JPS5961109A - Multi-layer cylindrical winding - Google Patents

Multi-layer cylindrical winding

Info

Publication number
JPS5961109A
JPS5961109A JP17188182A JP17188182A JPS5961109A JP S5961109 A JPS5961109 A JP S5961109A JP 17188182 A JP17188182 A JP 17188182A JP 17188182 A JP17188182 A JP 17188182A JP S5961109 A JPS5961109 A JP S5961109A
Authority
JP
Japan
Prior art keywords
winding
cylindrical winding
windings
cylindrical
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17188182A
Other languages
Japanese (ja)
Inventor
Tsuneji Teranishi
常治 寺西
Masami Ikeda
池田 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17188182A priority Critical patent/JPS5961109A/en
Publication of JPS5961109A publication Critical patent/JPS5961109A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Abstract

PURPOSE:To increase insulating strength between layers in a split cylindrical winding and improve cooling efficiency, by a method wherein a cooling medium passage is formed between split windings and made one layer for multi-layer cylindrical winding, and plural layers are overlaid with intermediary of interlayer insulation paper so as to constitute multi-layer cylindrical winding. CONSTITUTION:A split cylindrical winding 10 is wound to an interlayer insulation paper 20 and arranged circumferentially. The split cylindrical winding 10 has two split windings 10a, 10b, and a cooling medium passage 30 is formed between split windings 10a, 10b. The cooling medium passage 30 is provided on outside of the split winding 10a wound to the interlayer insulation paper 20 and cools the split windings 10a, 10b by flowing the cooling oil therein. The split winding 10b is wound on outside of the passage 30. The cooling medium passage 30 is formed between the split windings 10a, 10b of the split cylindrical windings 10 as above described and made one layer for the split cylindrical winding 10. Plural layers are constituted in multi-layer cylindrical winding through the interlayer insulation paper 20.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、肪専飛気機器の誘導巻線として用いらnる多
層円筒巻線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a multilayer cylindrical winding used as an induction winding in aerospace equipment.

〔発明の技術的背景〕[Technical background of the invention]

多層円筒巻線は変圧器やりアクドル等の紡導屯気@器の
看護に用いられ、内鉄形変圧器では主に高′屯圧巻線と
して用いられる。この多層円筒巻線は、円筒巻線層間の
対向面積が広く、かつ円筒巻線層数が少ないため面列靜
’flL 答Jtが大きく円筒巻線内の゛亀位振勧が非
常に少ないという特徴を有している。
Multi-layer cylindrical windings are used in transformers, accelerators, etc., and are mainly used as high-voltage windings in core type transformers. This multi-layer cylindrical winding has a large opposing area between the cylindrical winding layers and a small number of cylindrical winding layers, so the surface alignment is large and there is very little displacement within the cylindrical winding. It has characteristics.

第1図はこのような多層円筒巻線の外観因であり、第2
図は従来の多層円筒巻線の第1し1におけるx−x’断
面図である。従牙の多層円筒巻線の構造は次の如くなさ
れている。まず7?り間絶縁紙I11に導体が巻かれて
一層の円筒巻線28が層間絶縁紙JRに周設される。次
にこの円筒巻ffl 2 ”の外側に冷却細道3aが周
設さnる。
Figure 1 shows the external appearance of such a multilayer cylindrical winding.
The figure is a cross-sectional view taken along line 1-1 of a conventional multilayer cylindrical winding. The structure of the multilayer cylindrical winding of the secondary fang is as follows. First 7? A conductor is wound around the interlayer insulating paper I11, and one layer of cylindrical winding 28 is provided around the interlayer insulating paper JR. Next, a cooling passage 3a is provided around the outside of this cylindrical winding ffl2''.

古び1VJrtll絶縁紙1bが冷却細道3aの夕日1
111にもかれ、さらに円筒巻線2bが層間絶縁相−1
bの外側に巻かれて周設さnる。このようVCN間絶縁
紙IRIIb・・・、円筒巻線2J+、2b・・・、冷
却細道3s、3b・・・が被数重ねらi’Lる。円筒巻
線2 a e 2 b ・−u4!r層の端部を順次1
01列に接に売されている。そして、この多層円筒巻線
は聞・i外側の冷却細道3eにシールド4が周設さnて
全体として一つの巻線にYt’!成されている。層間絶
縁紙1 a p l b・・・の厚さは、円筒巻線の接
続部Aでは′「Iも圧が加わらないので薄く、反対の接
続さ!1.てないBでは2層分のr祝用が加わるので厚
くしである。このように層間絶縁紙18.lb・・・の
厚さは円筒巻j12a、2b・・・に生ずる′i(を正
値に応じて笈化させている。
Old 1V Jrtll insulation paper 1b is the sunset on the cooling path 3a
111, and the cylindrical winding 2b is also connected to the interlayer insulation phase -1.
It is wound around the outside of b. In this way, the inter-VCN insulating paper IRIIb..., the cylindrical windings 2J+, 2b..., the cooling paths 3s, 3b... are stacked one on top of the other. Cylindrical winding 2 a e 2 b ・-u4! The ends of the r layer are sequentially 1
It is sold directly in column 01. This multi-layer cylindrical winding is provided with a shield 4 around the outer cooling path 3e so that the whole becomes one winding Yt'! has been completed. The thickness of the interlayer insulating paper 1 a p l b... is thin at the connection part A of the cylindrical winding because no pressure is applied to I. The thickness of the interlayer insulating paper 18.lb... is determined by adjusting the 'i' generated in the cylindrical windings j12a, 2b... according to the positive value. There is.

このように宿成さ)1.た多層円筒巻線はml記の理由
により円筒巻線内の′11位撮動が少ないというIr¥
徴の他に、冷却鋪道3a、3b・・・が円筒巻線2m、
2b・・・に対して平行に設けらnているので冷却油の
流へが良く冷却効率が易いという71−Y徴もある。
In this way) 1. The multi-layer cylindrical winding has a small number of 11 positions inside the cylindrical winding due to the reason stated in ml.
In addition to the signs, the cooling roads 3a, 3b... are cylindrical windings of 2 m,
There is also a 71-Y characteristic that since it is provided parallel to 2b..., the flow of cooling oil is good and the cooling efficiency is easy.

〔背景技術の問題点〕[Problems with background technology]

しかし、上記多層円筒巻線には、次のような間1但があ
る。すなわち、円筒巻線21! 、 2b・・・のjψ
う間は、冷却鋪道3a、3b・・・と層間絶縁紙1m、
lb・・・とで構成さtしている。そこで冷却油の肋亀
率?ε重、層間絶縁紙1a、lb・・・の誘+1%率會
61 とすると、誘゛1率の大きさはε1〈62である
。このため、層間絶縁紙1 ”、lb・・・に比較して
耐圧の低い冷却油に加わる電界が層間絶縁紙1a、lb
・・・に加わる’hJ界より(す/6り倍強くなってし
まう。特に2層分の屯圧が加わるB部では、層間絶縁紙
1a、1b・・・を厚くしているが、これによシ層間絶
縁紹:1a。
However, the multilayer cylindrical winding described above has the following drawbacks. That is, cylindrical winding 21! , jψ of 2b...
Between the cooling roads 3a, 3b... and 1m of interlayer insulation paper,
It is composed of lb... So what is the cost rate of cooling oil? Assuming that the dielectric constant of ε weight and the interlayer insulating paper 1a, lb... is +1% 61, the magnitude of the dielectric constant is ε1<62. Therefore, the electric field applied to the cooling oil, which has a lower pressure resistance, than the interlayer insulating paper 1a, lb...
The 'hJ field that is applied to the Introduction to interlayer insulation: 1a.

1b・・・と冷却鋪道J s * 3 b・・・との寸
法比が小さくなり冷却鋪道3 a 、 3 b・・・に
加わ、6電界が沖Ih強くなり層間絶縁紙1a、lb・
・・fflB部で1〒〈シ几効果が半減してし凍りので
ある。
The dimensional ratio between 1b... and the cooling road Js * 3b... becomes smaller and is applied to the cooling road 3a, 3b..., and the electric field becomes stronger as the interlayer insulating paper 1a, lb.
...In the fflB section, the effect was reduced by half and it became frozen.

さらに、円筒巻線2a、:lb・・・の冷却効率は冷却
油の温度が層間絶縁紙1a、lb・・・からはほとんど
伝わらず片面の冷却となる。
Furthermore, the cooling efficiency of the cylindrical windings 2a, lb... is such that the temperature of the cooling oil is hardly transmitted from the interlayer insulating paper 1a, lb..., resulting in single-sided cooling.

〔発明の目的〕[Purpose of the invention]

本発明は、円筒巻線の’2!r!間の絶縁を向上させ得
ると共に円筒巻線′の冷却効率を高め得ろ多層円筒巻線
を提供することを目的とする。
The present invention is a cylindrical winding '2! r! It is an object of the present invention to provide a multilayer cylindrical winding which can improve the insulation between the cylindrical windings and the cooling efficiency of the cylindrical windings.

〔発明の概要〕[Summary of the invention]

本発明は、従来における一層の円筒巻に′ilk分割し
、これを並列接続して一層の円筒専梅とした分割円筒巻
1腺全被数層設け、この分割円筒巻線の分割さノ1.た
%線間に…■記分割円筒巻線を冷却する冷却媒体金通丁
冷却媒体通路を設け、さらに前記分割円筒巻線と前記冷
却媒体通路と金一層として複数層設け、この各層相瓦間
に層間絶縁紙を設けて上記目的全達成するようにしたこ
とを特徴とする。
The present invention is to divide the conventional cylindrical winding into one layer of cylindrical windings, connect them in parallel to form one layer of cylindrical windings, and provide all the layers of the divided cylindrical winding. .. A cooling medium passage for cooling the divided cylindrical windings is provided between the divided cylindrical windings, and a plurality of layers are provided between the divided cylindrical windings and the cooling medium passages as a single gold layer. The present invention is characterized in that an interlayer insulating paper is provided in the wafer to achieve all of the above objects.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について第3図孕参壊、して説明
する。第2図は本発明に係る多層円筒巻@ w 2.1
図に示すx−x’断面について示した断面図である。こ
の多層円fに)巻線は次に述べる如く構成されている。
An embodiment of the present invention will be described below with reference to FIG. 3. Figure 2 shows the multilayer cylindrical winding according to the present invention @ w 2.1
It is a sectional view shown about the xx' cross section shown in a figure. The windings in this multilayer circle f are constructed as described below.

壕ず分割円筒巻線1゜が層間絶縁紙20に巻かnF@設
さ几る。この分割円筒巻線10は、2つの分割巻線7o
a110bf有し、この分割巻’m1OR,10br7
)間に冷却媒体通路30が設けら几るように構成さf’
Lる。冷却媒体通路3oは、分割巻線1011に層間絶
縁紙20に倦いた後、分割巻線10Bの外側に設けらt
l、冷却油全通し分割巻l@lOn+10bの冷却を行
なう。そして、分割巻線10bが冷却媒体通路30の外
側に巻かnる。
A 1° segmented cylindrical winding without a trench is wound around an interlayer insulating paper 20. This divided cylindrical winding 10 has two divided windings 7o
It has a110bf, and this divided winding 'm1OR, 10br7
) is configured such that a cooling medium passage 30 is provided between f'
L. The cooling medium passage 3o is provided outside the divided winding 10B after passing through the interlayer insulating paper 20 in the divided winding 1011.
1. Cooling oil is passed through the entire divided winding l@lOn+10b. Then, the divided winding 10b is wound outside the coolant passage 30.

杓び層間絶縁体20が分割巻線10bの外1111に巻
か几る。このように分割円筒巻線10の分割巻線10B
、10bの間に冷却媒体通路30′t−設けて分割円筒
巻線10の一層とし、こn vi−IQ間絶縁紙20f
弁して第3図に示す如く5層分割円筒巻線10が設けら
几る。そして各層の分割円筒巻線10は、各層の端部と
順次接続して10列接続さ1する。そして、最外側の分
割巻線10bの外側にシヲルド40’5(周設し、全体
として1つの巻線が構成される。分割円筒巻線100分
割巻線10R,10bは次の層に設けられる場合、第3
図に示す如く分割巻qlObと内側に分割巻線1011
’(外側に配置させる。
A scooped interlayer insulator 20 is wound around the outside 1111 of the divided winding 10b. In this way, the divided winding 10B of the divided cylindrical winding 10
, 10b is provided as a layer of the divided cylindrical winding 10, and an insulating paper 20f is provided between vi and IQ.
As shown in FIG. 3, a five-layer divided cylindrical winding 10 is provided. The divided cylindrical windings 10 of each layer are connected in 10 rows by sequentially connecting the ends of each layer. A shield 40'5 (circumferentially provided) is provided on the outside of the outermost divided winding 10b, and one winding is constructed as a whole.The divided cylindrical winding 100 and the divided windings 10R and 10b are provided in the next layer. In case, the third
As shown in the figure, there is a divided winding qlOb and a divided winding 1011 inside.
'(Place it outside.

層間絶縁紙20の厚さは、従来と同様に所定の厚さでも
って分割円筒巻線10が接続さiする111IA′t−
薄く、反対に接続されてない側Bt−J¥、<してある
The thickness of the interlayer insulating paper 20 is 111IA't- when the divided cylindrical winding 10 is connected with a predetermined thickness as in the conventional case.
It is thin and the side that is not connected is Bt-J\<.

次に上記のように構成された多層円筒巻線全従来9ノ多
八り円筒巻線と比較する。絹4図(R)  Ib)は従
来と本実施例とにおけろ多層円筒巻線の巻線が接続さf
l、ていない部分B?拡大した図である。ここで従来の
冷却油過38および本実施例の冷却媒体通路3oσ月隅
をd1層間絶縁紙のJワさを円筒巻線2nllOaJ1
0bが接続さ11゜ない側Bll′t1:おいて261
分割円m装線100省層間の電圧をVとする。まず層間
の電界の強さについて比較する。第4図(aJに示す従
来の多層円筒巻状では、冷却油と層間絶、縁紙7aとの
透電率の比11/りは約0.65となる。よって冷却油
導3aに加わる電界1C1は、 となる。
Next, the multilayer cylindrical winding constructed as described above will be compared with a conventional nine-layer cylindrical winding. Fig. 4 (R) Ib) shows that the windings of the multilayer cylindrical winding are connected in the conventional case and in this embodiment.
l, the part B that isn't there? This is an enlarged view. Here, the conventional cooling oil passage 38 and the cooling medium passage 3oσ corner of this embodiment are d1, and the J width of the interlayer insulating paper is cylindrical winding 2nllOaJ1.
Side Bll't1 where 0b is not connected 11 degrees: 261
Let V be the voltage between the 100 layers of divided circular wires. First, we will compare the strength of the electric field between the layers. In the conventional multilayer cylindrical winding shown in FIG. 1C1 is as follows.

これに対し第3図(b)に示す本実施例の多層円筒巻線
では、冷却媒体通路30と層間絶縁紙20との幅を従来
の冷却鋪道3aと層間絶縁紙1aとの幅と同一にした場
合、本実施例では層間に冷却媒体通路30がない。よっ
て層間絶縁紙20に加わ6電界w:ztri。
On the other hand, in the multilayer cylindrical winding of this embodiment shown in FIG. 3(b), the width of the cooling medium passage 30 and the interlayer insulating paper 20 is the same as the width of the conventional cooling road 3a and the interlayer insulating paper 1a. In this case, there is no cooling medium passage 30 between the layers in this embodiment. Therefore, 6 electric fields w: ztri are applied to the interlayer insulating paper 20.

■        v 2d         d となる。上記のことから本実施例の層間絶縁紙20に加
わる電界E2は、従来の冷却鋪道3dに加わる偵: n
−E Jの1.16倍となる。
■ v 2d d. From the above, the electric field E2 applied to the interlayer insulating paper 20 of this embodiment is equal to the electric field E2 applied to the conventional cooling road 3d: n
-E 1.16 times J.

次に、層間の静電容量について比較する。そこで、I−
間の対向面積ks%層間距離を円筒巻線2aおよび分割
円筒巻線1oの中間においてdとする。こ九よシ従来の
多層円筒巻線の静電容量C1は、 となり、本実施例の多層円筒巻線の静電容量゛C2は、 となる。よってその比C2/C1は、 藏l      ε2 となり、(εl/すJ=0.65と丁fLば、本実施例
における静電W’+ (ii C2が従来におけるそれ
よりも2.54倍大きくなる。
Next, the interlayer capacitance will be compared. Therefore, I-
The opposing area ks% interlayer distance between the cylindrical winding 2a and the divided cylindrical winding 1o is d. The capacitance C1 of the conventional multilayer cylindrical winding is as follows, and the capacitance C2 of the multilayer cylindrical winding of this embodiment is as follows. Therefore, the ratio C2/C1 becomes 藏l ε2, and if (εl/suJ=0.65 and fL, then the electrostatic charge W'+ in this embodiment is 2.54 times larger than that in the conventional case. Become.

したがって、分割巻線10R,l0bt−並列接読し、
この分割省線10R,10bの間に冷却媒体通路30を
股りて多層円筒巻線の一層の@線とし、こJ′Lを層間
絶縁紙20?弁して複数層重ね台せて多層円f1.)巻
線が構成−2f”1.るので、層間絶縁糾20に加わる
市、程、E2は従来における冷却油送3aに力11わる
電界F、1の1.16倍であるが、層間絶縁紙20の耐
圧は冷却油の耐圧よ93〜5倍含有す。よって本実施例
の多層円筒巻線は従来の多層円筒巻線より層間の絶縁強
度を著しく向上させることができる。さらに冷却媒体通
路30を電位差の生じない分割巻線10R,lobO間
に設けたので、冷却W体通路30には全<H¥、!Tが
加わらない。よって冷却媒体通路30に冷却用の油′f
t辿しても冷却油は絶縁耐圧における弱点部分とはなら
ない。
Therefore, the divided windings 10R, 10bt - parallel reading,
The coolant passage 30 is straddled between the divided wire-saving wires 10R and 10b to form one layer of the @ wire of the multilayer cylindrical winding, and this J'L is the interlayer insulating paper 20? A multilayer circle f1. ) Since the winding has a configuration of -2f''1., the electric field F,1 applied to the interlayer insulation layer 20 is 1.16 times the electric field F,1 exerted by the force 11 on the conventional cooling oil feeder 3a. The pressure resistance of the paper 20 is 93 to 5 times that of the cooling oil.Therefore, the multilayer cylindrical winding of this embodiment can significantly improve the insulation strength between layers compared to the conventional multilayer cylindrical winding. 30 is provided between the divided windings 10R and lobO where no potential difference occurs, total <H\,!T is not applied to the cooling W body passage 30.Therefore, cooling oil 'f' is not applied to the cooling medium passage 30.
Cooling oil is not a weak point in terms of dielectric strength.

分割巻fQ10s、10bの冷却は分割巻線lQR,1
0bの間に設けら?1.た冷却媒体通路ひ0により行な
われるので、分割円筒巻線lOを両面から冷却すること
になp冷却効率を一段と高くすることができる。
The divided winding fQ10s, 10b is cooled by the divided winding lQR,1
Is it set between 0b? 1. Since this is done by the cooling medium passage 10, the divided cylindrical winding 10 is cooled from both sides, and the cooling efficiency can be further increased.

なお、本発明は上記−実施f+1に限定さiLるもので
はない。たとえば層間絶縁紙20を絶縁耐圧の強い固体
絶縁物にしても良い。また冷却媒体としての油だけでは
なく冷却用のガスあるいは沸点の低い渾1体等を用いて
も良い。こitらのものを用いitはガス絶縁変圧器あ
るいは沸点の低い流体のW発潜熱を利用して冷却を行な
う蒸発冷却変圧器等に本発明の多1※円筒巻′−9を適
用することができろつなおガスあるいは沸点の低い流体
を用いても、冷却媒体通路30にVi雷、宜が加わらな
いのでml記実梅例と同様に層間の絶it耐圧を保つこ
とができる。
Note that the present invention is not limited to the above implementation f+1. For example, the interlayer insulating paper 20 may be made of a solid insulator with strong dielectric strength. Furthermore, in addition to oil as a cooling medium, a cooling gas or a pool having a low boiling point may be used. It is possible to apply the polycylindrical winding '-9 of the present invention to a gas insulated transformer or an evaporative cooling transformer that performs cooling using the latent heat of W of a fluid with a low boiling point. Even if a slow gas or a fluid with a low boiling point is used, no pressure is added to the cooling medium passage 30, so the breakdown pressure between the layers can be maintained as in the example described above.

〔発明の効果〕〔Effect of the invention〕

本発明は、・分i!ll1巻線の間に冷却媒体通路全吋
けて多層円筒巻線の=!・シとし、これを層間絶轢紙奮
弁して複数1?4重ね合せてz層円筒巻@!會構成する
ようにしたので、分即1円筒)?腺の各層間の絶縁耐圧
ケ向上させ得ろと共に分割円筒巻線の玲却効4孕晶め得
る多層円筒巻線?提供することができる。
The present invention is based on the following features:・minute i! The cooling medium passage is completely closed between the ll1 windings and the multilayer cylindrical winding =!・Set it up and put it into a Z-layer cylindrical roll by stacking 1 to 4 layers of paper with great effort between the layers! I decided to make a group, so one cylinder per minute)? A multi-layer cylindrical winding that can improve the dielectric strength between each layer of the gland and improve the effectiveness of the split cylindrical winding? can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多層円筒巻線の外観図、第2図は従来における
多層円筒巻線の断面図、第3図は本発明に係る多層円筒
巻線の一実施例金示す断面1<61 、第4図(R) 
、 (b)は同実施例の各層円筒巻紳を従来のものと比
較するための部分断面1図である。 10・・・分割円筒巻線、10:a、10b・・・分割
巻線、20・・・層間絶線紙、30・・・冷却奸、体向
路、40・・・シールド。 出願人代理人  弁理士 鈴 江 武 彦第3図 A 08 第4図
FIG. 1 is an external view of a multilayer cylindrical winding, FIG. 2 is a sectional view of a conventional multilayer cylindrical winding, and FIG. 3 is an embodiment of a multilayer cylindrical winding according to the present invention. Figure 4 (R)
, (b) is a partial cross-sectional view for comparing the cylindrical winding of each layer of the same example with the conventional one. DESCRIPTION OF SYMBOLS 10... Segmented cylindrical winding, 10: a, 10b... Segmented winding, 20... Interlayer insulation paper, 30... Cooling tube, body direction path, 40... Shield. Applicant's agent Patent attorney Takehiko Suzue Figure 3 A 08 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 円筒巻線を複数N車ねた多層円筒巻線において、各層の
前記円筒巻・腺金分害(1して@層ごとに並列接続して
なる分割円筒巻線と、前記分割円筒巻線の分割さtl、
た巻線間に設けられ前記分割円筒巻線の冷却を行なう冷
却媒体が通る冷却媒体通路と、mS記各層の前記分割円
筒巻線間に設けらn前記分割円筒巻線間の絶縁を行なう
層間絶縁体と?具備したこと全特徴とする多層円筒巻線
In a multi-layer cylindrical winding with a plurality of N cylindrical windings, the cylindrical windings and the wires of each layer are separated (1) and the divided cylindrical windings are connected in parallel for each layer; divided tl,
a cooling medium passage provided between the divided cylindrical windings for cooling the divided cylindrical windings, through which a cooling medium passes; With an insulator? All features include multilayer cylindrical winding.
JP17188182A 1982-09-30 1982-09-30 Multi-layer cylindrical winding Pending JPS5961109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17188182A JPS5961109A (en) 1982-09-30 1982-09-30 Multi-layer cylindrical winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17188182A JPS5961109A (en) 1982-09-30 1982-09-30 Multi-layer cylindrical winding

Publications (1)

Publication Number Publication Date
JPS5961109A true JPS5961109A (en) 1984-04-07

Family

ID=15931519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17188182A Pending JPS5961109A (en) 1982-09-30 1982-09-30 Multi-layer cylindrical winding

Country Status (1)

Country Link
JP (1) JPS5961109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547193B2 (en) 2009-10-21 2013-10-01 Mitsubishi Electric Corporation Stationary induction apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547193B2 (en) 2009-10-21 2013-10-01 Mitsubishi Electric Corporation Stationary induction apparatus

Similar Documents

Publication Publication Date Title
US3197723A (en) Cascaded coaxial cable transformer
US4864266A (en) High-voltage winding for core-form power transformers
JP2015050451A (en) Transformer
JPH07263258A (en) Transformer
US2535554A (en) Close-coupled electrical transformer
JPS5961109A (en) Multi-layer cylindrical winding
JP3593484B2 (en) Disk winding of stationary induction machine
EP1254467A1 (en) A capacitor element for a power capacitor, a method for manufacturing the same and a power capacitor comprising such capacitor element
JPS6212645B2 (en)
CN203151362U (en) High-power high-frequency impulse high-voltage rectifier transformer
JP2000277353A (en) Transformer winding
Rudenberg Surge characteristics of two-winding transformers
US1259444A (en) Windings and insulation for electric apparatus.
JPS62152114A (en) Winding for oil-immersed induction electric apparatus
JPH03120804A (en) Gas-insulated transformer
JPS6190408A (en) Foil-wound transformer
JPS6138171Y2 (en)
JPS61188912A (en) Foil wound transformer
JPS58108726A (en) Transformer
JPS6214656Y2 (en)
JPH02254706A (en) Multicylindrical winding
JPH04302111A (en) High freqyebcy transformer
JPS632126B2 (en)
CN117809957A (en) LLC transformer and power supply equipment
JPS5878408A (en) Transformer