JPS58182212A - Transformer - Google Patents
TransformerInfo
- Publication number
- JPS58182212A JPS58182212A JP6579482A JP6579482A JPS58182212A JP S58182212 A JPS58182212 A JP S58182212A JP 6579482 A JP6579482 A JP 6579482A JP 6579482 A JP6579482 A JP 6579482A JP S58182212 A JPS58182212 A JP S58182212A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- metal sheet
- windings
- conductivity
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2847—Sheets; Strips
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
- Regulation Of General Use Transformers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は金属シートと絶縁シートを重ねて巻いた箔巻巻
線を備えた変圧器に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a transformer equipped with a foil winding formed by overlappingly wound a metal sheet and an insulating sheet.
箔巻巻線を備えた変圧器は、占積率が良いことから小型
、軽量化を実現できる特長がある九めに、数kV、数1
00 kVA程度の比較的電圧の低い小容量の変圧器で
はすでに実用化され、かなシ市場に出回っている。最近
に至シこの種変圧器は、その優れた長所に鑑みより高電
圧、大容量の例えば275 kV・300 MVA変圧
器にも適用拡大が研究されている。Transformers equipped with foil-wound windings have a good space factor, making them compact and lightweight.
Small capacity transformers with a relatively low voltage of about 0.00 kVA have already been put into practical use and are on the Kanashi market. Recently, in view of the excellent advantages of this type of transformer, research has been conducted to expand its application to higher voltage, larger capacity transformers, such as 275 kV/300 MVA transformers.
との箔巻巻線を備えた変圧器の基本的構成は、第1図で
示す通シである。すなわち、絶縁油あるいは8F6ff
スなどの絶縁ガスを封入したタンクlの内部に鉄心2が
設けられ、この鉄心2の脚部の外側に絶縁筒3を介して
内側巻線である低圧巻1m!4が巻装されるとともに、
低圧巻線4の外側に絶縁バリヤσを介して外側巻線であ
る高圧巻線5が巻装されている。これら各巻線4゜5は
アルミニウムシートなどの金属シート2と樹脂フィルム
などの絶縁シート8とを重ねて巻いてなる箔巻巻線で構
成されている。なお、図中9は静電シールドである。The basic configuration of a transformer with foil-wound windings is as shown in FIG. That is, insulating oil or 8F6ff
An iron core 2 is installed inside a tank l filled with an insulating gas such as gas, and a low pressure winding of 1 m, which is an inner winding, is placed on the outside of the leg of this iron core 2 via an insulating cylinder 3! 4 is wrapped,
A high voltage winding 5, which is an outer winding, is wound on the outside of the low voltage winding 4 via an insulating barrier σ. Each of these windings 4.5 is constituted by a foil-wound winding formed by overlapping and winding a metal sheet 2 such as an aluminum sheet and an insulating sheet 8 such as a resin film. Note that 9 in the figure is an electrostatic shield.
この箔巻変圧器においては、巻線漏れ磁束の関係から、
低圧および高圧巻線4,5における金属シート7の幅方
向両端部(巻線4,5の軸方向両端部)の電流密度が大
となり、金属シート7の両端部の発熱が過大となる問題
力Iある。In this foil-wound transformer, due to the relationship of winding leakage flux,
The current density at both ends of the metal sheet 7 in the width direction (both ends of the windings 4 and 5 in the axial direction) in the low-voltage and high-voltage windings 4 and 5 becomes large, resulting in excessive heat generation at both ends of the metal sheet 7. I have one.
すなわち、金属シート7の両端部においては、巻線4.
5の間の間隙を通る漏れ磁束における巻線半径方向に広
がろうとする成分により渦電流力;生じ、この渦電流に
より漏れ磁束の半径方向成分を打消すように磁束が生じ
る。このため、金属シート10両端部は通常の電流に加
えて渦電流力I流れるので、通常の電流だけが流れる金
属シート7の他の部分に比して電流密度が大となり、金
属シート7全体として電流密度分布が不均一となる。That is, at both ends of the metal sheet 7, the windings 4.
An eddy current force is generated by a component of the leakage magnetic flux passing through the gap between the coils 5 and 5 that tends to spread in the radial direction of the winding, and this eddy current generates a magnetic flux that cancels the radial component of the leakage magnetic flux. Therefore, in addition to the normal current, eddy current force I flows through both ends of the metal sheet 10, so the current density becomes higher than in other parts of the metal sheet 7 where only the normal current flows, and the metal sheet 7 as a whole Current density distribution becomes non-uniform.
そして、金属シート7の両端部では電流密度が大となる
ことにより、その電流の損失が大きく発熱量が大幅に増
大して局部的な過熱となる。Since the current density is high at both ends of the metal sheet 7, the current loss is large and the amount of heat generated is significantly increased, resulting in local overheating.
一方、金属シート7の両端部における電流は、金属シー
ト1が巻線4と巻線5との間隙から離れた位置にあるも
の程大きくなる傾向がある。On the other hand, the current at both ends of the metal sheet 7 tends to increase as the metal sheet 1 is located farther away from the gap between the windings 4 and 5.
つまり、巻線4.5の間隙から最も離れた位置である低
圧巻線4の最内周側に位置する金属シート11と高圧巻
@5の最外周側に位置する金属シート7鵞の夫々両端部
の電流密度が最も大きくなる。これは漏れ磁束の半径方
向成分が巻線4.5の間隙から離れるにしたがって大き
くなり、これに応じて金属シート7の端部に渦電流が流
れるからである。That is, both ends of the metal sheet 11 located on the innermost side of the low voltage winding 4, which is the farthest position from the gap between the windings 4.5, and the metal sheet 7 located on the outermost side of the high voltage winding @5. The current density is highest at This is because the radial component of the leakage magnetic flux increases as it moves away from the gap between the windings 4.5, and eddy currents flow at the ends of the metal sheet 7 accordingly.
第2図は一例として外側巻線である高圧巻線5において
、最外周側の金属シー)71 と、巻線4.5間の間隙
に最も近い位置である最内周側の金属シート13におけ
る幅方向中央と端部の間の電流分布を夫々示している。As an example, FIG. 2 shows the outermost metal sheet 71 of the high voltage winding 5, which is the outer winding, and the innermost metal sheet 13, which is the position closest to the gap between the windings 4.5. The current distributions between the center and the ends in the width direction are shown, respectively.
なお、図中A線は最外周側の金属シート11の、B線は
最内周側の金属シー)7sの夫々電流分布を示している
。tた第3図は外側巻線である高圧巻線5において、巻
線の半径方向距離に対する巻線端部の電流分布を示して
いる。第2図及び第3図の線図によれば、内周側より外
周側の方が電流が大きく、シかも最外周側の金属シート
7鵞の端部の電流は、最内周側の金属シー)7sの端部
の電流よりはるかに大きいことが判る。Note that in the figure, the A line shows the current distribution of the outermost metal sheet 11, and the B line shows the current distribution of the innermost metal sheet 7s. FIG. 3 shows the current distribution at the winding end with respect to the radial distance of the winding in the high voltage winding 5, which is the outer winding. According to the diagrams in Figs. 2 and 3, the current is larger on the outer circumferential side than on the inner circumferential side, and the current at the edge of the outermost metal sheet 7 is higher than that of the innermost metal sheet. It can be seen that the current at the end of C) 7s is much larger.
従って、このように外周側の金属シートrの端部の電流
密度が大きいと、損失が大となり、局部過熱が生じる。Therefore, when the current density at the end of the metal sheet r on the outer peripheral side is large as described above, the loss becomes large and local overheating occurs.
本発明は箔巻巻線における金属シートの端部での電流の
集中を低減し、これにより局部過熱を抑制する変圧器を
提供するものである。The present invention provides a transformer that reduces current concentration at the ends of metal sheets in foil-wound windings, thereby suppressing local overheating.
本発明の変圧器は、箔巻巻線からなる内側および外側巻
線を備えたものにおいて、両巻線の間隙から離れ九位置
にある内側巻線の内周側部と、外側巻線の外周側部の導
電率をそれぞれ他の部分より大きくすることにより、漏
れ磁束を巻線間隙から離れた部分で巻線軸方向に向ける
ようにして、金属シート端部における電流集中、特に巻
線間隙から離れた位置にある金属シート端部の、電流の
集中を抑制するものである。The transformer of the present invention is equipped with inner and outer windings made of foil-wound wires, and the inner circumferential side of the inner winding located nine positions away from the gap between both windings, and the outer circumference of the outer winding. By making the conductivity of each side section larger than the other sections, the leakage flux is directed toward the winding axis in the section away from the winding gap, thereby reducing current concentration at the edges of the metal sheet, especially away from the winding gap. This suppresses the concentration of current at the edge of the metal sheet located at a certain position.
本発明の変圧器の一実施例を第4図について説明する。 An embodiment of the transformer of the present invention will be described with reference to FIG.
絶縁媒体を封入したタンク1の内部に設けた鉄心2には
絶縁筒3が嵌装され、この絶縁筒3には内側巻線である
低圧巻線4が巻装され、この低圧巻線4の外側には絶縁
・々リヤ6を介して外側巻線である高圧巻線5が巻装さ
れている。これら低圧および高圧巻線4,5は金属シー
ト1と絶縁シート8とを重ねて巻回してなる箔巻巻線で
構成される。なお、両巻線4゜5の幅は夫々全体にわた
って一定である。また、低圧巻線4は、巻線4,5の間
隙から離れた位置である内周側部4凰にある金属シート
1の導電率を、巻#4.5の間隙に近い位置である外周
側部43にある金属シート7の導電率より大きく設定し
である。この内周側部゛41と外周側部4.の金属シー
ト1の導電率の差は約1.5×10−80・mである。An insulating tube 3 is fitted into an iron core 2 provided inside a tank 1 filled with an insulating medium, and a low voltage winding 4, which is an inner winding, is wound around this insulating tube 3. A high-voltage winding 5, which is an outer winding, is wound on the outside with an insulating layer 6 interposed therebetween. These low-voltage and high-voltage windings 4 and 5 are constituted by foil-wound windings formed by overlapping and winding a metal sheet 1 and an insulating sheet 8. Note that the widths of both windings 4.5 are constant throughout. In addition, the low voltage winding 4 changes the electrical conductivity of the metal sheet 1 at the inner circumferential side 4, which is a position away from the gap between the windings 4 and 5, to the outer circumference, which is a position close to the gap of winding #4.5. The conductivity is set to be higher than the conductivity of the metal sheet 7 on the side portion 43. This inner peripheral side portion 41 and outer peripheral side portion 4. The difference in conductivity between the metal sheets 1 is approximately 1.5×10 −80 m.
内周側部41と外周側部4鵞の半纏半径方向の長さの割
合は約1=3である。高圧巻線5は、巻線4,5の間隙
から艙れ九位置である外周側部5意にある金属シート1
の導電率を、巻線4.5の間隙に近い位置である内周側
部51にある金属シート1の導電率より大きく設定しで
ある。外周側部5mと内周側部5五の金属シート7の導
電率の差は約1.5×10−80・mであシ、半径方向
の長さの割合はl:3である。そこで、低圧巻線4の内
周側部4Nと高圧巻Is5の外周側部53に巻回される
金属シート7は導電率を大きくするために例えば銅(7
5℃におゆる導電率2. l X 1゜0−8Ω・I!
l)により形成し、低圧巻線4の外周側部41と高圧巻
線5の内周側部5!に巻回される金属シート7は導電率
を小さくするためK例えばアルミニウム(75℃におけ
る導電率3.7X10−’Ω・m)で形成しである。The ratio of the lengths of the inner circumferential side portion 41 and the outer circumferential side portion 4 in the radial direction is approximately 1=3. The high-voltage winding 5 is connected to a metal sheet 1 located on the outer circumferential side 5, which is located at the 9th position from the gap between the windings 4 and 5.
The conductivity of the metal sheet 1 is set to be larger than the conductivity of the metal sheet 1 at the inner circumferential side 51, which is a position close to the gap between the windings 4.5. The difference in electrical conductivity between the metal sheets 7 on the outer peripheral side 5m and the inner peripheral side 55 is about 1.5 x 10-80 m, and the length ratio in the radial direction is 1:3. Therefore, the metal sheet 7 wound around the inner peripheral side 4N of the low voltage winding 4 and the outer peripheral side 53 of the high voltage winding Is5 is made of, for example, copper (7
Conductivity at 5°C 2. l X 1゜0-8Ω・I!
l), the outer peripheral side 41 of the low voltage winding 4 and the inner peripheral side 5 of the high voltage winding 5! The metal sheet 7 wound around the metal sheet 7 is made of K, for example, aluminum (electrical conductivity at 75 DEG C.: 3.7 x 10-' Ω·m) in order to reduce the electrical conductivity.
しかして、このように構成された低圧巻線4および高圧
巻線5において、夫々の金属シート7に電流を流すと、
巻線4.5からの漏れ磁束は巻線4.5の間隙を通り巻
線4,5の端部に外周側部43から内周側部41にかけ
て広がり51にかけて広がろうとする。ここで、漏れ磁
束の半径方向成分が金属シートに侵入すると渦電流が生
じるが、低圧巻4I4の内周側部41 と高圧巻線5の
外周側部5鵞における金属シート7は導電率が大である
丸めに、漏れ磁束の半径方向成分による渦電流が流れや
すい。従って、渦電流によシ発生する、巻線漏れ磁束と
反対方向の磁束が大きくなり、この大きな磁束によって
巻線漏れ磁束の半径方向成分が巻線軸方向に向けられる
ので、低圧巻線4の内周側部4象及び高圧巻線5の外周
側部531に通過する半径方向や漏れ磁束は少なくなる
。このため、低圧巻線4の内周側部41及び高圧巻線5
の外周側部5sにおける金属シート7の端部を横切る漏
れ磁束の半径方向成分の量は大幅に減少し、金属シート
1の端部における電流密度が減少して、金属シート7の
中央部の電流密度と同じ程度の大きさとなシ、金属シー
ト7全体の電流密度分布が略均−となる。また、金属シ
ート1の端部は電流密度が減少することにより、電流損
失による発熱も減少し局部過熱がなくなる。このように
低圧巻線4の内周側部41と高圧巻線5の外周側部5黛
における金属シート1の端部の電流密度の増大を抑制し
、局部過熱を防止できる。Therefore, when a current is passed through each metal sheet 7 in the low voltage winding 4 and high voltage winding 5 configured in this way,
The leakage magnetic flux from the winding 4.5 passes through the gap between the windings 4.5 and tends to spread from the outer circumferential side 43 to the inner circumferential side 41 to the ends of the windings 4 and 5 and to the end 51. Here, when the radial component of the leakage magnetic flux enters the metal sheet, an eddy current is generated, but the metal sheet 7 at the inner peripheral side 41 of the low voltage winding 4I4 and the outer peripheral side 5 of the high voltage winding 5 has a high electrical conductivity. Eddy currents due to the radial component of leakage magnetic flux tend to flow in the rounded shape. Therefore, the magnetic flux generated by the eddy current in the opposite direction to the winding leakage flux increases, and this large magnetic flux directs the radial component of the winding leakage flux in the winding axial direction, so that the inside of the low-voltage winding 4 The amount of leakage magnetic flux in the radial direction passing through the circumferential side 4 and the outer circumferential side 531 of the high voltage winding 5 is reduced. Therefore, the inner peripheral side 41 of the low voltage winding 4 and the high voltage winding 5
The amount of the radial component of the leakage magnetic flux across the edge of the metal sheet 7 at the outer peripheral side 5s of is significantly reduced, the current density at the edge of the metal sheet 1 is reduced, and the current in the central part of the metal sheet 7 is reduced. If the current density is about the same as the density, the current density distribution of the entire metal sheet 7 will be approximately equal. Furthermore, since the current density is reduced at the ends of the metal sheet 1, heat generation due to current loss is also reduced, and local overheating is eliminated. In this way, it is possible to suppress an increase in the current density at the ends of the metal sheet 1 at the inner circumferential side 41 of the low voltage winding 4 and the outer circumferential side 5 of the high voltage winding 5, thereby preventing local overheating.
なお、低圧巻線4の外周側部4冨と高圧巻@5の内周側
部5菫における金属シート7の端部の電流密度は、従来
と同様に殆んど増大しない。Note that the current density at the end of the metal sheet 7 at the outer peripheral side 4 of the low voltage winding 4 and the inner peripheral side 5 of the high voltage winding @5 hardly increases as in the conventional case.
従って、低圧巻@4の電流密度は内周側部41および外
周側部4!の全体にわた)平均化され、高圧巻!I5の
電流密度も内周側部5凰および外周側部53の全体にわ
たシ平均化され、また両巻@4.5の電流損失も平均化
され局部過熱を防止できる。Therefore, the current density of the low pressure winding @4 is the inner circumferential side 41 and the outer circumferential side 4! ) is averaged over the entire area, and it is extremely high! The current density of I5 is also averaged over the entire inner peripheral side part 5 and outer peripheral side part 53, and the current loss of both windings @4.5 is also averaged, so that local overheating can be prevented.
第5図は低圧巻線4において、その端部での損失と巻線
半径方向の距離との関係を示すもので、図中C線は巻線
4全体の金属シート7の導電率を一定にした場合の損失
を、D#i!は内周側部41の金属シート7の導電率を
大きくした場合の損失を夫々示している。なお、巻線4
にお秒る外周側部4意の導電率σをσ。とじ、内周側部
41の導電率σを1.5σ。とする。この線図によれば
巻、14の内周側部41の損失は内周側部41の導電率
を大きくすると大幅に低下することが判る−
第7図は他の実施例を示している。この実施例では高圧
巻illを半径方向に複数の巻線部5m+5b+5er
5dに分割し、これら巻線部51〜5dの幅(高さ)を
外周側に位置する巻線部の幅が内周側に位置する巻線部
の幅より小さくなるように設定し、且つ各巻線部51〜
5dの金属シート7の導電率を外周側に位置する巻線部
の導電率が内周側に位置する巻線部の導電率よシ大きく
なるように設定しである。Figure 5 shows the relationship between the loss at the end of the low-voltage winding 4 and the distance in the radial direction of the winding. D#i! 1 and 2 respectively show losses when the conductivity of the metal sheet 7 of the inner peripheral side portion 41 is increased. In addition, winding 4
The electrical conductivity σ of the outer circumferential side is σ. The conductivity σ of the inner peripheral side portion 41 was 1.5σ. shall be. According to this diagram, it can be seen that the loss in the inner circumferential side 41 of the winding 14 is significantly reduced as the conductivity of the inner circumferential side 41 is increased. FIG. 7 shows another embodiment. In this embodiment, the high voltage winding ill is arranged in a plurality of winding parts 5m+5b+5er in the radial direction.
5d, and set the width (height) of these winding parts 51 to 5d so that the width of the winding part located on the outer peripheral side is smaller than the width of the winding part located on the inner peripheral side, and Each winding part 51~
The conductivity of the metal sheet 7 of 5d is set so that the conductivity of the winding portion located on the outer circumferential side is greater than the conductivity of the winding portion located on the inner circumferential side.
このような構成によれば、高圧巻線5において各巻線部
51〜5dの導電率が巻線の外周側に位置するもの程順
次大きくなるために、漏れ磁束の半径方向成分が各巻線
部51〜5d毎に夫々巻線軸方向に向けられる。この場
合、巻線部51〜5dで漏れ磁束を巻線軸方向に向ける
度合は順次大きくなる。このため、高圧巻線5の各巻線
部51〜5dの端部の電流密度が減少し、局部過熱を防
止できる。また、高圧巻1115では最外周側の金属シ
ート7をライン端に一接続するために、巻線5の外周側
に向う程電位が高くなる。しかし、各巻線部5a〜5d
の幅を外周側に位置するもの程小さくすることにより、
巻線部5a〜5dの端部を巻線5の外周側に向うにつれ
て順次鉄心ヨーク(図示せず)から離間させることがで
きる。すなわち、巻線5の端部を電位が高くなる位置に
あるものに応じて鉄心ヨークから離すことができる。こ
れにより、高圧巻線5の電界分布が良好になり、巻線と
鉄心ヨークとの距離を小さくすることができる。According to this configuration, the conductivity of each of the winding parts 51 to 5d in the high voltage winding 5 increases as the winding parts are located closer to the outer periphery of the winding, so that the radial component of the leakage magnetic flux is The windings are oriented in the winding axis direction every ~5d. In this case, the degree to which the leakage magnetic flux is directed in the winding axial direction in the winding portions 51 to 5d gradually increases. Therefore, the current density at the end of each winding portion 51 to 5d of the high voltage winding 5 is reduced, and local overheating can be prevented. Further, in the high voltage winding 1115, the outermost metal sheet 7 is connected to the line end, so the potential becomes higher toward the outer peripheral side of the winding 5. However, each winding portion 5a to 5d
By making the width smaller as it is located closer to the outer periphery,
The ends of the winding portions 5a to 5d can be successively separated from the core yoke (not shown) toward the outer circumference of the winding 5. That is, the ends of the windings 5 can be separated from the core yoke depending on the position where the potential is high. This improves the electric field distribution in the high voltage winding 5 and allows the distance between the winding and the core yoke to be reduced.
本発明の変圧器は、箔巻巻線からなる内側巻線における
内周側の金属シートの導電率を外周側の゛金属シートの
導電率を大きくシ、且つ外側巻線における外周側の金属
シートの導電率を内周側の金属シートの導電率より太き
欠することにより、両巻線の間隙から離れた位置にある
内側巻線内周側と外側巻線外周側の金属シートの端部の
電流密度を低減させ、金属シートの端部での局部過熱を
防止できる。The transformer of the present invention is characterized in that the conductivity of the metal sheet on the inner circumference side of the inner winding made of foil winding is increased by the conductivity of the metal sheet on the outer circumference side, and the conductivity of the metal sheet on the outer circumference side of the outer winding is increased. By making the electrical conductivity of the metal sheet thicker than the electrical conductivity of the metal sheet on the inner circumferential side, the edges of the metal sheet on the inner circumference side of the inner winding and the outer circumference of the outer winding are located away from the gap between both windings. This can reduce the current density of the metal sheet and prevent local overheating at the edge of the metal sheet.
第1図は従来の変圧器における内側および外側巻線を示
す概略的構成図、第2図は従来の巻線における巻線中央
部から端部までの一電流分布を示す線図、第3図は従来
の外側巻線における半径方向各部に位置する端部の電流
分布を示す線図、第4図は本発明の変圧器における内側
および外側巻線の一実施例を示す概略的構成図、第5図
は本発明の内側巻線における半径方向各部に位置する端
部の電流分布を示す線図、第6図は本発明の巻線におけ
る漏れ磁束の分布を示す説明図、第7図は本発明の変圧
器における内側および外側巻線の他の実施例を示す概略
的構成図である。
1t・・タンク□、2・・・鉄心、4・・・低圧巻線、
41・・・内周側部、41・・・外周側部、5・・・高
圧巻線、51・・・内周側部、5茸・・・外周側部、5
a〜5d・・・巻線部、1・・・金属シート、8・・・
絶縁シート。
出願人代理人 弁理士 鈴 江 武 門−一奨シ撃(
−さC4す
$J雲省耐ニbぐ豐にセ¥(之−喬引
!IO図
5
17図Fig. 1 is a schematic configuration diagram showing the inner and outer windings of a conventional transformer, Fig. 2 is a diagram showing a current distribution from the center to the end of the winding in the conventional winding, and Fig. 3 FIG. 4 is a diagram showing the current distribution at each end of the conventional outer winding in the radial direction; FIG. 4 is a schematic diagram showing an embodiment of the inner and outer windings in the transformer of the present invention; Fig. 5 is a diagram showing the current distribution at each end located in the radial direction of the inner winding of the present invention, Fig. 6 is an explanatory diagram showing the distribution of leakage magnetic flux in the winding of the present invention, and Fig. 7 is a diagram showing the distribution of leakage magnetic flux in the winding of the present invention. FIG. 6 is a schematic diagram showing another embodiment of the inner and outer windings of the inventive transformer; 1t...tank□, 2...iron core, 4...low voltage winding,
41... Inner circumferential side part, 41... Outer circumferential side part, 5... High voltage winding, 51... Inner circumferential side part, 5 Mushroom... Outer circumferential side part, 5
a to 5d... Winding part, 1... Metal sheet, 8...
Insulating sheet. Applicant's representative Patent attorney Suzue Takemon - Issho Shigeki (
-S C4 S$J Cloud Ministry Nib Gufeng ni Set ¥ (-Qiao! IO Figure 5 17 Figure
Claims (1)
巻装された外側巻線を備え、これら巻線は金属シートと
絶縁シートを重ねて巻いた箔巻巻線で構成してなる変圧
器において、前記内側巻線における内周側の金属シート
の導電率を、外周側の金属シートの導電率より大きくし
、且つ前記外側巻線における外周側の金属シートの導電
率を、内周側の金属シートの導電率より大きくしたこと
を特徴とする変圧器。It has an inner winding wound around an iron core and an outer winding wound outside the inner winding, and these windings are composed of foil-wound windings made by overlapping metal sheets and insulating sheets. In the transformer, the conductivity of the metal sheet on the inner circumference side of the inner winding is made greater than the electric conductivity of the metal sheet on the outer circumference side of the outer winding, and the conductivity of the metal sheet on the outer circumference side of the outer winding is set to A transformer characterized by having a conductivity greater than that of the metal sheet on the side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6579482A JPS58182212A (en) | 1982-04-20 | 1982-04-20 | Transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6579482A JPS58182212A (en) | 1982-04-20 | 1982-04-20 | Transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58182212A true JPS58182212A (en) | 1983-10-25 |
Family
ID=13297288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6579482A Pending JPS58182212A (en) | 1982-04-20 | 1982-04-20 | Transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182212A (en) |
-
1982
- 1982-04-20 JP JP6579482A patent/JPS58182212A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4259654A (en) | Flux control in tape windings | |
JP2008227526A (en) | Toroidal inductive device and method for making the same | |
CA1150375A (en) | Transformer or reactor having a winding formed from sheet material | |
EP4197012B1 (en) | Transformer comprising winding | |
US4135173A (en) | Low volume sheet-wound transformer coils with uniform temperature distribution | |
JPS58182212A (en) | Transformer | |
CA2082379C (en) | Transformer or reactor cooled by an insulating agent | |
JPS58108726A (en) | Transformer | |
JPH0534090Y2 (en) | ||
JPH041489B2 (en) | ||
JPS5885509A (en) | Transformer | |
JPS6129522B2 (en) | ||
JPS6214656Y2 (en) | ||
JPH0439213B2 (en) | ||
JPS5916319A (en) | Transformer | |
JPS6173313A (en) | Foil wound transformer | |
JPS59121810A (en) | Foil-wound transformer | |
JPS6114713A (en) | Foil wound transformer | |
JPS58143509A (en) | Transformer | |
JPS59136915A (en) | Foil winding transformer | |
JPS6060705A (en) | Leaf-wound transformer | |
JPH04323812A (en) | Foil-wound transformer | |
JPH08330151A (en) | Transformer | |
JPS61105816A (en) | Foil wound transformer | |
JPS632126B2 (en) |