JPS596338A - Compound alloy and manufacture thereof - Google Patents

Compound alloy and manufacture thereof

Info

Publication number
JPS596338A
JPS596338A JP57111622A JP11162282A JPS596338A JP S596338 A JPS596338 A JP S596338A JP 57111622 A JP57111622 A JP 57111622A JP 11162282 A JP11162282 A JP 11162282A JP S596338 A JPS596338 A JP S596338A
Authority
JP
Japan
Prior art keywords
phase
alloy
molten metal
ductility
precipitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57111622A
Other languages
Japanese (ja)
Inventor
「峰」村 哲郎
Tetsuo Minemura
Isao Ikuta
生田 勲
Noboru Ishihara
石原 「じ」
Shoichi Nagai
正一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57111622A priority Critical patent/JPS596338A/en
Publication of JPS596338A publication Critical patent/JPS596338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain compound alloy excellent in ductility and strength, by a method wherein the second phase of boron compound is, in dispersion manner, precipitated in master phase by quenching molten metal of alloy from a semimolten state. CONSTITUTION:The molten metal of alloy is solidified by quenching it from a semimolten state at a temperature lower than the liquidus where crystalline phase is partially precipitated. Then, the second phase of boron compound is, in conversion manner, precipitated in the master phase composed of one or more phase, of amorphous phase, fine crystalline phase and supersaturated solid solusion. Thus, ductility is given accordint to the master phase, tensile strength being raised according to the dispersion precipitation of the second phase at the same time and composite alloy excellent in ductility and strength can be obtained.

Description

【発明の詳細な説明】 本発明は複合合金およびその製造方法に係シ、特に延性
および強度に優れた複合合金を簡単な工程で得るのに好
適な複合合金およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite alloy and a method for producing the same, and more particularly to a composite alloy and a method for producing the same suitable for obtaining a composite alloy with excellent ductility and strength in a simple process.

一般に複合合金の一つとして析出分散型の複合合金が知
られている。この種の合金は固相からの析出を利用する
ため、一定の熱処理が必要である。
A precipitation dispersion type composite alloy is generally known as one type of composite alloy. Since this type of alloy utilizes precipitation from a solid phase, a certain amount of heat treatment is required.

さらに熱処理温度が高い場合母相の再結晶による結晶粒
の粗大化が起こるので、結晶粒を調整するため新たな加
工熱処理が必要となるために煩雑な工程となる。さらに
一部の合金では析出物が粒界に偏析することから、延性
が劣化するという問題がある。
Furthermore, if the heat treatment temperature is high, the crystal grains will become coarser due to recrystallization of the matrix phase, and a new processing heat treatment will be required to adjust the crystal grains, resulting in a complicated process. Furthermore, in some alloys, precipitates segregate at grain boundaries, which causes a problem of deterioration in ductility.

一方、従来溶融状態から超急冷すること(溶湯急冷法)
K、よシ作製した非晶質相や結晶相は、通常の加工熱処
理した合金に比べ多量のB、C。
On the other hand, ultra-rapid cooling from the conventional molten state (molten metal rapid cooling method)
K, the amorphous and crystalline phases produced by Yoshishi contain a large amount of B and C compared to alloys that have been processed and heat treated.

Si、Pのような半金属を固溶できる。この多量の半金
属は超急冷合金の硬さや強度を高くする利点がある。し
かし、この半金属元素も限度以上に添加した場合従来の
溶湯急冷法では化合物が生成し非常に脆い合金となって
しまうという欠点がある。例えばBの場合、従来の溶湯
急冷法では添加量の限界は約aoat%である。しかし
使用済核燃料貯蔵ラックの高密度イヒとして中性子吸収
能を高めるためには多量のB添加量が望まれている。
Metalloids such as Si and P can be dissolved in solid solution. This large amount of semimetal has the advantage of increasing the hardness and strength of the ultra-rapidly solidified alloy. However, if this metalloid element is added in excess of the limit, compounds are formed in the conventional molten metal quenching method, resulting in a very brittle alloy. For example, in the case of B, the limit of the amount added in the conventional molten metal quenching method is about aoat%. However, a large amount of B is desired to be added in order to increase the neutron absorption capacity of spent nuclear fuel storage racks at a high density.

本発明の目的は、煩雑な工程を要することなく、従来機
械的に脆い合金組成の範囲を延性のある組織となること
ができる複合合金およびその製造方法を提供することに
ある。
An object of the present invention is to provide a composite alloy and a method for producing the same, which can transform a conventional mechanically brittle alloy composition into a ductile structure without requiring complicated steps.

本発明は、従来機械的に脆い合金組成の範囲であっても
、非晶質相、微細結晶相および過飽和固溶体のいずれか
とし念母相によシ延性を付与し、第二相を分散析出する
ことによって硬さ、引張強さを母相組成の合金よセも大
きくしたものであシ、このような複合合金の製造するに
際し、合金の溶湯を一部結晶相が析出する液相線よ〃も
低い温度下での半溶融状態から急冷凝固するものである
The present invention imparts ductility to the amorphous phase, which is either an amorphous phase, a fine crystalline phase, or a supersaturated solid solution, even if the alloy composition is conventionally mechanically brittle, and disperses and precipitates the second phase. This increases the hardness and tensile strength of the matrix composition of the alloy.When manufacturing such a composite alloy, the molten alloy is heated to a temperature close to the liquidus line where a part of the crystalline phase precipitates. 〃 is also rapidly solidified from a semi-molten state at low temperatures.

以下、図面に基づいて本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the drawings.

第1図は、本発明の原理を模式的に示すA−B二元系平
衡状態図である。この二元系合金ではABという化合物
が形成する。さらにA−AB間には共晶点eがある。こ
の共晶点組成付近の領域■は溶湯急冷法によって延性の
ある非晶質相あるいは微細結晶相や過飽和固溶体が形成
する。このような二元系合金において組成Mの合金につ
いて・みると、Mは領域■よシもB量が多〈従来の溶湯
急冷法すなわちd点(融点T、)以上の温度の溶融状態
から急冷凝固しても脆い材料となる。
FIG. 1 is an A-B binary system equilibrium state diagram schematically showing the principle of the present invention. In this binary alloy, a compound called AB is formed. Furthermore, there is a eutectic point e between A and AB. In the region (2) near this eutectic point composition, a ductile amorphous phase, a fine crystalline phase, or a supersaturated solid solution is formed by the molten metal quenching method. Looking at such a binary alloy with composition M, M has a larger amount of B than region II. Even when solidified, it becomes a brittle material.

本発明の特徴は、M合金をd点(液相線)のT、よシも
低く共晶点eの温度T、よυも高い温度範囲における半
溶融状態から急冷凝固するものである。M合金の半溶融
状態として、例えば第1図中、C点から急冷凝固した場
合、次のようになる。すなわち、C点ではM合金組成は
a点すなゎ ′ちM′組成の液相にb点すなわちAB化
合物(固相)が晶出分散した状態となる。この状態から
急冷凝固すると液相M′は領域■の範囲であるので非晶
質相、微細結晶相、過飽和固溶体の少なくともいずれか
となる。このようKして得られた合金は延性のある非晶
質相、微細結晶相、過飽和固溶体の少なくともいずれか
を母相としてAB化合物が分散した複合合金となる。こ
の複合合金は析出物分散強化によって硬さ、引張強さが
母相組成の合金よシも大きい。従って従来の溶湯急冷法
による延性合金を製造できる領域外、すなわち脆い合金
となる組成の範囲においても延性のある複合合金を製造
できる。
The feature of the present invention is that the M alloy is rapidly solidified from a semi-molten state in a temperature range from the d point (liquidus line) T, which is much lower, to the eutectic point e, which is much higher. For example, when the M alloy is rapidly solidified from point C in FIG. 1, the semi-molten state is as follows. That is, at point C, the M alloy composition is in a state where point b, that is, the AB compound (solid phase) is crystallized and dispersed in the liquid phase of point a, that is, the M' composition. When this state is rapidly cooled and solidified, the liquid phase M' falls within the range (3) and becomes at least one of an amorphous phase, a fine crystalline phase, and a supersaturated solid solution. The alloy obtained by K in this manner becomes a composite alloy in which the AB compound is dispersed using at least one of a ductile amorphous phase, a microcrystalline phase, and a supersaturated solid solution as a parent phase. This composite alloy has greater hardness and tensile strength than alloys with a matrix composition due to precipitate dispersion strengthening. Therefore, a ductile composite alloy can be manufactured even outside the range where a ductile alloy can be manufactured by the conventional molten metal quenching method, that is, in a composition range that results in a brittle alloy.

本発明において、半溶融状態の溶湯を急冷凝固させる手
段は、一般に単ロール急冷法、双ロール急冷法、ペンダ
ントドロップ法、メルトイクストラクション法などの公
知の方法を適用することができる。これらの方法では、
半溶融状態の溶湯を直接回転または移動する冷却基体上
に急冷凝固するものであって、冷却速度は通常約10’
C/秒以上と極めて速い。
In the present invention, generally known methods such as a single-roll quenching method, a twin-roll quenching method, a pendant drop method, and a melt extraction method can be applied to rapidly solidify the semi-molten molten metal. In these methods,
The molten metal in a semi-molten state is rapidly solidified on a directly rotating or moving cooling base, and the cooling rate is usually about 10'.
Extremely fast at over C/sec.

本発明において、上記のような方法で冷却基体面に接触
するときに、合金溶湯が半溶融状態にあることが必要で
あシ、このために合金溶解槽内で合金組成を完全に溶融
した状態とし、ノズルと冷却基体面、例えばロール面と
の距離を変え、ロール面に接触する直前の溶湯の温度を
赤外線温度計で測定する方法がある。ただし、この方法
では、ノズルとロール面との距離が変動する結果、均一
な厚みの均質リボンが得にくい。そこで合金溶解槽に取
シ付けられたノズル内に熱電対などの温度計を取り付け
、ノズル内の溶湯を半溶融状態に維持し、かつ不活性ガ
スを圧入してノズルよυ半溶融状態の溶湯を噴出するの
がよい。この場合、半溶融状態であっても合金溶湯の温
度が低過ぎると、溶湯の粘性が高くなり、溶湯の噴出が
困難となるので溶湯の噴出が可能な半溶融状態に維持す
ることが必要である。
In the present invention, it is necessary for the molten alloy to be in a semi-molten state when it comes into contact with the cooled substrate surface in the above method, and for this purpose, the alloy composition is completely melted in the alloy melting tank. There is a method in which the distance between the nozzle and the cooling substrate surface, such as the roll surface, is changed and the temperature of the molten metal just before it contacts the roll surface is measured with an infrared thermometer. However, with this method, it is difficult to obtain a homogeneous ribbon with uniform thickness because the distance between the nozzle and the roll surface varies. Therefore, a thermometer such as a thermocouple is installed in the nozzle installed in the alloy melting tank, and the molten metal in the nozzle is maintained in a semi-molten state, and an inert gas is pressurized into the nozzle. It is better to squirt out. In this case, even if the molten alloy is in a semi-molten state, if the temperature of the molten alloy is too low, the viscosity of the molten metal will increase and it will be difficult to eject the molten metal, so it is necessary to maintain it in a semi-molten state that allows the molten metal to eject. be.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第2図は本実施例で用いた単ロール急冷法の概略図であ
る。透明石英管製ノズル1に予め溶融した合金を挿入し
高周波誘導炉2で再溶解後高圧Arガスによりロール3
上に噴出してリボン状急冷試料4を得た、噴出時の溶湯
温度はノズル上部からさし込んだ熱電対5によって測定
した。
FIG. 2 is a schematic diagram of the single roll quenching method used in this example. A pre-molten alloy is inserted into a nozzle 1 made of transparent quartz tube, and after being remelted in a high frequency induction furnace 2, it is heated to a roll 3 using high pressure Ar gas.
The temperature of the molten metal at the time of ejection was measured by a thermocouple 5 inserted from the upper part of the nozzle.

本実施例では、Crメッキを施した銅ロール(直径20
01+1111)を用い、その回転数を300Orpm
、ノズル先端のスリットを0.5X5mm。
In this example, a Cr-plated copper roll (diameter 20
01+1111) and set the rotation speed to 300Orpm.
, the slit at the tip of the nozzle is 0.5 x 5 mm.

Arガス圧を0.4〜2 Kg/ cm”まで調整し、
幅約5mm、厚さ約30μmのリボンになるようにした
Adjust the Ar gas pressure to 0.4 to 2 Kg/cm”,
The ribbon had a width of about 5 mm and a thickness of about 30 μm.

第3図はこのよう忙して作製したFe、3−x Crl
 ? B z急冷合金の非晶質形成範囲(矢印で示す範
囲)および非晶質相中に析出物が分散した範囲ではその
析出物(CrB化合物)の体積割合(%)を示した。完
全溶融状態(1300t:’)から急冷する方法(従来
方法)では、その非晶質形成範囲は約22at%が限度
であり、それ以上のB量では非晶質相にならず脆くなる
Figure 3 shows the Fe, 3-x Crl fabricated in this way.
? In the amorphous formation range (range indicated by the arrow) of the Bz rapidly solidified alloy and the range in which the precipitate is dispersed in the amorphous phase, the volume percentage (%) of the precipitate (CrB compound) is shown. In the method (conventional method) of rapidly cooling from a completely molten state (1300 t:'), the range of amorphous formation is limited to about 22 at %, and if the amount of B exceeds that amount, the amorphous phase does not form and becomes brittle.

一方、本発明方法では熱電対5によって噴出時の溶湯温
度を115oC(半溶融状態)とし、急冷凝固したとこ
ろ、約20〜30a t%の組成範囲で一部に結晶相を
析出分散し九延性のある複合合金となる。この結晶相は
X線回析によυCrBCr中であった。この析出物は、
数μmから20μm程度と非常に微細であった。
On the other hand, in the method of the present invention, the temperature of the molten metal at the time of ejection is set to 115oC (semi-molten state) using a thermocouple 5, and when it is rapidly solidified, a crystalline phase is partially precipitated and dispersed in a composition range of about 20 to 30 at%, resulting in nine ductility. It becomes a composite alloy with This crystalline phase was found to be in υCrBCr by X-ray diffraction. This precipitate is
The particles were very fine, ranging from several μm to about 20 μm.

第4図はF’4& Cr17 &s金合金溶湯噴出温度
によるCrB化合物の析出量の変化を示す。第4図はC
rB化合物の析出量は溶湯温度によって制御可能であり
、温度の降下と共に増大することを示している。しかし
、溶湯温度があまり低いと溶湯の粘性が高く、噴出が不
可能となる。第4図中、Aは噴出不可能温度域である。
FIG. 4 shows the change in the amount of precipitated CrB compound depending on the F'4 & Cr17 &s gold alloy molten metal jetting temperature. Figure 4 is C
It is shown that the amount of rB compound precipitated can be controlled by the melt temperature and increases as the temperature decreases. However, if the temperature of the molten metal is too low, the viscosity of the molten metal will be high and it will be impossible to eject it. In FIG. 4, A is the temperature range where ejection is not possible.

第5図1dNi、、、、−ICr、。Pt、、B、合金
の非晶質相形成範囲と析出物の析出割合(%)を示す。
FIG. 5 1dNi, , -ICr,. The range of amorphous phase formation of Pt, B, and alloys and the precipitation ratio (%) of precipitates are shown.

本合金の場合、従来方法による非晶質形成限界B量は約
308 t%である。一方、本発明方法によればそのB
量は約36at%まで増大が可能であり、このとき析出
物は約5%まで析出する。析出物はX線回析、XMAな
どの結果からCrB化合物である。このような析出が生
じても非晶質相となっているので靭性を有し、延性に優
れている。またこれらの高B含有Nl基合金は耐食性が
よく、中性子吸収能が高いので中性子吸収材として核燃
料貯蔵ラック材の放射能遮蔽材として好適である。
In the case of this alloy, the limit B content for amorphous formation by the conventional method is about 308 t%. On the other hand, according to the method of the present invention, B
The amount can be increased to about 36 at%, with up to about 5% precipitate. The precipitate is a CrB compound based on the results of X-ray diffraction and XMA. Even if such precipitation occurs, it remains in an amorphous phase, so it has toughness and excellent ductility. Furthermore, these high B-containing Nl-based alloys have good corrosion resistance and high neutron absorption ability, and are therefore suitable as neutron absorbing materials and radioactivity shielding materials for nuclear fuel storage rack materials.

以上のように本発明によれば、母相によシ延性を付与す
ると共に第2相の分散析出によって強さ、引張強さを高
くすることができ、また従来機械的物性の低下から添加
量が制限されていた元素の添加量を増大することによっ
て得られる合金の特性を高めることができ、さらに煩雑
な熱処理を要しない。
As described above, according to the present invention, it is possible to impart ductility to the matrix phase and increase the strength and tensile strength by dispersing and precipitating the second phase. By increasing the amount of added elements that have been previously limited, the properties of the resulting alloy can be improved, and furthermore, complicated heat treatment is not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための模式的A−B二
元系状態図、第2図は本発明に適用される単ロール急冷
装置の概略図、第3図はFe811−エCr1Jx合金
の本発明による方法と従来方法による非晶質相形成組成
および析出物の析出割合を示す図、第4図はF e66
c rtt13ts合金の溶湯噴出温度による析出物量
の変化を示す図、第5図はN1vy、5−8Cr16P
1.sBx合金の非晶質形成組成および析出物の割合を
示す図である。 1・・・ノズル、2・・・高周波誘導炉、3・・・ロー
ル、4$ 1 目 、Q            /’l’      /
’7    A13        BByc$量 第2目 5 $3 目 永口/1  (d”/、) 第4 回 路焉Pt、を温度(゛り 千5目
Fig. 1 is a schematic A-B binary system phase diagram for explaining the present invention in detail, Fig. 2 is a schematic diagram of a single roll quenching device applied to the present invention, and Fig. 3 is a Fe811-ECr1Jx Figure 4 shows the amorphous phase formation composition and precipitation ratio of precipitates by the method according to the present invention and the conventional method for alloys.
A diagram showing the change in the amount of precipitates depending on the molten metal ejection temperature of cr rtt13ts alloy, Figure 5 is N1vy, 5-8Cr16P
1. FIG. 2 is a diagram showing the amorphous formation composition and the proportion of precipitates in an sBx alloy. 1... Nozzle, 2... High frequency induction furnace, 3... Roll, 4 $ 1st, Q /'l' /
'7 A13 BByc$ amount 2nd item 5 $3 Menagaguchi/1 (d"/,) 4th circuit end Pt, temperature (゛ri thousand 5th item)

Claims (1)

【特許請求の範囲】 1、非晶質相、微細結晶相および過飽和固溶体の少なく
と本ひとつからなる母相に第二相が分散析出したことを
特徴とする複合合金。 2 第二相が、ボロン化合物であることを特徴とする特
許請求の範囲第1項記載の複合合金。 3、合金の溶湯を一部結晶相が析出する液相線よシも低
い温度下での半溶融状態から急冷凝固することを特徴と
する複合合金の製造方法。
[Scope of Claims] 1. A composite alloy characterized in that a second phase is dispersed and precipitated in a parent phase consisting of at least one of an amorphous phase, a fine crystalline phase, and a supersaturated solid solution. 2. The composite alloy according to claim 1, wherein the second phase is a boron compound. 3. A method for producing a composite alloy, which comprises rapidly solidifying a molten alloy from a semi-molten state at a temperature lower than the liquidus line at which a part of the crystalline phase precipitates.
JP57111622A 1982-06-30 1982-06-30 Compound alloy and manufacture thereof Pending JPS596338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111622A JPS596338A (en) 1982-06-30 1982-06-30 Compound alloy and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111622A JPS596338A (en) 1982-06-30 1982-06-30 Compound alloy and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS596338A true JPS596338A (en) 1984-01-13

Family

ID=14565981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111622A Pending JPS596338A (en) 1982-06-30 1982-06-30 Compound alloy and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS596338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166335A (en) * 1988-08-30 1991-07-18 Sutek Corp Dispersively reinforcing material
JP2010189667A (en) * 2009-02-13 2010-09-02 National Institute Of Advanced Industrial Science & Technology Metallic glass body in which spherical primary crystals having ductility are uniformly dispersed, and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489906A (en) * 1977-12-22 1979-07-17 Allied Chem Strip of nonncrystalline metal containing embeded particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489906A (en) * 1977-12-22 1979-07-17 Allied Chem Strip of nonncrystalline metal containing embeded particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166335A (en) * 1988-08-30 1991-07-18 Sutek Corp Dispersively reinforcing material
JP2010189667A (en) * 2009-02-13 2010-09-02 National Institute Of Advanced Industrial Science & Technology Metallic glass body in which spherical primary crystals having ductility are uniformly dispersed, and method for producing the same

Similar Documents

Publication Publication Date Title
US5336342A (en) Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof
EP0187235B1 (en) Production of increased ductility in articles consolidated from a rapidly solidified alloy
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
US4182628A (en) Partially amorphous silver-copper-indium brazing foil
US3899820A (en) Method of producing a dispersion-strengthened aluminum alloy article
JPS61130451A (en) Aluminum/iron/vanadium alloy having high strength at high temperature
Li et al. Solidification structure formation in undercooled Fe–Ni alloy
Elliott et al. Metastable phases produced by laser melt quenching
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
US4201601A (en) Copper brazing alloy foils containing germanium
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
JP3416660B2 (en) Manufacturing method of uranium sheet
JP6362698B2 (en) Zirconium-based alloy metallic glass and method for forming zirconium-based alloy metallic glass
JP3205362B2 (en) High strength, high toughness aluminum-based alloy
Walder et al. Nonequilibrium solidification in undercooled melts of the alloy Ag‐39.9 at.% Cu
JPS596338A (en) Compound alloy and manufacture thereof
JPS63238268A (en) Production of target for sputtering
US5039478A (en) Copper alloys having improved softening resistance and a method of manufacture thereof
JPH028015B2 (en)
CN1417369A (en) Low-density blocky metal-glass
JPH0356295B2 (en)
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness
US5256214A (en) Copper alloys and method of manufacture thereof
KR101193065B1 (en) Method for fabricating plate of amorphous metal by using Strip Casting process and the device thereof
JPS631365B2 (en)