場合の欠点、すなわち溶接作業性、ビード外
観、形状および内部欠陥などは、生成されるスラ
グ作用効果により理想的に解決し得る。特に最近
これらの従来技術は溶接作業性、ビード形状、姿
勢溶接性の点で大幅に改善されて来た。 しかしながら溶接能率面でこれらフラツクス入
りワイヤとソリツドワイヤを比較すると、特に溶
接能率向上を目的とした特公昭48−23776号公報
によるフラツクス入りワイヤでも、溶着速度はわ
ずかに勝つているにすぎず、スラグ除去のための
工数増加および溶着率の低下により、総合的な能
率の向上までに至らない。 さらに溶融効率を高め、溶融速度を大とするた
めにフラツクス心中のスラグ剤の60%以上を予め
溶融、粉砕し、粒度調整をするためかえつて工数
が増すことと、フラツクス原材料をさらに高価な
ものとし、ワイヤ全体の価格はより高目となる。 そのため総合的な溶接コスト面でのメリツトが
少なく、大量使用に踏切られていないのが現状で
あり、安価でかつ溶接能率の高いフラツクス入り
ワイヤの提供が望まれている。 上述した如く特許第236948号で代表されるソリ
ツドワイヤは、溶接作業性、ビード形状、内部欠
陥の面で問題があり、従来技術によるフラツクス
入りワイヤにおいては溶接能率およびワイヤ価格
に問題がある。 本発明は従来技術で不満足な溶接能率を向上さ
せ、かつ安価なガスシールドアーク溶接用フラツ
クス入りワイヤを提供することにあり、その目的
で各方面から根本的に検討した結果得られた知見
を基に新しく構成されたものである。 即ち本発明の要旨は炭素鋼よりなる外皮と外皮
に内包されたフラツクス心で構成されるフラツク
ス入りワイヤにおいて、ワイヤ直径に対する外皮
の厚さの比t/Dが0.10〜0.23であり、外皮の合
せ目は内側へワイヤ直径の1/4以下の突出し部を
持つ構造であり、フラツクス心はワイヤ全重量に
対し2〜10%のスラグ剤、1.5〜8%の脱酸性金
属、残部鉄粉から成り、該鉄粉の30重量%以上が
電気的な絶縁処理を施されていることを特徴とす
るガスシールド溶接用フラツクス入りワイヤにあ
る。 以下本発明を詳細に説明する。 本発明によるフラツクス入りワイヤの断面構造
を第1図に示す。 即ち炭素鋼からなる外皮Hとこれに内包される
フラツクス心Fから構成され、この場合のワイヤ
の直径Dは同図に示したようにD1,D2の算術平
均(D=D1+D2/2)とし、外皮の厚さtも同
図で示した要領でt1,t2,t3,t4の算術平均(t=
t1+t2+t3+t4/4)とする。もち論、これら寸法
の測定はノギス、マイクロメータその他の適正な
機器を使用し、充分信頼性の得られる程度の回数
行なうことが望ましい。 次に自動溶接において溶接能率を高めるために
は、第1に単位時間当りのワイヤ溶融量を増加さ
せ、次いで溶接時の反応によるスラグ、ヒユーム
の生成量およびスパツタの発生量を減少させるこ
とにより溶着率を最も高める必要がある。 アーク溶接時のワイヤ溶融量は極性がワイヤ
(+)の場合、ワイヤ自体の成分による影響を受
けずほぼ一定とされているが、ワイヤの電気抵抗
を変えることにより変化させることができる。 そこでワイヤ全重量に対し、5.2%TiO2、0.8%
SiO2、1.2%Al2O3、0.3%MgO、0.4%ZrO2、0.2
%NaFから成るスラグ剤と、Fe―Si―Mn、Fe―
Mn、Al―Mgから成る脱酸性金属を2.1%Mn、0.6
%Si、0.1%Al、0.2%Mgと一定比率に保ち、鉄
粉量を調整することにより、ワイヤの電気抵抗に
関係するワイヤ直径に対する外皮厚さの比を変化
させた1.6mm径のワイヤを試験的に製造し、炭酸
ガスをシールドガスとして使用し、ワイヤ(+)
母材・チツプ間距離25mm、溶接電流400A、アー
ク電圧34V一定の条件で溶接した場合の溶接能率
との関係を調べた。 その結果を第2図に示す。 同図において横軸はワイヤ直径Dに対する外皮
厚さtの比t/Dを示し、縦軸はワイヤの溶融速
度および溶着速度を1分間当りのグラム数で示し
たものである。 曲線Aは上述した条件で溶接した場合の溶融速
度、曲線Bは溶着速度を示す。また直線Cは特公
昭48−23776号公報第7図記載の400Aの場合の溶
着速度(同公報には溶接速度となつている)レベ
ルを示す。C―2は比較検討を容易にするためC
の値を本発明者らの溶接条件と同一にした場合に
おける溶着速度の推定値である。Sは特許第
236948号に代表されるソリツドワイヤ1.6mm径を
同一条件で溶接した場合の溶着速度を示す。 同図からわかるようにt/Dを変化させること
により、溶融速度、溶着速度は曲線A、Bのよう
に変化する。 この場合において、t/Dが0.23より大ではC
―2の直線で示した従来法によるフラツクス入り
ワイヤの溶着速度を下まわる。(Y域として溶接
能率の低いゾーンを示す。)また、t/Dを減少
して行くとA、B曲線に従つて溶融速度、溶着速
度は増加するが、t/Dがますます小さくなるに
つれて増加率は次第に減少し、t/Dが0.1より
小さくなると、溶融速度、溶着速度はほとんど増
加しなくなる。(Z域として溶接作業性悪化域を
示す。) そこで更に溶接能率を向上させるため種々検討
した結果、先に試作したワイヤのフラツクス心中
の鉄粉粒の表面に酸化被膜を形成させることによ
り、電気的な絶縁を施した鉄粉に置換して行く
と、溶融速度はt/Dの小さい場合においても更
に増加し、溶着速度も増加することが分つた。 そこで鉄粉中の絶縁処理鉄粉量と溶接能率の関
係を明らかにするため、ワイヤ直径に対する外皮
厚の比t/Dを0.15とし、ワイヤ全重量に対し
5.2%TiO2、0.8%SiO2、1.2%Al2O3、0.4%
ZrO2、0.3%MgO、0.2%NaFから成るスラグ剤、
Fe―Si―Mn、Fe―Mn、Al―Mgから成る脱酸性
金属を2.1%Mn、0.6%Si、0.1%Al、0.2%Mg、
鉄粉29%として、該鉄粉を電気的に絶縁処理した
鉄粉に各種の比率で置換した1.6mm径ワイヤを試
作し、第2図の場合と同じ条件で溶接能率との関
係を求めた。 その結果を第3図に示す。同図でAは溶融速
度、Bは溶着速度である。 即ち絶縁処理した鉄粉の配合比が30重量%を超
えると、溶接能率は増加することが分つた。 従つて本発明では鉄粉中に最低30重量%は、電
気的に絶縁処理を施した鉄粉を使用する必要があ
る。 この場合の処理は前記の酸化による手段あるい
は非金属粉体のコーテングその他の方法で、通常
使用される鉄粉に電気的な絶縁性を保持させるも
のであれば良い。 第2図の曲線A―2、B―2はA、Bを求めた
ワイヤのフラツクス心の鉄粉の内60%を酸化被膜
を形成させることにより電気的な絶縁を施した鉄
粉に置換したワイヤによる溶融速度および溶着速
度である。 同図から明らかな如く、本発明ワイヤによれば
溶接能率は従来のものより大幅に改善できる。 しかしながらt/Dを0.1未満にするとフラツ
クス心の性状をどんなに変化させてもアークが不
安定となりスパツタ量が増大する。 逆にt/Dが0.23を超えた場合は本発明の目的
とする溶接能率向上に対するメリツトは認められ
ない。従つて本発明ではワイヤ直径に対する外皮
厚さの比t/Dは0.10〜0.23の範囲とする。 一方、ワイヤ製造の面でt/Dを小にして行く
と、外皮厚さが小となり、帯鋼を管状に成形する
際、両端部を突合すことが困難となつて来る。ま
た突合せ状態にさせても、外皮の合せ目からフラ
ツクスがこぼれ落ち易くなり、成形、伸線が困難
となる。 本発明ではこのような場合でも安定かつ簡便な
ワイヤの製造を可能とするため、第1図に示す如
く外皮の突合せ部分を内側へワイヤ直径の1/4以
下の長さに突出すように加工する。合せ目の突出
し長さaをワイヤ径の1/4より大きくすると、フ
ラツクスの充てんが困難となるばかりでなく、外
皮厚さを小にした効果が小になり、溶接能率の増
加率が減少する。 次に溶着率を最大とするためビード外観、形状
を損なわない範囲でスラグ剤の量を、スラグ組
成、脱酸性金属の種類、量および鉄粉量を考慮し
て検討した結果、ワイヤ全重量に対し2%までは
低下できることがわかつた。逆に溶着率を向上さ
せる目的から10%を超えるスラグ剤は必要としな
いので、本発明から除外する。 この場合のスラグ剤は溶融、粉砕などを行なわ
なくても良く、通常の原材料を充分選定し適切に
組合せることにより、溶融速度は低下せず、スパ
ツタロスの少ないワイヤを作ることが可能とな
る。 なお、ここでいうスラグ剤とはアーク熱により
溶融し、スラグとなるTiO2、SiO2、Al2O3
ZrO2、MgO、NaFなどの1種以上をいう。 さらに本発明ではワイヤ重量に対し脱酸性金属
を1.5〜8%必要とする。この場合の脱酸性金属
は溶接時に脱酸効果を示すものであれば良く、例
えばMn、Si、Al、Ti、Zr、Mgなどの単体、合金
および鉄合金の状態で使用することができる。 その量が1.5%未満では充分な脱酸反応が行な
われず、溶接部のX線性能が低下すると共に充分
な機械的性質を得ることができない。また8%を
超えると必要以上に溶着金属の硬さが増加し、曲
げ性能、耐われ性および衝撃じん性が低下する。 以上説明した通り本発明は各種要因を有機的、
総合的に組合せ調整することにより、従来の生産
性、溶接作業性を損なうことなく溶接能率を大幅
に向上させることを可能としたものである。 次に実施例により本発明の効果を更に具体的に
説明する。 実施例 第1表に試作ワイヤの構成と試験結果を示す。 同表においてNo.1〜11は本発明ワイヤであり、
No.12〜21は比較例である。なおNo.21は市販の1.6
mm径ソリツドワイヤである。No.1〜20までの各ワ
イヤはそれぞれの構成に従つて、外皮帯鋼の寸法
およびフラツクス心組成を調整することにより成
形、伸線されて1.6mm径に仕上げられた。 これらのワイヤを用い、軟鋼の16mm厚、幅70
mm、長さ380mmの平板母材を使用し、DCワイヤ
(+)、溶接電流:200〜500A、アーク電圧:各溶
接電流の適正値、ワイヤ突出し長さ:25mm、溶接
速度:30cm/min、シールドガス:溶接用炭酸ガ
ス20l/minなる条件で下向自動溶接を行ない、そ
の時のワイヤの単位時間当りの溶融重量および母
材への溶着重量を測定し、溶接能率を算出した。 同時に単層溶接の場合の溶接作業性も調査し
た。 なお、溶接能率はJISZ3182被覆アーク溶接棒
の溶着速度測定方法を参考にし、溶接条件および
測定の精度、再現性を考慮して前記のように決定
した。 更に20mm厚の軟鋼および50キロ高張力鋼を黒皮
のついたままの状態で、溶接速度、溶接電流を
種々に変えて水平すみ肉の溶接作業性を検討し
た。立向姿勢溶接における各ワイヤの作業性は、
前記20mm厚の鋼板を60゜V開先突合せとし、溶接
電流220A一定で上進した場合の比較を行なつ
た。また、20mm厚軟鋼を使用し、開先角度45゜、
ルート間隙12mmの裏当金付き開先を、溶接電流
400A、アーク電圧34V、溶接入熱25JK/cm、ワ
イヤ突出し長25mm、シールドガス炭酸ガス20l/
minで多層溶接し、JISZ3104の放射線透過試験方
法およびマクロ試験により溶接部の欠陥を、
JISZ3111のA1号、JISZ3112の4号試験片によ
り、引張特性および衝撃じん性を調べた。 各ワイヤによる上記試験結果を総括して第1表
に示す。 同表から本発明になるNo.1〜11のワイヤはいず
れも溶接能率作業性、機械的性質、溶接部の健全
性など総合的にすぐれていることがわかる。
The present invention relates to a flux-cored wire for gas-shielded arc welding, which provides high welding efficiency not only in a downward direction but also in a horizontal fillet and vertical position. Various techniques have been known for wires for gas-shielded arc welding, but these can be roughly divided into those using solid wire as typified by Patent No. 236948, and those using solid wire as typified by Patent No. 299057 and Patent No.
There are some that use flux-cored wire, such as No. 288405. Among these, those that use solid wire have a relatively small diameter of 2.0 mm or less, and can be used in an extremely wide current range by combining a power source with DC constant voltage characteristics and a wire feeding device.
Furthermore, the generation of slag is minute, and highly efficient welding with a high welding rate is possible. In addition, in terms of productivity, it only requires melting and wire drawing, and it requires few man-hours and can be mass-produced with a certain quality, so it is widely used for low-cost, high-efficiency automatic and semi-automatic welding. It is becoming popular. On the other hand, since almost no slag is generated, it has poor bead surface condition and poor adhesion to the base material, which limits its application to bridges, vehicles, and other welded structures that require high fatigue strength. This is particularly problematic given the recent trend toward the use of higher strength steels. Furthermore, since the purification effect of slag is poor in the molten metal state, the incidence of macro and micro defects is high, especially in multilayer welding of thick plates. Furthermore, since the use of arc-stabilizing substances is extremely limited in this type of wire, shield welding using inexpensive carbon dioxide gas produces strong arc noise and light, creates a large amount of spatter, and requires a welder's attention. It has become clear that there are various problems, including a tendency to increase fatigue. On the other hand, the gas-shielded arc welding method using flux-cored wire, as typified by Patent No. 299057 and Patent No. 288405, does not have the disadvantages of using solid wire, such as welding workability, bead appearance, shape, and internal defects. , can be ideally solved due to the slug action effect produced. Particularly recently, these conventional techniques have been significantly improved in terms of welding workability, bead shape, and posture weldability. However, when we compare these flux-cored wires and solid wires in terms of welding efficiency, even the flux-cored wires published in Japanese Patent Publication No. 48-23776, which aimed to improve welding efficiency, are only slightly superior in welding speed and remove slag. Due to the increase in man-hours and decrease in welding rate, overall efficiency cannot be improved. Furthermore, in order to increase the melting efficiency and increase the melting speed, more than 60% of the slag agent in the flux core is melted and pulverized in advance to adjust the particle size, which increases the number of man-hours and makes the flux raw materials even more expensive. Therefore, the price of the entire wire will be higher. For this reason, there is little merit in terms of overall welding costs, and at present it has not been used in large quantities.Therefore, it is desired to provide a flux-cored wire that is inexpensive and has high welding efficiency. As mentioned above, the solid wire represented by Patent No. 236948 has problems in terms of welding workability, bead shape, and internal defects, and the conventional flux-cored wire has problems in welding efficiency and wire cost. The present invention aims to improve welding efficiency, which is unsatisfactory with conventional techniques, and to provide an inexpensive flux-cored wire for gas-shielded arc welding. It was newly constructed. That is, the gist of the present invention is to provide a flux-cored wire consisting of an outer skin made of carbon steel and a flux core enclosed in the outer skin, in which the ratio t/D of the thickness of the outer skin to the wire diameter is 0.10 to 0.23, and the ratio of the outer skin thickness to the wire diameter is 0.10 to 0.23. The eye has a structure with a protrusion of less than 1/4 of the wire diameter inward, and the flux core is made of 2 to 10% slag agent, 1.5 to 8% deoxidizing metal, and the balance iron powder based on the total weight of the wire. A flux-cored wire for gas shield welding is characterized in that 30% by weight or more of the iron powder is electrically insulated. The present invention will be explained in detail below. FIG. 1 shows a cross-sectional structure of a flux-cored wire according to the present invention. That is, the wire is composed of an outer shell H made of carbon steel and a flux core F enclosed therein, and the diameter D of the wire in this case is the arithmetic mean of D 1 and D 2 (D = D 1 + D 2 ) as shown in the figure. /2), and the thickness t of the outer skin is also the arithmetic mean of t 1 , t 2 , t 3 , t 4 (t =
t 1 + t 2 + t 3 + t 4 /4). Of course, it is desirable to measure these dimensions using a vernier caliper, micrometer, or other appropriate equipment as many times as necessary to obtain sufficient reliability. Next, in order to increase welding efficiency in automatic welding, firstly, increase the amount of wire melted per unit time, and then reduce the amount of slag, fume, and spatter generated by reactions during welding. rate needs to be increased the most. The amount of wire melting during arc welding is almost constant when the polarity is wire (+) without being affected by the components of the wire itself, but it can be changed by changing the electrical resistance of the wire. Therefore, based on the total weight of the wire, 5.2% TiO 2 and 0.8%
SiO2 , 1.2% Al2O3 , 0.3 %MgO, 0.4% ZrO2 , 0.2
%NaF and Fe―Si―Mn, Fe―
Deoxidizing metal consisting of Mn, Al-Mg is 2.1%Mn, 0.6%
By maintaining a constant ratio of %Si, 0.1%Al, and 0.2%Mg and adjusting the amount of iron powder, we created a 1.6mm diameter wire with a varying ratio of outer skin thickness to wire diameter, which is related to the electrical resistance of the wire. Produced experimentally, using carbon dioxide as a shielding gas, wire (+)
The relationship between welding efficiency and welding efficiency was investigated when welding was performed under conditions of a constant distance between base metal and chip of 25 mm, welding current of 400 A, and arc voltage of 34 V. The results are shown in FIG. In the figure, the horizontal axis shows the ratio t/D of the outer skin thickness t to the wire diameter D, and the vertical axis shows the melting rate and welding rate of the wire in grams per minute. Curve A shows the melting rate and curve B shows the welding rate when welding is performed under the above-mentioned conditions. Straight line C shows the welding speed (in the same publication, the welding speed) level in the case of 400A as shown in Figure 7 of Japanese Patent Publication No. 48-23776. C-2 is C to facilitate comparative study.
This is an estimated value of the welding rate when the value of is the same as the welding conditions of the present inventors. S is patent number
This shows the welding speed when a solid wire with a diameter of 1.6 mm, typified by No. 236948, is welded under the same conditions. As can be seen from the figure, by changing t/D, the melting rate and welding rate change as shown by curves A and B. In this case, if t/D is greater than 0.23, C
The welding speed is lower than the welding speed of flux-cored wire by the conventional method shown by the straight line 2. (The Y region indicates a zone with low welding efficiency.) Also, as t/D decreases, the melting rate and welding rate increase according to curves A and B, but as t/D becomes smaller and smaller, The rate of increase gradually decreases, and when t/D becomes smaller than 0.1, the melting rate and welding rate hardly increase. (The Z region indicates the region where welding workability deteriorates.) Therefore, as a result of various studies to further improve welding efficiency, we found that by forming an oxide film on the surface of the iron powder particles in the flux core of the prototype wire, we decided to It has been found that when the iron powder is replaced with iron powder that is insulated, the melting rate increases even when t/D is small, and the welding rate also increases. Therefore, in order to clarify the relationship between the amount of insulated iron powder in the iron powder and welding efficiency, the ratio t/D of the outer skin thickness to the wire diameter was set to 0.15, and
5.2% TiO2 , 0.8% SiO2 , 1.2% Al2O3 , 0.4%
Slag agent consisting of ZrO 2 , 0.3% MgO, 0.2% NaF,
Deoxidizing metals consisting of Fe-Si-Mn, Fe-Mn, Al-Mg, 2.1%Mn, 0.6%Si, 0.1%Al, 0.2%Mg,
Using 29% iron powder, we made prototype wires with a diameter of 1.6 mm in which the iron powder was replaced with electrically insulated iron powder at various ratios, and determined the relationship with welding efficiency under the same conditions as in Figure 2. . The results are shown in FIG. In the figure, A is the melting rate and B is the welding rate. That is, it was found that when the blending ratio of the insulated iron powder exceeds 30% by weight, the welding efficiency increases. Therefore, in the present invention, it is necessary to use at least 30% by weight of iron powder that has been electrically insulated. In this case, the treatment may be the above-mentioned oxidation, coating with non-metallic powder, or any other method as long as it maintains the electrical insulation properties of the commonly used iron powder. Curves A-2 and B-2 in Figure 2 are obtained by replacing 60% of the iron powder in the flux core of the wire for which A and B were determined with iron powder that has been electrically insulated by forming an oxide film. Melting rate and welding rate by wire. As is clear from the figure, the wire of the present invention can significantly improve welding efficiency over the conventional wire. However, if t/D is less than 0.1, the arc becomes unstable and the amount of spatter increases no matter how the properties of the flux core are changed. On the other hand, if t/D exceeds 0.23, no merit will be recognized for improving welding efficiency, which is the objective of the present invention. Therefore, in the present invention, the ratio t/D of the outer skin thickness to the wire diameter is in the range of 0.10 to 0.23. On the other hand, as t/D is reduced in terms of wire manufacturing, the outer skin thickness becomes smaller, making it difficult to butt the two ends together when forming the steel strip into a tubular shape. Furthermore, even if the wires are butted, the flux tends to spill out from the seams of the outer skins, making it difficult to form and draw the wire. In the present invention, in order to make it possible to manufacture wires stably and easily even in such cases, the butt part of the outer skin is processed to protrude inward to a length of 1/4 or less of the wire diameter, as shown in Figure 1. do. If the protruding length a of the seam is made larger than 1/4 of the wire diameter, not only will it be difficult to fill with flux, but the effect of reducing the outer skin thickness will be small, and the rate of increase in welding efficiency will be reduced. . Next, in order to maximize the welding rate, we considered the amount of slag agent within a range that does not impair the bead appearance and shape, taking into account the slag composition, the type and amount of deoxidizing metal, and the amount of iron powder. However, it was found that it could be reduced by up to 2%. On the other hand, since slag agents exceeding 10% are not necessary for the purpose of improving the welding rate, they are excluded from the present invention. The slag agent in this case does not need to be melted or pulverized, and by selecting enough ordinary raw materials and combining them appropriately, the melting rate does not decrease and it is possible to make a wire with less spatter loss. The slag agents mentioned here include TiO 2 , SiO 2 , Al 2 O 3 , which melts into slag due to arc heat.
Refers to one or more of ZrO 2 , MgO, NaF, etc. Furthermore, the present invention requires 1.5 to 8% of deoxidizing metal based on the weight of the wire. The deoxidizing metal in this case may be any metal that exhibits a deoxidizing effect during welding, and may be used in the form of a single substance, an alloy, or an iron alloy, such as Mn, Si, Al, Ti, Zr, and Mg. If the amount is less than 1.5%, a sufficient deoxidizing reaction will not take place, resulting in a decrease in the X-ray performance of the weld and failure to obtain sufficient mechanical properties. Moreover, if it exceeds 8%, the hardness of the weld metal will increase more than necessary, and the bending performance, fragility resistance, and impact toughness will decrease. As explained above, the present invention allows various factors to be organically and
By comprehensively adjusting the combination, it is possible to significantly improve welding efficiency without impairing conventional productivity and welding workability. Next, the effects of the present invention will be explained in more detail with reference to Examples. Example Table 1 shows the configuration of the prototype wire and the test results. In the same table, Nos. 1 to 11 are the wires of the present invention,
Nos. 12 to 21 are comparative examples. In addition, No. 21 is a commercially available 1.6
mm diameter solid wire. Each wire No. 1 to No. 20 was formed and drawn to a diameter of 1.6 mm by adjusting the dimensions of the outer steel band and the flux core composition according to the respective configuration. Using these wires, we made mild steel 16mm thick and 70mm wide.
mm, using a flat plate base material with a length of 380 mm, DC wire (+), welding current: 200 to 500 A, arc voltage: appropriate value for each welding current, wire protrusion length: 25 mm, welding speed: 30 cm/min, Welding efficiency was calculated by performing downward automatic welding under the conditions of shielding gas: welding carbon dioxide gas of 20 liters/min, and measuring the melted weight of the wire per unit time and the welded weight to the base metal at that time. At the same time, welding workability in the case of single-layer welding was also investigated. The welding efficiency was determined as described above with reference to the JISZ3182 method for measuring the deposition rate of coated arc welding rods, taking into consideration welding conditions, measurement accuracy, and reproducibility. Furthermore, welding workability of horizontal fillets was investigated using 20 mm thick mild steel and 50 kg high tensile strength steel with black scale still attached, while varying the welding speed and welding current. The workability of each wire in vertical position welding is as follows:
A comparison was made when the 20 mm thick steel plates were butted with a 60° V groove and moved upward at a constant welding current of 220 A. In addition, using 20mm thick mild steel, the bevel angle is 45°,
Welding a groove with a backing metal with a root gap of 12 mm using a welding current
400A, arc voltage 34V, welding heat input 25JK/cm, wire protrusion length 25mm, shielding gas carbon dioxide 20l/
Multi-layer welding is carried out at min.
Tensile properties and impact toughness were investigated using JISZ3111 No. A1 and JISZ3112 No. 4 test pieces. The above test results for each wire are summarized in Table 1. From the same table, it can be seen that wires Nos. 1 to 11 of the present invention are all comprehensively excellent in terms of welding efficiency, workability, mechanical properties, and soundness of the welded part.

【表】【table】

【表】 これに対しt/D及び突出し長さaが本発明に
規定した範囲を超えたNo.12ワイヤは作業性溶接部
の欠陥、機械的性質の面では大むね良好である
が、溶接能率が低い。 No.13ワイヤはt/Dが小さすぎるため溶接時の
アークが不安定で、スパツタ発生量が多く、作業
性が悪化しスラグの巻込みなどが起き易い。 No.14ワイヤはNo.13ワイヤと同じく溶接能率は良
いが、外皮合せ目の突出し長さaが長いため、充
てんフラツクスが安定して入らず、ピツトが発生
し溶接作業性も極めて不安定であつた。 絶縁処理鉄粉量が本発明の下限に至らないNo.
15,16ワイヤは溶接作業性、機械的性質の面では
本発明ワイヤとほぼ同じ性能を示すが、溶接能率
が低く、水平すみ肉において他ワイヤよりピツト
の発生率がやや多くなる傾向を示す。 No.17ワイヤはスラグ剤を全く添加しなかつた場
合であるが、アークが荒く不安定で、水平すみ
肉、立向の溶接作業性が極めて悪化する。 逆にスラグ量が極めて多いNo.18ではスラグの先
行が著るしく、アークは不安定で溶接部に溶込み
不良、スラグの巻込みなどの内部欠陥が認められ
た。 No.19ワイヤでは脱酸不足、No.20では過脱酸のた
めピツトが多発し、溶接が事実上できなかつた。 No.21のソリツドワイヤはNo.1〜11のワイヤに較
べると衝撃じん性は良好であつたが、溶接能率、
作業性の劣ることがわかつた。 さらに溶接能率の差を明確とするため、第4図
に溶接電流と溶接能率の関係を、本発明のワイヤ
No.8と本発明範囲外のワイヤNo.15、No.21と比較し
て示す。 同図イはNo.8ワイヤの溶融速度、ロは同ワイヤ
の溶着速度、ハはNo.15ワイヤの溶着速度、ニはNo.
21ワイヤの溶着速度を示す。いずれもワイヤ径:
1.6mm、母材チツプ間距離:25mmとした。 同図から明らかな如く本発明ワイヤの溶接能率
は各電流にわたり従来ワイヤより大幅に向上して
いる。 以上詳述した如く本発明ワイヤは従来技術によ
るフラツクス入りワイヤの溶接作業性、ビード形
状、外観および機械的性質を劣化させることな
く、しかもスラグ剤として工数が増加し、高価と
なる溶融粉砕した原材料を必要とすることなく、
溶接能率を大幅に向上できるものである。これに
より溶接施工能率および歩留り向上が期待でき自
動・半自動溶接用フラツクス入りワイヤの付加価
値を高め、この分野における工業的価値を極めて
大とするものである。
[Table] On the other hand, No. 12 wire with t/D and protrusion length a exceeding the range specified in the present invention is generally good in terms of workability and mechanical properties, but welding Efficiency is low. No. 13 wire has a too small t/D, so the arc during welding is unstable, a large amount of spatter is generated, workability is poor, and slag is likely to be caught. No. 14 wire has good welding efficiency like No. 13 wire, but because the protruding length a of the outer skin seam is long, the filling flux does not enter stably, pits occur, and welding workability is extremely unstable. It was hot. No. where the amount of iron powder for insulation treatment does not reach the lower limit of the present invention.
Wires 15 and 16 exhibit almost the same performance as the wire of the present invention in terms of welding workability and mechanical properties, but they have lower welding efficiency and tend to have a slightly higher incidence of pitting in horizontal fillets than other wires. No. 17 wire had no slag agent added at all, but the arc was rough and unstable, and workability in horizontal fillet and vertical welding was extremely poor. On the other hand, in No. 18, which had an extremely large amount of slag, the slag was significantly advanced, the arc was unstable, and internal defects such as poor penetration and slag entrainment were observed in the weld. Wire No. 19 had insufficient deoxidation, and wire No. 20 had too many pits due to excessive deoxidation, making welding virtually impossible. The No. 21 solid wire had better impact toughness than the No. 1 to 11 wires, but the welding efficiency and
It was found that the workability was poor. Furthermore, in order to clarify the difference in welding efficiency, Fig. 4 shows the relationship between welding current and welding efficiency for the wire of the present invention.
A comparison is shown between No. 8 and wires No. 15 and No. 21, which are outside the scope of the present invention. In the same figure, A shows the melting speed of No. 8 wire, B shows the welding speed of the same wire, C shows the welding speed of No. 15 wire, and D shows the welding speed of No. 15 wire.
21 shows the welding speed of wire. Both wire diameter:
1.6mm, distance between base metal chips: 25mm. As is clear from the figure, the welding efficiency of the wire of the present invention is significantly improved over the conventional wire across all currents. As detailed above, the wire of the present invention does not deteriorate the welding workability, bead shape, appearance, and mechanical properties of the flux-cored wire of the prior art, and is made from molten and pulverized raw materials that increase man-hours and become expensive as a slag agent. without the need for
This can greatly improve welding efficiency. This is expected to improve welding efficiency and yield, increase the added value of flux-cored wire for automatic and semi-automatic welding, and greatly increase the industrial value in this field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明フラツクス入りワイヤの断面構
造を表わす図、第2図はワイヤ直径に対する外皮
厚さの比t/Dと溶接能率の関係を表わす図、第
3図は金属鉄中の絶縁処理鉄粉の量と溶接能率の
関係を表わす図、第4図は各溶接電流における本
発明ワイヤと従来ワイヤの溶接能率を比較した図
である。
Fig. 1 is a diagram showing the cross-sectional structure of the flux-cored wire of the present invention, Fig. 2 is a diagram showing the relationship between the ratio t/D of the outer skin thickness to the wire diameter and welding efficiency, and Fig. 3 is a diagram showing the insulation treatment in the metal iron. FIG. 4 is a diagram showing the relationship between the amount of iron powder and welding efficiency, and is a diagram comparing the welding efficiency of the wire of the present invention and the conventional wire at each welding current.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素鋼よりなる外皮と外皮に内包されたフラ
ツクス心で構成されるフラツクス入りワイヤにお
いて、ワイヤ直径に対する外皮厚さの比t/Dが
0.10〜0.23であり、外皮の合せ目は内側へワイヤ
直径の1/4以下の突出し部を持つ構造であり、フ
ラツクス心はワイヤ全重量に対して2〜10%のス
ラグ剤、1.5〜8%の脱酸性金属、残部は鉄粉か
ら成り、該鉄粉の30重量%以上に電気的な絶縁処
理が施されていることを特徴とするガスシールド
アーク溶接用フラツクス入りワイヤ。
1. In a flux-cored wire consisting of a carbon steel outer shell and a flux core enclosed in the outer shell, the ratio t/D of the outer shell thickness to the wire diameter is
0.10 to 0.23, the seam of the outer skin has a structure in which a protrusion of 1/4 or less of the wire diameter is inward, and the flux core is made of a slag agent of 2 to 10% and 1.5 to 8% of the total weight of the wire. A flux-cored wire for gas-shielded arc welding, characterized in that the iron powder is electrically insulated by at least 30% by weight, and the remainder is iron powder.
JP6343180A 1980-05-15 1980-05-15 Flux-containing wire for gas shield arc welding Granted JPS56160895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6343180A JPS56160895A (en) 1980-05-15 1980-05-15 Flux-containing wire for gas shield arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6343180A JPS56160895A (en) 1980-05-15 1980-05-15 Flux-containing wire for gas shield arc welding

Publications (2)

Publication Number Publication Date
JPS56160895A JPS56160895A (en) 1981-12-10
JPS6216747B2 true JPS6216747B2 (en) 1987-04-14

Family

ID=13229072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6343180A Granted JPS56160895A (en) 1980-05-15 1980-05-15 Flux-containing wire for gas shield arc welding

Country Status (1)

Country Link
JP (1) JPS56160895A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132296A (en) * 1984-11-30 1986-06-19 Kobe Steel Ltd Flux cored wire electrode for gas shield arc welding
JPS61137695A (en) * 1984-12-11 1986-06-25 Nippon Steel Corp Composite wire for gas shield arc welding
JP4953561B2 (en) * 2004-03-30 2012-06-13 株式会社神戸製鋼所 Flux-cored wire for multi-electrode gas shielded arc welding
CN102343488B (en) * 2010-08-03 2013-01-30 武汉铁锚焊接材料股份有限公司 Basic flux-cored wire for bridge steel
EP2735398A1 (en) * 2012-11-21 2014-05-28 FRO - Air Liquide Welding Italia S.P.A. Flux-cored wire for welding or plating
CN110497115B (en) * 2018-05-16 2022-08-09 林肯环球股份有限公司 Welding electrode wire with alkaline earth metal

Also Published As

Publication number Publication date
JPS56160895A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
US4149063A (en) Flux cored wire for welding Ni-Cr-Fe alloys
US3560702A (en) Composite electrode for consumable electrode arc welding process
CN106392369B (en) Ni-based alloy flux-cored wire
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
EP2610361B1 (en) Flux-cored welding wire for carbon steel and process for arc welding
US3221136A (en) Method and electrode for electric arc welding
JP3804802B2 (en) Metal-based flux-cored wire for gas shielded arc welding and gas shielded arc welding method
JPS6216747B2 (en)
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2007319910A (en) Flux-cored wire
JP2614967B2 (en) Gas shielded arc welding metal flux cored wire
JP2009018337A (en) Flux cored wire for gas-shielded arc welding
JP3339759B2 (en) Titanium flux cored wire for gas shielded arc welding
KR20090110247A (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JPH0521677B2 (en)
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JPH11151592A (en) Metal based flux cored wire for gas shielded arc welding and one side welding method
JP2005169506A (en) Metal-based flux cored wire for high tensile steel excellent in weldability
JPS62110897A (en) Iron power flux cored wire
JP2003103399A (en) Flux-filled wire for welding weather resistant steel
JPH05285692A (en) Flux cored wire for gas shielded arc welding
JPH10314985A (en) Flux-cored wire for gas shielded metal arc horizontal position welding
JP3463346B2 (en) Flux-cored wire for gas shielded arc welding
JPH11138295A (en) Wire including flux for electrogas arc welding of stainless steel