JPS58108726A - Transformer - Google Patents

Transformer

Info

Publication number
JPS58108726A
JPS58108726A JP20831181A JP20831181A JPS58108726A JP S58108726 A JPS58108726 A JP S58108726A JP 20831181 A JP20831181 A JP 20831181A JP 20831181 A JP20831181 A JP 20831181A JP S58108726 A JPS58108726 A JP S58108726A
Authority
JP
Japan
Prior art keywords
winding
windings
metal sheet
cooling duct
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20831181A
Other languages
Japanese (ja)
Inventor
Tsuneji Teranishi
常治 寺西
Masami Ikeda
池田 正巳
Susumu Isaka
進 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP20831181A priority Critical patent/JPS58108726A/en
Publication of JPS58108726A publication Critical patent/JPS58108726A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To prevent over heat and to offer a separate-type transformer effectively applied to a large-capacity transformer by a method wherein an increase in current density by winding leakage magnetic flux at both end sections of the metal sheets of foil windings is controlled. CONSTITUTION:A low-voltage winding 4 and a high-voltage winding 5 are composed of foil windings wound by superposing metal sheets 7 and insulating sheets 8. An insulating cylinder 3 and an insulating barrier 6 are provided between the low-voltage winding 4 and an iron core 2, and at the gap between windings 4, 5 respectively. Cooling ducts 9 are positioned in concentric circle shape in the inside of each winding 4, 5 at predetermined intervals. In the low- voltage winding 4 and the high-voltage winding 5 contained the cooling ducts 9 composed in this way, leakage magnetic flux in the windings is absorbed to silicon steel plates 15, 15 forming the cooling ducts 9, and eddy current by leakage magnetic flux crossing the silicon steel plates 15, 15 is hardly occurs at both the end sections of the metal sheets 7 to generate no local over heat.

Description

【発明の詳細な説明】 発明の技術分野 本発明は金属シートと絶縁シートを重ねて巻回した箔巻
巻線を備え、且つ冷却媒体が通される冷却ダクトを巻線
内に内蔵した変圧器に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a transformer comprising a foil-wound winding in which a metal sheet and an insulating sheet are overlapped and a cooling duct built into the winding through which a cooling medium is passed. Regarding.

発明の技術的背景 箔巻巻線を備えた箔巻変圧器は、占積率がよく、小形、
軽量化を実現できる特長があるために、数kV数100
 kVA程度の比較的電圧の低1− い小容量の変圧器においてはすでに実用化され、かなシ
市場に出1わっている。
Technical Background of the Invention Foil-wound transformers with foil-wound windings have a good space factor, are small in size,
Due to its ability to reduce weight, it is possible to reduce the
Small capacity transformers with relatively low voltages of the order of kVA have already been put into practical use and are now on the market.

最近、その優れた長所に鑑み、よシ高電圧。Recently, in view of its excellent advantages, high voltage has been introduced.

大容量ノ変圧器例えば275kV、300MVA変圧器
にも適用拡大が研究されているが、最大の鍵はいかに巻
線に対する冷却能力を向上させ、高い絶縁能力を巻線に
もたせられるかにかかっている。まだ、このような高電
圧大容量変圧器は実用化口されていないが、この箔巻変
圧器における巻線に対する冷却方式としては、巻線内に
冷却ダクトを内蔵させ、絶縁特性の秀れた冷媒を送り込
んで巻線損失から発生する熱を直接的に冷やす、いわば
ヒート・母イブ式のものが考えらねている。
Research is underway to expand the application to large-capacity transformers, such as 275kV and 300MVA transformers, but the key lies in how to improve the cooling capacity of the windings and provide high insulation capacity to the windings. . Although such high-voltage, large-capacity transformers have not yet been put into practical use, the cooling method for the windings in foil-wound transformers is to incorporate a cooling duct inside the windings, and to use a coil with excellent insulation properties. A so-called heat/mother-tube type system is being considered, in which a refrigerant is pumped in to directly cool down the heat generated from winding loss.

第1図はこのような方式の変圧器を示している。図中1
は絶縁媒体として絶縁油あるいはSF6ガス々、どの絶
縁ガスを封入したタンクで、このタンク1の内部には鉄
心2が設けられる。
FIG. 1 shows a transformer of this type. 1 in the diagram
1 is a tank filled with an insulating gas such as insulating oil or SF6 gas as an insulating medium, and an iron core 2 is provided inside this tank 1.

この鉄心2の主脚2aの外側には絶縁筒3を介して低圧
巻ftJJ4が巻装され、この低圧巻線4の=2− 外側には絶縁バリヤ6を介して高圧巻線5が巻装されて
いる。これら低圧巻線4と高圧巻線5−アルミニウム箔
などの金属シート7と樹脂フィルムなどの絶縁シート8
を重ねて巻回してなる箔巻巻線により構成されている。
A low voltage winding ftJJ4 is wound on the outside of the main leg 2a of the iron core 2 via an insulating tube 3, and a high voltage winding 5 is wound on the outside of the low voltage winding 4 via an insulating barrier 6. has been done. These low voltage winding 4 and high voltage winding 5 - metal sheet 7 such as aluminum foil and insulating sheet 8 such as resin film
It is composed of foil-wound wires made by overlapping and winding.

なお、谷巻線4,5はタンク1内に封入された絶縁油あ
るいは絶縁ガスにより絶縁されている。壕だ、低圧巻線
4の内部には冷却ダクト9が、高圧巻線5の内部には冷
却ダクト9が夫々内蔵されている。この冷却ダクト9は
電気的に1ターンを形成[7ない円筒状をなすもので、
金属板からなる薄い平形ダクトを彎曲させて形成したも
のであって、巻線4.5中に同心円的に配置されて一諸
に巻込まれている。この冷却ダクト9内には、フロン1
13やFe12などの冷媒が通されるようになっておシ
、この冷媒は冷却ダクト9内を通る過程で@紗4,5内
の発熱を冷媒の蒸発潜熱で建って巻線4.5を冷却する
。そして、この冷媒は凝縮器10において水冷却によシ
冷却されて凝縮され、液化した冷媒は冷媒タンク11に
貯めらtlてポンプ12により巻線4.5内に設けた冷
却ダクト9内に送り込まれる。すなわち、この冷媒循環
回路と変圧器内の絶縁媒体とは分離されている。また、
冷媒を導びく導液管13はステンレス鋼などの金属で作
られているが、この導液管13と冷却ダクト9との接続
には絶縁)平イノ14が用いられ、導液管13やタンク
1などのアース電位部とは絶縁されている。冷却ダクト
9の電位は巻線4,5内に巻き込まれている関係上、略
巻線4,5の巻き込み部分と同じ電位に結合されている
Note that the valley windings 4 and 5 are insulated by insulating oil or gas sealed in the tank 1. A cooling duct 9 is built inside the low voltage winding 4 and a cooling duct 9 is built inside the high voltage winding 5. This cooling duct 9 has a cylindrical shape that electrically forms one turn.
It is formed by bending a thin flat duct made of a metal plate, and is wound around the winding 4.5 in a concentric manner. Inside this cooling duct 9, there is a Freon 1
In the process of passing through the cooling duct 9, this refrigerant uses the latent heat of evaporation of the refrigerant to generate heat in the gauze 4 and 5, and causes the winding 4.5 to pass through. Cooling. Then, this refrigerant is cooled and condensed by water cooling in the condenser 10, and the liquefied refrigerant is stored in a refrigerant tank 11 and sent by a pump 12 into a cooling duct 9 provided in the winding 4.5. It will be done. That is, this refrigerant circulation circuit and the insulating medium within the transformer are separated. Also,
The liquid guide pipe 13 that guides the refrigerant is made of metal such as stainless steel, and an insulated flat ingot 14 is used to connect the liquid guide pipe 13 and the cooling duct 9. It is insulated from earth potential parts such as 1. Since the cooling duct 9 is wound within the windings 4 and 5, the potential of the cooling duct 9 is connected to approximately the same potential as the wound portion of the windings 4 and 5.

寿お、第1図では本発明と直接関係のない巻線4,5の
リード線や、引出しブッシングなどは省略しである。
In addition, in FIG. 1, the lead wires of the windings 4 and 5, the drawer bushing, etc., which are not directly related to the present invention, are omitted.

この冷却方式の変圧器は、冷却のだめの冷媒が流れる循
環回路と絶縁のだめの絶縁媒体とが分離(セパレート≧
されているので、この方式の箔巻巻線を備えた変圧器を
ここではセパレート式箔巻変圧器と呼ぶことにする。こ
の冷却方式の変圧器は、冷媒の蒸発潜熱を利用している
ことから、優れた冷却特性を期待でき大容量変圧器に有
望である。
In a transformer using this cooling method, the circulation circuit through which the refrigerant in the cooling reservoir flows and the insulating medium in the insulation reservoir are separated (separate ≧
Therefore, a transformer equipped with this type of foil-wound winding will be referred to here as a separate foil-wound transformer. This cooling type transformer utilizes the latent heat of vaporization of the refrigerant, so it is expected to have excellent cooling characteristics and is promising for large-capacity transformers.

背景技術の問題点 しかして、この変圧器においては、低圧および高圧巻線
4,5における漏れ磁束の関係から、巻線4,5の軸方
向(幅方向)両端部の電流密度が犬となり、このため巻
線両端部の発熱が局部的に大きくなるという問題がある
Problems with the Background Art However, in this transformer, due to the relationship between leakage magnetic flux in the low-voltage and high-voltage windings 4 and 5, the current density at both ends of the windings 4 and 5 in the axial direction (width direction) becomes a dog. Therefore, there is a problem in that heat generation at both ends of the winding becomes locally large.

しかして、箔巻巻線からなる低圧および高圧巻線4,5
における磁束分布を解析すると、第2図で示すようにな
る。すなわち、巻線4,5における巻線漏れ磁束の分布
は、漏れ磁束が巻線4と巻線5との間の絶縁バリヤ6を
設けた間隙を通り、巻線4,50両端部側の外方で広が
るものである。巻線4,50両端部においては、通常の
巻線で生じる(クリソングと呼ばれる)漏れ磁束の巻線
4,50半径方向への広がりが殆んど生ぜず、漏れ磁束
の半径方向成分がなく巻線4.5の金属シート70両端
部を流れる電流と鎖交することがない。これは次の理由
によ5− るものである。巻線4,5の金属シート7は軸方向(幅
方向)に大きな広がりをもち、金属シート70両端部に
軸方向および周方向に沿い渦電流を鮨1す大きな径路が
出来、漏れ磁束が金属シート7の両端部に対して半径方
向に広がり侵入しようとすると、金属シート7の両端部
に渦電流が生じる。そして、この渦電流によって反対方
向の漏れ磁束が生じ、この漏れ磁束が金属シート70両
端部に侵入する漏れ磁束の半径方向成分を杓消している
からである。このため、巻線4,5すなわち箔巻巻線は
軸方向の機械力が小さいという特長を有している。
Therefore, the low voltage and high voltage windings 4, 5 made of foil-wound windings
An analysis of the magnetic flux distribution at is shown in Figure 2. That is, the distribution of the winding leakage magnetic flux in the windings 4 and 5 is such that the leakage magnetic flux passes through the gap between the windings 4 and 5 provided with the insulating barrier 6, and the leakage magnetic flux passes through the gap between the windings 4 and 5, and is distributed to the outside at both ends of the windings 4 and 50. It is something that spreads in both directions. At both ends of the windings 4 and 50, there is almost no spread of leakage magnetic flux (called cressong) in the radial direction of the windings 4 and 50, which occurs in normal windings, and there is no radial component of leakage magnetic flux. There is no linkage with the current flowing through both ends of the metal sheet 70 of the wire 4.5. This is due to the following reason. The metal sheet 7 of the windings 4 and 5 has a large extent in the axial direction (width direction), and a large path is created at both ends of the metal sheet 70 that conducts eddy currents along the axial and circumferential directions, and leakage magnetic flux flows through the metal. When the metal sheet 7 attempts to spread out and invade both ends of the sheet 7 in the radial direction, eddy currents are generated at both ends of the metal sheet 7 . This is because this eddy current generates leakage magnetic flux in the opposite direction, and this leakage magnetic flux eliminates the radial component of the leakage magnetic flux that invades both ends of the metal sheet 70. For this reason, the windings 4 and 5, that is, the foil-wound windings have a feature that the mechanical force in the axial direction is small.

しかるに、この反面で、巻線4,5における金属シート
7の両端部に漏れ磁束による渦電流が生ずることは、金
属シート70両端部において通常の電流に渦電流が加わ
るために、通常の14!流のみが流れる金属シート7の
他の部分に対してIIi′、流密度が大きくなる。従っ
て金属シート7の軸方向の電流密度分布がシート両端部
に偏シネ均一となる問題がある。しかも、金属シート6
一 2の両端部の電流密度は、巻線4,5において巻線4と
巻線5との間隙から遠ざかる位置にある金属シート7の
もの程大きくなる。すなわち、金属シート70両端部の
電流密度は、巻線4゜5間の間隙から離れる程大きくな
る。例えば、低圧巻線4においては、巻線4,5間の間
隙から最も離れた位置にある最内周側の金属シート71
の両端部の電流密度が最も大きくなる。高圧巻線5にお
いては、巻線4,5間の間隙から最も離れだ位置にある
最外周側の金属シート720両端部の電V″11密度が
最も大きくなる。第3図は、高圧巻線5において最外周
側の金属シート72における巻線中央部から端部に至る
電流密度分布(A線にて示す。)と、巻線4,5間の間
隙に最も近い位置である最内周側の金属シート73にお
ける巻線中央部から端部に至る電流密度分布(B線にて
示す。)漬示したものである。なお、図中C線は金属シ
ート7における霜;光平均密度である。この線図によれ
ば、最外側の金属シート7では巻線高さの数多の範囲で
ある端部のごく限られた個所に、平均電流密度(C線に
て示す。)の7〜8倍のN N、が流れる。
However, on the other hand, eddy currents due to leakage magnetic flux are generated at both ends of the metal sheet 7 in the windings 4 and 5 because the eddy currents are added to the normal current at both ends of the metal sheet 70. IIi', the flow density is greater than in other parts of the metal sheet 7 where only the flow flows. Therefore, there is a problem in that the current density distribution in the axial direction of the metal sheet 7 is biased and uniform at both ends of the sheet. Moreover, metal sheet 6
The current density at both ends of the metal sheet 7 of the windings 4 and 5 increases as the distance from the gap between the windings 4 and 5 increases. That is, the current density at both ends of the metal sheet 70 increases as the distance from the gap between the windings increases. For example, in the low-voltage winding 4, the innermost metal sheet 71 is located at the farthest position from the gap between the windings 4 and 5.
The current density is highest at both ends. In the high-voltage winding 5, the electric voltage V''11 density is highest at both ends of the metal sheet 720 on the outermost circumferential side, which is located farthest from the gap between the windings 4 and 5. 5, the current density distribution from the center of the winding to the end of the metal sheet 72 on the outermost side (indicated by line A), and the current density distribution on the innermost side, which is the position closest to the gap between the windings 4 and 5. The current density distribution (indicated by line B) from the center of the winding to the end of the metal sheet 73 is shown. In the figure, line C is the average density of frost on the metal sheet 7. According to this diagram, in the outermost metal sheet 7, an average current density (indicated by line C) of 7 to 7 is applied to a very limited area at the end, which is a large range of winding heights. 8 times N N flows.

このように巻線4,5間の間隙から離れた位置にある金
属シート70両端部の電流密度が大でおるのは、漏れ磁
束の半径方向成分が巻線4゜5間の間隙から離れるに従
って大きくなっておシ、それに応じて渦電流が発生する
ためでおる。
The reason why the current density increases at both ends of the metal sheet 70 located away from the gap between the windings 4 and 5 is because the radial component of the leakage magnetic flux moves away from the gap between the windings 4 and 5. This is because eddy currents are generated in response to the increase in size.

従って、巻線4.5における金属シート70両端部に局
部的に大きな電流が流れることにより、この金属シート
7の両端部での発熱が著しく大きくなり局部的な過熱を
生じる。このため、箔巻巻線を備えた変圧器を大容量変
圧器に適用する上で、前記の問題が大きな妨げとなって
いる。
Therefore, as a large current locally flows through both ends of the metal sheet 70 in the winding 4.5, heat generation at both ends of the metal sheet 7 becomes significantly large, resulting in local overheating. Therefore, the above-mentioned problem is a major hindrance in applying a transformer having a foil-wound winding to a large-capacity transformer.

発明の目的 本発明は箔巻巻線の金属シートの両端部における巻線漏
れ磁、束による!jL流密度の増大を抑制することによ
シ過熱を阻止し、大容量変圧器に有効に適用できるセパ
レート方式の変圧器を提供するものである。
Purpose of the Invention The present invention is based on magnetic flux leakage at both ends of a metal sheet of a foil-wound wire! The object of the present invention is to provide a separate type transformer that prevents overheating by suppressing an increase in JL current density and can be effectively applied to large capacity transformers.

発明の概要 本発明の変圧器は、箔巻巻線に内蔵する冷却ダクトの少
なくとも表面部を強磁性体で形成することにより、漏れ
磁束を冷却ダクトの強磁性体部分で吸収し強制的に巻線
軸方向に向けさせ、金属シートの両端部における漏れ磁
束に対する渦電流の発生を抑制しようとするものである
Summary of the Invention The transformer of the present invention has at least the surface portion of the cooling duct built in the foil-wound winding made of a ferromagnetic material, thereby absorbing leakage magnetic flux in the ferromagnetic portion of the cooling duct and forcibly winding it. This is intended to suppress the generation of eddy currents due to leakage magnetic flux at both ends of the metal sheet by oriented in the axial direction of the metal sheet.

発明の実施例 本発明の変圧器は、基本的な構造としては第1図で示す
ように絶縁媒体を封入したタンク1の内部に設けた鉄心
2に低圧巻線4と高圧巻線5が巻装され、これら各巻線
4.5に冷却ダクト9が内蔵され、これら冷却ダクト9
に、冷媒を流す冷媒循環回路が接続された構造をなして
いる。
Embodiments of the Invention The basic structure of the transformer of the present invention, as shown in FIG. A cooling duct 9 is built into each of these windings 4.5, and these cooling ducts 9
A refrigerant circulation circuit for flowing refrigerant is connected to the refrigerant.

第4図は本発明の変圧器の一実施例における巻線部分を
拡大して示している。低圧巻線4と高圧巻線5は前述し
たように金属シート7と絶縁シート8を重ねて巻いた箔
巻巻線で構成され、低圧巻線4と鉄心2との間には絶縁
筒3が、巻9− 線4,5の間隙には絶縁バリヤ6が設けられている。冷
却ダクト9は、各巻線4,5内部において所定間隔を存
して同心円状に配置されている。1組の冷却ダクト9は
電気的に1ターンを形成しない円筒状をなす構成をなし
、例えば円周方向に複数に分割されて、薄い平形ダクト
を彎曲形成してなる円弧状をなす複数のダクトを間隔を
存1〜て円筒状に組合せたものである。あるいは、1組
の冷却ダクト9は全体が薄い平形ダクトをギャップを残
して円筒状に彎曲形成したものでも良い。なお、冷却ダ
クト9は巻線4゜5の金属シート7と絶縁シート8と一
諸に巻付けられ、金属シート7は冷却ダクト9の各ダク
トの間隙を通り内周側から外周側に導ひかれている。
FIG. 4 shows an enlarged view of a winding portion in an embodiment of the transformer of the present invention. As described above, the low-voltage winding 4 and the high-voltage winding 5 are composed of foil-wound windings in which the metal sheet 7 and the insulating sheet 8 are wrapped in layers, and the insulating cylinder 3 is placed between the low-voltage winding 4 and the iron core 2. , winding 9 - An insulating barrier 6 is provided in the gap between the wires 4, 5. The cooling ducts 9 are arranged concentrically within each of the windings 4 and 5 at a predetermined interval. One set of cooling ducts 9 has a cylindrical configuration that does not electrically form one turn, for example, a plurality of arc-shaped ducts that are divided into multiple parts in the circumferential direction and formed by curved thin flat ducts. are combined into a cylindrical shape with an interval of 1~. Alternatively, the set of cooling ducts 9 may be formed by forming entirely thin flat ducts into a cylindrical shape with a gap left. The cooling duct 9 is wound with a metal sheet 7 and an insulating sheet 8 with a winding angle of 4°5, and the metal sheet 7 is guided from the inner circumferential side to the outer circumferential side through the gaps between each duct of the cooling duct 9. ing.

この実施例において、冷却ダクト9はこれを形成する金
属板として強磁性体、例えばけい素鋼板15により形成
されている。すなわち、2枚のし1−い素鋼板15.1
5を上下方向に立てて組合せて形成している。具体的に
は、各けい素−10= 鋼板15.15を、冷却ダクト9における薄い平形をな
す冷媒通路9aおよび冷媒通路9aの上下端部に連続す
る・ぞイブ状の冷媒案内部9bの片側の壁部を形作るよ
うにプレスによシ成形加工を施し、これらけい素鋼板1
5.15を例えば間隔片16を挾んで対向して組合せ、
各けい素鋼板15.15の周縁部を溶接により封着して
ダクトを製作する。図中9cは絶縁パイプ14との接続
口である。なお、けい素鋼板75゜15の厚さは1閣、
けい素鋼板16.16相互の間隔は1間柱度である。ま
だ、けい素鋼板は一般的に硬度が高いが、無方向性で比
較的グレードの低いけい素鋼板を用いれは、硬度もそれ
ほど高くなく加工も容易である。そして、このダクトを
用いて複数個で1つの円筒状にあるいは一体で円筒状の
冷却ダクト9を構成する。
In this embodiment, the cooling duct 9 is formed of a ferromagnetic material, such as a silicon steel plate 15, as a metal plate. That is, two thin steel plates 15.1
5 are assembled vertically. Specifically, each silicon-10 = steel plate 15.15 is attached to one side of the thin flat refrigerant passage 9a in the cooling duct 9 and the rib-shaped refrigerant guide portion 9b that is continuous with the upper and lower ends of the refrigerant passage 9a. These silicon steel sheets 1 are press-formed to form the walls of
5.15, for example, sandwiching the spacer pieces 16 and combining them facing each other,
The periphery of each silicon steel plate 15.15 is sealed by welding to produce a duct. In the figure, 9c is a connection port with the insulating pipe 14. In addition, the thickness of silicon steel plate 75°15 is 1 inch,
The spacing between the silicon steel plates 16 and 16 is 1 stud degree. Although silicon steel sheets generally have high hardness, using non-oriented and relatively low grade silicon steel sheets does not have such high hardness and is easy to process. Using this duct, a plurality of cooling ducts 9 are formed into one cylindrical shape, or a cylindrical cooling duct 9 is formed integrally.

なお、けい素鋼板は一般に鉄心などに用いられ高い透磁
率を有するものであり、無方向性を有するものでも1.
5テスラの領域で透磁率が2000以上もある。
In addition, silicon steel sheets are generally used for iron cores and have high magnetic permeability, and even those with non-directionality have 1.
It has a magnetic permeability of over 2000 in the 5 Tesla region.

しかして、このように構成された冷却ダクト9を内蔵し
た低圧巻線4および高圧巻線5においては、巻線内の漏
れ磁束が冷却ダクト9を形成するけい素鋼板15.15
に吸収され、とのけい素鋼板15.15の部分で漏れ磁
束が冷却ダクト9の軸方向(巻線4,5の軸方向)に強
制的に向けられ冷却ダクト9の軸方向の両端部まで導ひ
かれる。すなわち、けい素鋼板15゜15は巻線の金属
シート及び絶縁シートの部分の透磁率1.0に比べて格
段に高い透磁率をもつのでそれだけ磁束を通しやすく、
漏れ磁束が巻線4,50両端部において半径方向に広が
ろうとすると、巻線4.5の途中に内蔵されている冷却
ダクト9のけい素鋼板15.15が半径方向へ向う磁束
を吸収してこれを強制的に軸方向に導びいて冷却ダクト
9の端部から巻線4.5の外方へ放出す・る′。このた
め、巻線4,5の金属シート7の両端部を横切る漏れ磁
束の(半径方向成分)の量は大幅に減少し、金属シート
7の両端部にはここを横切る漏れ磁束による渦電流の発
生が殆んどなくなる。つまり、巻線4゜5の両端部にお
ける漏れ磁束の半径方向への広が9は、金属シート7の
両端部に渦電流を発生させることなく、冷却ダクト9の
けい素鋼板15によって阻止することができる。従って
、金属ンート70両端部は渦′fJL流が殆んど流れず
通常の′電流のみが流れる場合に近い状態となシミ流密
度が大幅に低減することになシ、金属シート7の両端部
と金属シート7の他の部分との電流密度の格差を大幅に
小さくして、金属シート7の軸方向における電流密度分
布の不均一を大幅に減少できる。また、各巻線4.5に
おいて巻線4と巻線50間の間隙から順次離れていく位
置にある金属シート7の両端部の電流密度が増大してい
くことも、大幅に緩和できる。これは次の塩山によるも
のである。すなわち、冷却ダクト9は高低圧巻線4,5
内部に所定間隔をもって配置されているので、冷却ダク
ト9より巻線間隙に近い部分の巻線導体によって発生し
た漏れ磁束の半径方向成分は、冷却ダクト913− を貫通できず、冷却ダクト9よシ巻線間隔から離れた部
分の巻線導体に影響を及ぼさなくなり、巻線の内側も外
側も半径方向成分が同程度となるだめである。
Therefore, in the low-voltage winding 4 and the high-voltage winding 5 that incorporate the cooling duct 9 configured in this way, the leakage magnetic flux within the windings is caused by the silicon steel plate 15, 15 forming the cooling duct 9.
The leakage magnetic flux is forcibly directed in the axial direction of the cooling duct 9 (in the axial direction of the windings 4 and 5) at the silicon steel plate 15 and 15, and reaches both axial ends of the cooling duct 9. be guided. In other words, the silicon steel plate 15°15 has a much higher magnetic permeability than the 1.0 magnetic permeability of the metal sheet and insulating sheet of the winding, so it is easier for magnetic flux to pass through it.
When the leakage magnetic flux tries to spread in the radial direction at both ends of the windings 4 and 50, the silicon steel plates 15 and 15 of the cooling duct 9 built in the middle of the windings 4 and 5 absorb the magnetic flux heading in the radial direction. This is forcibly guided in the axial direction and discharged from the end of the cooling duct 9 to the outside of the winding 4.5. For this reason, the amount of leakage magnetic flux (radial component) that crosses both ends of the metal sheet 7 of the windings 4 and 5 is significantly reduced, and eddy currents due to the leakage magnetic flux that cross the metal sheet 7 are generated at both ends of the metal sheet 7. Occurrence almost disappears. In other words, the spread 9 of leakage magnetic flux in the radial direction at both ends of the winding 4° 5 can be prevented by the silicon steel plate 15 of the cooling duct 9 without generating eddy currents at both ends of the metal sheet 7. Can be done. Therefore, almost no vortex current flows at both ends of the metal sheet 70, and the state is similar to that in which only a normal current flows, and the density of the stain flow is significantly reduced. The difference in current density between the current density and other parts of the metal sheet 7 can be significantly reduced, and non-uniformity of current density distribution in the axial direction of the metal sheet 7 can be significantly reduced. Furthermore, the increase in current density at both ends of the metal sheet 7 at positions successively away from the gap between the windings 4 and 50 in each winding 4.5 can be significantly alleviated. This is due to the following Shioyama. That is, the cooling duct 9 has high and low voltage windings 4 and 5.
Since they are arranged at a predetermined interval inside the cooling duct 9, the radial component of the leakage magnetic flux generated by the winding conductor in the portion closer to the winding gap than the cooling duct 9 cannot penetrate the cooling duct 913-, and is transferred from the cooling duct 9 to the winding conductor. This will not affect the winding conductor at a portion away from the winding spacing, and the radial component will be the same on both the inside and outside of the winding.

このように巻線4,5の金属シート7の両端部に渦t 
R,が発生しないと、金属シート70両端部におりる温
度上昇がなくなシ局部的な過熱を防止できる。
In this way, a vortex t is formed at both ends of the metal sheet 7 of the windings 4 and 5.
If R, does not occur, there will be no temperature rise at both ends of the metal sheet 70, and localized overheating can be prevented.

第5図は本実施例における高圧巻線5の最外周側に位置
する金属シート72の電流密度分布(A′線で示す)と
、最内周側に位置する金属シート73の電流密度分布(
B/線で示す)を示す線図である。なお、冷却ダクト9
は透磁率μ2000、浮さ1+a+の2枚のけい素鋼板
を1簡の間隔で組合せて製作したものである。これによ
れば金属シー) 72 + 7aの端部の最大電流密度
が、第3図で示される従来の場合に比してV2から1/
3に低減されていることが判る。
FIG. 5 shows the current density distribution (indicated by line A') of the metal sheet 72 located on the outermost side of the high voltage winding 5 in this embodiment, and the current density distribution (indicated by line A') of the metal sheet 73 located on the innermost side of the high voltage winding 5.
FIG. In addition, the cooling duct 9
is manufactured by combining two silicon steel plates with a magnetic permeability μ2000 and a buoyancy 1+a+ with an interval of 1 strip. According to this, the maximum current density at the end of the metal sheet (72+7a) is 1/1 from V2 compared to the conventional case shown in FIG.
It can be seen that the number has been reduced to 3.

第6図は冷却ダクト9の他の実施例を示すものである。FIG. 6 shows another embodiment of the cooling duct 9. In FIG.

この実施例における冷却ダクト9は、14− ステンレス鋼板などの非磁性体からなる2枚の金属板1
7.17を間隔片16を挾んで組合せるとともに、金属
板17.17の周縁部を溶接によシ封着してダクトを形
成し、さらに各金属板17.17の表面に強磁性鉄粉な
どの強磁性体材料を接着剤とともに吹着けて被着させ、
金属板17.17の表面層として強磁性体層18を形成
したものである。そし2て、この冷却ダクト9を各巻線
4,5に内蔵させることにより、前述した実施例の場合
と同様な効果が得られる。
The cooling duct 9 in this embodiment consists of 14- two metal plates 1 made of non-magnetic material such as stainless steel plates;
7.17 are combined with the spacer pieces 16 in between, and the peripheral edges of the metal plates 17.17 are sealed by welding to form a duct, and the surfaces of each metal plate 17.17 are coated with ferromagnetic iron powder. A ferromagnetic material such as
A ferromagnetic layer 18 is formed as a surface layer of a metal plate 17.17. 2. By incorporating this cooling duct 9 into each of the windings 4 and 5, the same effects as in the embodiment described above can be obtained.

この実施例においては、冷却ダクト9全体を強。In this embodiment, the entire cooling duct 9 is heated.

磁性体金属板で形成した場合に比して、同じ透磁率を有
する材料で同じ効果を得ようとするためには、冷却ダク
ト9全体の厚さが大きくなるが、冷却ダクト9の本来の
機能である冷媒を外部に漏洩させないで送るという目的
のために、加工し易い最適な性質を有jる金属板17゜
17例えばステンレス鋼板を用いて冷却ダクト9を製作
した上で、金属板17.17の表面に強磁性体層18を
形成できる利点がある。
Compared to the case where the cooling duct 9 is made of a magnetic metal plate, the thickness of the cooling duct 9 as a whole becomes larger in order to obtain the same effect using a material with the same magnetic permeability, but the original function of the cooling duct 9 is In order to send the refrigerant without leaking it to the outside, the cooling duct 9 is manufactured using a metal plate 17.17 that has the optimum properties of being easy to process, such as a stainless steel plate, and then the metal plate 17. There is an advantage that the ferromagnetic layer 18 can be formed on the surface of the magnetic layer 17.

しかして、冷却ダクト9の壁部を形成する金属板には、
過大な渦電流が流れないように比較的小さな電気伝導度
と有し、且つ半径方向機械力に耐え得る充分な剛性が要
求される。このた   ゛め、本発明においては、前者
の実施例のように冷却ダクト9全体を強磁性体金属板で
形成する場合、および後者の実施例のように非磁性体金
属板の表面に強磁性体部を設ける場合のいずれにを)っ
ても、前記の性質を有する金属板を用いる。また、本発
明の冷却ダクトは、金属板全体を強磁性体とする(前者
の実施例)場合に限らず、少なくとも金属板の表面部が
強磁体とするものであれば良い。金属板において強磁性
体で形成する領域は全面にわたるものとする。強磁性体
の金属板としてはけい素鋼帯や磁性鋼帯などの電、気鉄
板が有り、また金属板の表面部に形成する強磁性体層は
鉄粉の他にアモリファス磁性薄膜を金属板に巻付けるな
どの方法で形成できる。
Therefore, the metal plate forming the wall of the cooling duct 9 has
It is required to have relatively low electrical conductivity so that excessive eddy currents do not flow, and sufficient rigidity to withstand radial mechanical force. Therefore, in the present invention, when the entire cooling duct 9 is formed of a ferromagnetic metal plate as in the former embodiment, and when the cooling duct 9 is formed entirely of a ferromagnetic metal plate as in the latter embodiment, a ferromagnetic metal plate is formed on the surface of the non-magnetic metal plate as in the latter embodiment. In either case where the body is provided, a metal plate having the above-mentioned properties is used. Furthermore, the cooling duct of the present invention is not limited to the case in which the entire metal plate is made of ferromagnetic material (the former embodiment), but may be any other as long as at least the surface portion of the metal plate is made of ferromagnetic material. It is assumed that the region formed of the ferromagnetic material in the metal plate covers the entire surface. As ferromagnetic metal plates, there are electric and magnetic iron plates such as silicon steel strips and magnetic steel strips, and the ferromagnetic layer formed on the surface of the metal plate is made of amorphous magnetic thin film in addition to iron powder. It can be formed by wrapping it around.

発明の効果 本発明の変圧器は、箔巻巻線に内蔵する冷却ダクトの金
属板に強磁性をもたせることにょυ、巻線の金叔シート
の両端部における渦電流の発生を抑制して電流密度を低
減させ、金属シートの両端部における過熱の防止あるい
は渦電流損を図ることができる。従って、軸方向機械力
が小さいという箔巻巻線の特長をそのまま活がして、箔
巻巻線の最大の問題である渦電流問題を解決でき、以っ
て大容量変圧器にも効果的に適用できる。
Effects of the Invention The transformer of the present invention has ferromagnetism in the metal plate of the cooling duct built into the foil-wound winding, thereby suppressing the generation of eddy currents at both ends of the metal sheet of the winding, thereby reducing the current flow. The density can be reduced to prevent overheating or eddy current losses at both ends of the metal sheet. Therefore, it is possible to take advantage of the feature of foil-wound windings, which is that the axial mechanical force is small, and solve the eddy current problem, which is the biggest problem with foil-wound windings, making it effective for large-capacity transformers. Applicable to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセ・ぐレート方式の箔巻変圧器の基本的構成を
示す縦断側面図、第2図は従来の箔巻巻線における漏れ
磁束分布を示す説明図、第3図は従来の箔巻巻線の金属
シートにおける電流密度分布を示す線図、第4図は本発
明の変圧器における箔巻巻線部分の一実施例を示す断面
図、第5図は同実施例における箔巻巻線の金属シートの
電流密度分布を示す線図、第6図は冷却ダクトの他の実
施例を示す断面図である。 17− 1・・・タンク、2・・・鉄心、4・・・低圧巻線、5
・・・高圧巻線、7・・・金属シート、8・・・絶縁シ
ート、9・・・冷却ダクト、15・・・けい累鋼板、1
7・・・非磁性体金属板、18・・・強磁性体層。 出願人代理人  弁理士 鈴 江 武 彦1Q− 第3図 第4図
Fig. 1 is a longitudinal side view showing the basic configuration of a foil-wound transformer of the separator type, Fig. 2 is an explanatory diagram showing the leakage flux distribution in a conventional foil-wound winding, and Fig. 3 is a conventional foil-wound transformer. A line diagram showing the current density distribution in the metal sheet of the winding, FIG. 4 is a sectional view showing an embodiment of the foil-wound winding portion of the transformer of the present invention, and FIG. 5 is the foil-wound winding in the same embodiment. A diagram showing the current density distribution of the wire metal sheet, and FIG. 6 is a sectional view showing another embodiment of the cooling duct. 17- 1...tank, 2...iron core, 4...low voltage winding, 5
... High voltage winding, 7... Metal sheet, 8... Insulating sheet, 9... Cooling duct, 15... Laminated steel plate, 1
7... Non-magnetic metal plate, 18... Ferromagnetic layer. Applicant's agent Patent attorney Takehiko Suzue 1Q- Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 金属シートと絶縁シートを重ねて巻いた箔巻巻線を備え
、この巻線内に金属板からなる冷却ダクトを内蔵したも
のにおいて、前記冷却ダクトを形成する金属板は、少な
くとも表面部が強磁性体で形成されていることを特徴と
する変圧器0
A device comprising a foil-wound winding formed by overlapping a metal sheet and an insulating sheet, and a cooling duct made of a metal plate built into the winding, wherein at least a surface portion of the metal plate forming the cooling duct is ferromagnetic. Transformer 0 characterized by being formed of a body
JP20831181A 1981-12-23 1981-12-23 Transformer Pending JPS58108726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20831181A JPS58108726A (en) 1981-12-23 1981-12-23 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20831181A JPS58108726A (en) 1981-12-23 1981-12-23 Transformer

Publications (1)

Publication Number Publication Date
JPS58108726A true JPS58108726A (en) 1983-06-28

Family

ID=16554151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20831181A Pending JPS58108726A (en) 1981-12-23 1981-12-23 Transformer

Country Status (1)

Country Link
JP (1) JPS58108726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594317A (en) * 1994-12-02 1997-01-14 Delco Electronics Corp. Inductive charger field shaping using nonmagnetic metallic conductors
RU168870U1 (en) * 2016-07-29 2017-02-22 Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") Three-phase multi-winding transformer with liquid cooling system
CN111128530A (en) * 2019-12-24 2020-05-08 保定天威保变电气股份有限公司 Method for setting axial heat dissipation oil duct of transformer winding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594317A (en) * 1994-12-02 1997-01-14 Delco Electronics Corp. Inductive charger field shaping using nonmagnetic metallic conductors
RU168870U1 (en) * 2016-07-29 2017-02-22 Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") Three-phase multi-winding transformer with liquid cooling system
CN111128530A (en) * 2019-12-24 2020-05-08 保定天威保变电气股份有限公司 Method for setting axial heat dissipation oil duct of transformer winding

Similar Documents

Publication Publication Date Title
JPS58108726A (en) Transformer
JPS63289804A (en) Foil wound transformer
JPS59150411A (en) Foil winding transformer
JPS5933810A (en) Foil-wound transformer
JPS59121810A (en) Foil-wound transformer
JPH04179209A (en) Through type current transformer
JPH0556842B2 (en)
CN115691983A (en) Magnetic leakage shielding device and method for iron core
JPH0218912A (en) Foil wound transformer
JPS60241204A (en) Foil-wound transformer
JPS6094712A (en) Manufacture of cooling duct of foil-wound transformer
JPS58182212A (en) Transformer
JPS6072205A (en) Foil-wound transformer
JPS6218017Y2 (en)
JPS643042B2 (en)
JPS5879710A (en) Foil wound transformer
JPH02123712A (en) Foil-wound transformer
JPH02144903A (en) Foil-wound transformer
JPS61194804A (en) Foil-wound transformer
JPS59117206A (en) Foil winding transformer
JPS5877210A (en) Transformer
JPH041489B2 (en)
JPS59222912A (en) Foil wound transformer
JPS6115310A (en) Foil wound transformer
JPS61105816A (en) Foil wound transformer