JP3593484B2 - Disk winding of stationary induction machine - Google Patents

Disk winding of stationary induction machine Download PDF

Info

Publication number
JP3593484B2
JP3593484B2 JP2000010048A JP2000010048A JP3593484B2 JP 3593484 B2 JP3593484 B2 JP 3593484B2 JP 2000010048 A JP2000010048 A JP 2000010048A JP 2000010048 A JP2000010048 A JP 2000010048A JP 3593484 B2 JP3593484 B2 JP 3593484B2
Authority
JP
Japan
Prior art keywords
wire
shield
inter
coil
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000010048A
Other languages
Japanese (ja)
Other versions
JP2001196237A (en
Inventor
勝 柏倉
悦紀 森
尚 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000010048A priority Critical patent/JP3593484B2/en
Publication of JP2001196237A publication Critical patent/JP2001196237A/en
Application granted granted Critical
Publication of JP3593484B2 publication Critical patent/JP3593484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は変圧器やリアクトル等の静止誘導電器の円板巻線に係わり、特に、対雷遮蔽用のシールド線を巻き込んだ静止誘導電器の円板巻線に関する。
【0002】
【従来の技術】
従来から、内鉄型静止誘導電器の巻線として、機械的強度が大きい円板巻線が広く用いられている。円板巻線は、ターン数が少なく対向面積が比較的小さい円板コイルを積み重ねて構成されていることから、コイル間の直列静電容量が小さく雷サージ等の衝撃電圧に対する特性が悪いという欠点がある。これに対して、離れたコイルに負荷電流を流さないシールド導体によって、静電的に結合してコイル間に直列静電容量を付加するCCシールド巻線や、2個のコイルを一組として素線を互いに入り組ませて巻くことにより、等価的にコイル間直列静電容量を増加させるインターリーブ巻線が発明され、変圧器の高圧巻線等に用いられている。
【0003】
図8は、CCシールドを使用した円板巻線の結線図である。同図において、3は負荷電流を流す電線、6aは負荷電流を流さないシールド線であり、電線3を6ターン巻き回し、その外周側にシールド線6aを3ターン巻き込んだ円板コイル9a及び9b,9c…を、軸方向に複数個積み重ねた構造の巻線を模式的に示している。ここで、電線3は無接続で巻き上げられている。また、偶数層目の円板コイル9bに巻き込まれたシールド線6bは線路端に接続されている。奇数層目のシールド線6aはそれから数えて4層番目のシールド線6dにシールド用渡り線12によって接続されており、電気的にはフロート電位になっている。
【0004】
この構成では、コイル間の直列静電容量が増し、雷サージ等の衝撃電圧に対する電位分布特性が改善される。しかしながら、このような結線では、線路端から衝撃電圧が侵入した場合に、線路端から偶数番目の円板コイル9bと円板コイル9cの間に大きな電圧が発生して絶縁的に厳しくなる。
【0005】
図8において、線路端から衝撃電圧を印加した時の各ノードn、n、n、…の間の発生電圧を簡単にするためにすべてVとすると、その幾何学的配置からシールド用渡り線12a、12b、12c、…の電位はノードn、n、n、…の電位にほぼ等しいので、円板コイル9a、9b、9cに巻き込まれたシールド線6aと6bとの間及び6bと6cの間には電圧V及び2Vが交互に発生することになる。
【0006】
【発明が解決しようとする課題】
そのため、線路端から偶数番目の円板コイル9bと9cとのコイル間は図9,図10に示すようにコイル間スペーサ10bをコイル間スペーサ10aより厚くして絶縁距離を大きくとるのが一般的である。またシールド線6は図10に示すようにシールド導体7を絶縁被覆8により被覆して構成されている。絶縁被覆8の絶縁距離も衝撃電圧を考慮して必然的に厚くなる。この厚くしたシールド線6bを基準に全てのシールド線6aを配置しているから、円板巻線の周方向の巻線占有率は上がらない。またコイル間スペーサ10bを厚くするので、円板巻線の積層方向の巻線占有率も上がらない。
【0007】
ところで、変圧器等の静止誘導電器は高電圧・大容量化が進む一方、輸送重量・寸法や変電所立地条件の制限があることから、高信頼性を維持しつつ小型軽量化を図ることは決して絶えることのない要求である。円板巻線のような油と油浸紙の複合絶縁構成では、巻線占積率を上げるためには絶縁上の弱点である油くさびの電界を緩和する必要がある。
【0008】
図9はCCシールドを使用した円板巻線の部分斜視図である。同図において、1は巻筒となる絶縁筒、2は絶縁筒1の軸にほぼ平行で円周上に複数配置される直線スペーサ、3は負荷電流が流れる電線、6a〜dは負荷電流を流さないシールド線である。電線3は連続的に巻回されており、円板コイル9a〜dの外周側のターン間にはシールド線6a〜dが3ターン巻き込まれている。円板コイル間には直線スペーサ2と同様に放射状に複数のコイル間スペーサ10が挿入されており、コイル間の絶縁を保持するとともに冷却媒体が流れる流路を確保している。
【0009】
図10,図11は、図9の部分拡大断面のA矢視図である。同図において、3は導体4にクラフト紙テープを巻回して絶縁被覆5を施した電線、6は平角導体7にクラフト紙テープを巻回して絶縁被覆8を施したシールド線、10bはプレスボードからなるコイル間スペーサである。ここで、シールド線6とコイル間スペーサ10bとの間の三角形形状の空間部15aの隅角部がコイル間くさび15である。電線3とシールド線6との間の三角形形状の空間部16aの隅角部がターン間くさび16である。尚、シールド線6と対応しない三角形形状の空間部の隅角部は電界が集中しないので、問題を生じない。
【0010】
このような構成の巻線3に雷サージ等の過電圧が印加されると、油に比べて絶縁被覆や水平スペーサのような油浸紙の誘電率が高いために、コイル間くさび15やターン間くさび16に電界が集中して、絶縁破壊の弱点になることは周知の通りである。従って、絶縁信頼性を損なわずに巻線の占積率を上げて巻線を小型軽量化するためには、コイル間やターン間の油くさびの電界を緩和する必要がある。
【0011】
これに対して、電線の被覆やコイル間スペーサを比誘電率の小さい材料で構成する案が、それぞれ特開平5−291060号公報及び特開平5−190354号公報に開示されている。また、コイル間スペーサを軟らかい材料で構成して油くさびを充填する案が特開平5−190355号公報に記載されている。
【0012】
上記従来技術によれば、油入静止誘導電器巻線内に形成される油くさびの電界を緩和することが原理的には可能で、絶縁信頼性を維持しつつ巻線占積率を向上させることが可能であったが、これをCCシールドを使用した円板巻線に適用しようとすると以下に述べるような問題が生じる。
【0013】
まず、図10,図11の電線3やシールド線6の絶縁被覆5,8を比誘電率が小さい材料で構成すると、ターン間くさび16の電界は緩和されるが、コイル間の直列静電容量が減少して発生電圧が高くなるので、その効果は相殺される。また、比誘電率の小さい材料は一般に密度が小さく、一旦部分放電が発生すると比較的容易に貫通破壊するという問題がある。
【0014】
次に、コイル間スペーサ10を比誘電率の小さい材料で構成すると、コイル間くさび15の電界はある程度緩和されるが、ターン間くさび16の電界は変わらない。図12は、図10に示したような複合絶縁構成において電界解析を実施し、コイル間スペーサの比誘電率と厚さ、及びシールド線の被覆厚さを変えた場合のコイル間くさび15とターン間くさび16の電界を示したものである。同図より、コイル間スペーサ10の低誘電率化はターン間くさび16の電界緩和には効果がないことが分かる。
【0015】
また、図13に示したように、占積率を犠牲にしてコイル間スペーサの厚さを増せばコイル間くさび15の電界はある程度緩和できるが、ターン間くさび16の電界はほとんど変わらない。
【0016】
一方、図14に示したように、シールド線の絶縁被覆の厚さを増せば、コイル間くさび15だけでなくターン間くさび16の電界も緩和されるが、シールド線と電線の間の静電容量が減少するので、発生電圧自体が高くなり、その効果は相殺される。
【0017】
更に、コイル間スペーサを軟らかい材料で構成すれば、コイル間くさび15を充填して電界を緩和することが可能であったとしても、同程度に高電界となるターン間くさび16の電界は緩和されない。また、実際の静止誘導電器の巻線には運転中の振動だけでなく、外部短絡時の機械力等が作用して少なからず変位するので、油くさびを完全に無くすことは現実的には極めて困難である。
【0018】
このように、従来技術ではCCシールドを使用した円板巻線の巻線占積率を向上したり、或いは油くさび及びターン間くさび16の電界を緩和したりするのはむずかしかった。
【0019】
本発明の目的は、円板巻線の巻線占積率が向上し、かつ油くさび及びターン間くさびの電界を緩和できる静止誘導電器の円板巻線を提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明では、偶数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離を、奇数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との間の距離より長くし、偶数層目のコイル間スペーサの一方面とこれ対応するシールド導体の端部とに空間部を形成し、この空間部に絶縁物を設け、このように絶縁強化を必要する個所のみに絶縁物を配置し、この絶縁物によりコイル間スペーサ円板の厚みとシールド導体を被覆した絶縁被覆を薄く、円板巻線の占積率を上げると共に、コイル間の直列静電容量を増加し、かつコイル間くさび及びターン間くさびの電界を緩和したことを特徴とする。
【0021】
【発明の実施の形態】
以下、本発明の実施例を図示に基づいて詳細に説明する。図1に本発明の静止誘導電器の円板巻線の縦断面図を示す。
【0022】
同図において、1は巻筒となる絶縁筒、2は絶縁筒1の軸方向にほぼ平行で円周上に複数配置される直線スペーサ、3は負荷電流を流す導体4に絶縁被覆5を施した電線、電線3はコイル状に巻回した6本の電線3を周方向に配置した。6は負荷電流を流さないシールド導体7に絶縁被覆8を施したシールド線である。電線3を6ターン巻き回し、その外周側にシールド線6を3ターン巻き込んだ円板コイル9aを軸方向に積み重ねて円板巻線を構成している。
【0023】
この円板コイル9aと円板コイル9bとの間にコイル間スペーサ10aを配置している。また他の円板コイル9c,9d,9e間にもいずれかのコイル間スペーサ10a,10bを配置している。コイル間スペーサ10a,10bは直線スペーサ1と同様に放射状に配置されている。コイル間スペーサ10a,10bはコイル間の絶縁を保持すると共に、冷却媒体が流れる流路を確保している。
【0024】
奇数層目のコイル間スペーサ10aの両側に配置された円板コイル9a,9bの内周側の電線3間を内周側渡り線9yで接続している。内周側渡り線9yと接続している円板コイル9b側の外周側の電線3とこれに隣接する偶数層目のコイル間スペーサ10bの外周側の電線3とを外周側渡り線9zで接続している。内周側渡り線9y及び外周側渡り線9zにより各円板コイル9a〜9e間を電気的に直列に接続している。円板コイル9aの外周側の電線3には線路端側のリード線11が接続されている。
【0025】
各円板コイル9a〜9eの電線3と電線3との間にシールド線6a〜6dを複数ターン巻回している。シールド線6はシールド導体7を絶縁被覆8で被覆している。円板コイル9bに巻き込まれたシールド線6bは線路端側のリード線11に接続されている。奇数番目のシールド線6aは電線3には接続されず、互いに4個離れた円板コイル9dの電線3間のシールド線6dにシールド用渡り線12によって接続されており、電気的にはフロート電位になっている。また奇数番目のシールド線6cも4個離れた偶数層目のシールド線にシールド用渡り線12によって接続されている。通常のCCシールド円板巻線は以上のように構成されている。
【0026】
本実施例では、図2(この図は説明の都合上接続線は省略している。)に示すように偶数層目のコイル間スペーサ10bの一方面18とこれに対応するシールド導体20の端部との距離Lを、奇数層目のコイル間スペーサ10aの一方面19とこれに対応するシールド導体8の端部との間の距離Lより長くし、偶数層目のコイル間スペーサ10bの一方面18と対応するシールド導体20の端部と絶縁被覆21とに空間部を形成し、この空間部に絶縁物22を設ける。
【0027】
シールド導体20に絶縁物22を設けるには、図4に示すように絶縁物22に開口溝22aを設け、開口溝22aにシールド導体20を挿入し、絶縁物22及びシールド導体20を絶縁被覆21とすれば、シールド導体20と絶縁物22との一体化絶縁に挿入する作業が容易にできる。絶縁物22及び開口溝22aは成形絶縁物として一体に形成するのが好ましい。尚、油入静止誘導電器の場合には、成形絶縁物としては、耐油性が高く比誘電率が小さいポリメチルペンテンやPTFE(ポリテトラフルオロエチレン)樹脂が好適である。
【0028】
この本実施例では、絶縁物22を設けたので、次の効果を生じる。即ち、電位の一番厳しい偶数番目のコイル間スペーサ10bに対向する従来のシールド線6は、シールド導体7を絶縁被覆8している。この絶縁被覆8の厚みを例えば10とする。これに対して、本実施例では絶縁物22の厚みを例えば4とし、絶縁被覆21の厚みを6とすれば、円板コイル9bに巻き込まれたシールド線6bの絶縁被覆21の厚みを薄くできるから、薄くした分だけ円板巻線の周方向の寸法を縮小できるので、円板巻線の周方向の巻線占積率を向上することができる。また絶縁被覆21の厚みを薄くすることは、電線3とシールド線6bの間の静電容量が大きくなり、コイル間の直列静電容量が増加する。その結果、シールド線6bの巻き込み長さを短くできるので、円板巻線の巻線占積率は向上する。
【0029】
また本実施例では絶縁被覆21の厚みを例えば8とし、絶縁物22の厚みを2とすれば、2だけ偶数番目のコイル間スペーサ10bの厚みを冷却上の制限が許す限り薄くでき、円板巻線の積層方向を縮小できるので、円板巻線の積層方向の巻線占積率を向上することができると共に、電線3とシールド線6bの間の静電容量が大きくなり、コイル間の直列静電容量が増加する。この場合、コイル間スペーサ10bの厚みを更に薄くするときには、絶縁物22の厚みを上述より増せば良い。
【0030】
このように本発明では、線路端から偶数番目のコイル間スペーサ10bを冷却上の制限が許す限り薄くしているので、円板巻線9の積層方向の巻線占積率を向上させることができる。また、シールド線6bの絶縁被覆21を薄くすることができるので、シールド線6bと電線3の間の静電容量が大きくなり、コイル間直列静電容量が増加する。その結果、シールド線6bの巻き込み長さを短くできるので、円板巻線9の周方向の巻線占積率を向上することができる。従って、偶数番目のコイル間スペーサ10bに対応するシールド線6bのシールド導体端面に絶縁物22を設けることにより、円板巻線の積層方向又は周方向の巻線占積率を向上することができると共に、コイル間直列静電容量が増加する。従って、巻線占積率を向上することにより、絶縁信頼性に優れた小型軽量された静止誘導電器の円板巻線を製作することが出来る。
【0031】
更に図2,図3に示すように本実施例では三角形形状の空間部15aの隅角部のコイル間油くさび15とシールド導体20の端部との距離Lは、絶縁物22を設けて距離Lだけシールド導体20の端部をコイル間油くさび15より離し、絶縁距離を増したので、コイル間油くさび15の電界を大幅に緩和できる。また、三角形形状の空間部16aの隅角部のターン間油くさび16とシールド導体20の端部との距離Lは、絶縁物22を設けて距離Lだけシールド導体20の端部をターン間油くさび16より離し、絶縁距離を増したので、ターン間油くさび16の電界を大幅に緩和できる。具体的には、成形絶縁物例えば絶縁物22の比誘電率が絶縁被覆8(油浸紙)と同じで、厚さが1mmの場合でも、油くさびの電界は約40%低減される。
【0032】
次に本発明の他の実施例を図5,図6を用いて説明する。
【0033】
図5において、図1と同じ構成要素には同一の番号を付し説明は省略する。
【0034】
本実施例では、シールド導体6aの構造は従来と同じであるが、その幅hが電線3の幅Hより小さいが、シールド導体21とシールド導体6aとの関係は、上述と同様に距離L>距離Lの関係にある。そして、線路端から偶数番目のコイル間スペーサ10bとシールド線6bとの間にシールド線6bの形状に合わせて成形された図6に示した絶縁物24が配置されている。絶縁物24の一方面にシールド線6bの形状に合わせた接触面24bを形成すると共に、接触面24bの両側に突起部24aを形成する。この突起部24aはシールド導体20の両端と電線3の間に形成された三角形形状の空間部の隅角部のターン間油くさび16に挿入した。この結果、絶縁物24の両側と電線3との間の三角形形状の空間部16´aの隅角部に新たなターン間油くさび16´を形成する。
【0035】
この本実施例では、シールド導体20の端部と新たなターン間油くさび16´との間の距離が、シールド導体20の幅hを幅Hに比べてコイル間スペーサ10bより離したこと、及び突起部24aを設けて新たターン間油くさび16´を形成したことにより、絶縁距離が増したので、ターン間油くさび16´の電界を大幅に緩和できる。
【0036】
この絶縁物24の材質も、上述の実施例と同じく、油入静止誘導電器ではポリメチルペンテンやPTFEが好適である。また、この充填物を多孔質のPTFEで成形すれば、比誘電率が油に近いので、油くさびの電界緩和には一層効果的である。
【0037】
このように、本実施例によれば、絶縁物24を配置することにより、絶縁物24とこの両側の電線3との間に形成されているターン間油くさび16に突起部24aを充填することができるので、絶縁耐力は増加する。また線路端から偶数番目のコイル間スペーサ10bを薄くしたり、或いはシールド線6bの絶縁被覆21を薄くすることができるので、本実施例も上述の実施例と同じく、コイル間の直列静電容量が大きく、絶縁信頼性に優れた小型軽量の静止誘導電器巻線を提供することができる。
【0038】
図7の実施例において、図1及び図4と同じ構成要素には同一の番号を付し説明は省略する。本実施例は、充填物の形状のみ上述の実施例と異なり、絶縁物23の断面が矩形である。図2のように偶数層目のコイル間スペーサ10bの一方面18とこれに対応するシールド導体20の端部との距離Lを、奇数層目のコイル間スペーサ10aの一方面19とこれに対応するシールド導体8の端部との距離Lより長くし、偶数層目のコイル間スペーサ10bの一方面18とこれ対応するシールド線6bとに空間部を形成し、この空間部に絶縁物23を設けているので、上述と同様に絶縁物23の厚みを調整して、偶数番目のコイル間スペーサ10Bの厚みを絶縁耐力を損なうことなく薄くしたり、或いは絶縁皮膜を薄くしたり調整して、円板巻線の巻線占積率を向上したり、コイル間直列静電容量が増加したり、或いは上述と同様にコイル間油くさび15の電界を大幅に緩和したりすることが出来る。
【0039】
尚、以上の実施例は油入静止誘導電器の例を説明したが、本発明はこれにとらわれるものではなく、ガス絶縁静止誘導電器に対しても適用できることは言うまでもない。
【0040】
【発明の効果】
以上説明してきたように本発明によれば、偶数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離を、奇数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との間の距離より長くし、偶数層目のコイル間スペーサの一方面とこれ対応するシールド導体の端部とに空間部を形成し、この空間部に絶縁物を設け、絶縁物の厚み分だけ、絶縁被覆の厚みを薄くしたり、或いは偶数番目のコイル間スペーサの厚みを薄く出来るから、円板巻線の巻線占積率を向上することができること、絶縁被覆の厚みを薄くしてコイル間の直列静電容量を大きくできること、コイル間油くさび及びターン間油くさびの電界を緩和することができること等により、絶縁信頼性に優れた小型軽量された静止誘導電器巻線の円板巻線を製作することが出来るようになった。
【図面の簡単な説明】
【図1】本発明の静止誘導電器の円板巻線の一実施例を示す縦断面図である。
【図2】図1の円板巻線の説明する部分拡大縦断面図である。
【図3】図2のコイル間油くさび及びターン間油くさびを説明する部分拡大縦断面図である。
【図4】図1乃至図3に使用した本発明のシールド線の概略斜視図である。
【図5】本発明の静止誘導電器の円板巻線の他の実施例を示す縦断面図である。
【図6】図4のシールド線に使用する絶縁物の概略斜視図である。
【図7】本発明の他の実施例である静止誘導電器の円板巻線の縦断面図である。
【図8】従来のCCシールド巻線の接線図である。
【図9】従来のCCシールド巻線の構成の一部を示す部分斜視図である。
【図10】図9のCCシールド巻線の部分拡大断面図である。
【図11】図10のコイル間油くさび及びターン間油くさびを説明する部分拡大縦断面図である。
【図12】図9のCCシールド巻線を使用した円板巻線におけるコイル間スペーサの比誘電率と電界との関係を示す特性図である。
【図13】図9のCCシールド巻線を使用した円板巻線におけるコイル間スペーサの厚さと電界との関係を示す特性図である。
【図14】図9のCCシールド巻線を使用した円板巻線におけるシールド線の絶縁被覆の厚さと電界との関係を示す特性図である。
【符号の説明】
3…電線、4…導体、5…絶縁被覆、6,6a,6b,6c,6d…シールド線、7…平角電線、8…絶縁被覆、9,9a,9b,9c,9d,9e…円板コイル、10…コイル間スペーサ、12…シールド用渡り線、15…コイル間油くさび、16…ターン間油くさび、20…シールド導体、21…絶縁被覆、22,23,24…絶縁物。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disk winding of a static induction device such as a transformer or a reactor, and more particularly to a disk winding of a static induction device in which a shield wire for shielding against lightning is wound.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a disk winding having high mechanical strength has been widely used as a winding of a core-type stationary induction device. The disadvantage of disk windings is that they are formed by stacking disk coils with a small number of turns and a relatively small opposing area, so the series capacitance between the coils is small and the characteristics against shock voltage such as lightning surge are poor. There is. On the other hand, a CC shield winding that electrostatically couples and adds a series capacitance between the coils by a shield conductor that does not allow a load current to flow to a distant coil, or a pair of two coils Interleaved windings have been invented that increase the series capacitance between the coils equivalently by winding the wires intertwined with each other, and are used for high-voltage windings of transformers and the like.
[0003]
FIG. 8 is a connection diagram of a disk winding using a CC shield. In the same figure, 3 is an electric wire through which a load current flows, 6a is a shielded wire through which no load current flows, and is a disk coil 9a or 9b in which the electric wire 3 is wound six turns and the shield wire 6a is wound three turns around the outer periphery thereof. , 9c... Are schematically shown in a structure in which a plurality of windings are stacked in the axial direction. Here, the electric wire 3 is wound up without connection. The shield wire 6b wound around the even-layer disk coil 9b is connected to the line end. The odd-numbered shield line 6a is connected to the fourth-layer shield line 6d counting therefrom by the shield connecting wire 12, and is electrically at the floating potential.
[0004]
In this configuration, the series capacitance between the coils is increased, and the potential distribution characteristics with respect to an impact voltage such as a lightning surge are improved. However, in such a connection, when an impact voltage enters from the line end, a large voltage is generated between the even-numbered disk coils 9b and 9c from the line end, and the insulation becomes severe.
[0005]
In FIG. 8, if all the voltages generated between the nodes n 0 , n 1 , n 2 ,. connecting wire 12a, 12b, 12c, ... of the potential node n 1, n 2, n 3 , since substantially equal to ... the potential between the disc coils 9a, 9b, and shield lines 6a and 6b caught in 9c And 6b and 6c alternately generate voltages V and 2V.
[0006]
[Problems to be solved by the invention]
Therefore, between the coils between the even-numbered disk coils 9b and 9c from the end of the line, it is general to increase the insulation distance by making the inter-coil spacer 10b thicker than the inter-coil spacer 10a as shown in FIGS. It is. The shield wire 6 is formed by covering a shield conductor 7 with an insulating coating 8 as shown in FIG. The insulation distance of the insulating coating 8 is inevitably increased in consideration of the impact voltage. Since all the shield wires 6a are arranged with reference to the thickened shield wire 6b, the winding occupancy of the disk winding in the circumferential direction does not increase. Further, since the inter-coil spacer 10b is made thick, the winding occupancy in the laminating direction of the disk winding does not increase.
[0007]
By the way, static induction devices such as transformers have been increasing in voltage and capacity, but the weight and dimensions of transportation and the location of substations are limited, so it is not possible to reduce the size and weight while maintaining high reliability. It is a never-ending request. In the case of a composite insulation structure of oil and oil immersion paper, such as a disk winding, it is necessary to reduce the electric field of an oil wedge, which is a weak point in insulation, in order to increase the space factor of the winding.
[0008]
FIG. 9 is a partial perspective view of a disk winding using a CC shield. In the figure, reference numeral 1 denotes an insulating cylinder serving as a winding cylinder, 2 denotes a plurality of linear spacers substantially parallel to the axis of the insulating cylinder 1 and is disposed on a circumference, 3 denotes electric wires through which a load current flows, and 6a to 6d denote the load current. It is a shielded wire that does not flow. The electric wire 3 is continuously wound, and three turns of the shield wires 6a to 6d are wound between turns on the outer peripheral side of the disk coils 9a to 9d. A plurality of inter-coil spacers 10 are radially inserted between the disk coils in the same manner as the linear spacers 2 to maintain insulation between the coils and secure a flow path for the cooling medium to flow.
[0009]
FIGS. 10 and 11 are partially enlarged cross-sectional views of FIG. In the drawing, 3 is an electric wire in which a kraft paper tape is wound around a conductor 4 and an insulation coating 5 is applied, 6 is a shield wire in which a kraft paper tape is wound around a rectangular conductor 7 and an insulation coating 8 is applied, and 10b is a press board. This is an inter-coil spacer. Here, a corner portion of the triangular space 15a between the shield wire 6 and the inter-coil spacer 10b is an inter-coil wedge 15. The corner of the triangular space 16a between the electric wire 3 and the shielded wire 6 is a wedge 16 between turns. Since no electric field is concentrated at the corners of the triangular space that does not correspond to the shielded wire 6, no problem occurs.
[0010]
When an overvoltage such as a lightning surge is applied to the winding 3 having such a configuration, the dielectric constant of oil-impregnated paper such as an insulating coating or a horizontal spacer is higher than that of oil, so that the wedge 15 between the coils and the turn It is well known that an electric field concentrates on the wedge 16 and becomes a weak point of dielectric breakdown. Therefore, in order to increase the space factor of the windings and reduce the size and weight of the windings without deteriorating insulation reliability, it is necessary to reduce the electric field of the oil wedge between the coils or between the turns.
[0011]
On the other hand, Japanese Patent Application Laid-Open Nos. Hei 5-291060 and Hei 5-190354 disclose proposals in which the covering of the electric wire and the spacer between the coils are made of a material having a small relative dielectric constant. Japanese Patent Application Laid-Open No. 5-190355 discloses a method in which the inter-coil spacer is made of a soft material and filled with an oil wedge.
[0012]
According to the above prior art, it is possible in principle to alleviate the electric field of the oil wedge formed in the oil-filled stationary induction winding, and to improve the winding space factor while maintaining insulation reliability. However, when this is applied to a disk winding using a CC shield, the following problem occurs.
[0013]
First, if the insulating coatings 5 and 8 of the electric wires 3 and the shielded wires 6 in FIGS. 10 and 11 are made of a material having a small relative dielectric constant, the electric field of the wedge 16 between turns is reduced, but the series capacitance between the coils is reduced. Is reduced and the generated voltage becomes higher, so that the effect is canceled. Further, a material having a small relative dielectric constant generally has a low density, so that once a partial discharge occurs, there is a problem that a breakthrough occurs relatively easily.
[0014]
Next, when the inter-coil spacer 10 is made of a material having a small relative dielectric constant, the electric field of the wedge 15 between the coils is reduced to some extent, but the electric field of the wedge 16 between turns does not change. FIG. 12 shows an electric field analysis performed in the composite insulation configuration as shown in FIG. 10, and shows a change in the relative permittivity and thickness of the spacer between the coils and the wedges 15 between the coils when the coating thickness of the shield wire is changed. 3 shows the electric field of the wedge 16. It can be seen from the figure that lowering the dielectric constant of the inter-coil spacer 10 has no effect on alleviating the electric field of the wedge 16 between turns.
[0015]
Further, as shown in FIG. 13, the electric field of the wedge 15 between the coils can be reduced to some extent by increasing the thickness of the spacer between the coils at the expense of the space factor, but the electric field of the wedge 16 between the turns hardly changes.
[0016]
On the other hand, as shown in FIG. 14, when the thickness of the insulating coating of the shield wire is increased, not only the wedge 15 between the coils but also the electric field of the wedge 16 between the turns are reduced, but the static electricity between the shield wire and the electric wire is reduced. Since the capacitance is reduced, the generated voltage itself is increased, and the effect is offset.
[0017]
Furthermore, if the inter-coil spacer is made of a soft material, even if it is possible to fill the inter-coil wedge 15 to alleviate the electric field, the electric field of the turn-to-turn wedge 16, which is as high as the electric field, is not alleviated. . In addition, since the actual winding of the static induction device is displaced not only by the vibration during operation but also by the mechanical force at the time of external short circuit, it is extremely difficult to completely eliminate the oil wedge. Have difficulty.
[0018]
As described above, in the prior art, it was difficult to improve the winding space factor of the disk winding using the CC shield or to reduce the electric field of the oil wedge and the wedge 16 between turns.
[0019]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a disk winding of a stationary induction device in which a space factor of a disk winding is improved and an electric field of an oil wedge and a wedge between turns can be reduced.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the distance between one side of the even-numbered layer inter-coil spacer and the end of the corresponding shield conductor is set to one side of the odd-numbered layer inter-coil spacer and It is longer than the distance between the end of the corresponding shield conductor and a space is formed on one side of the inter-coil spacer of the even-numbered layer and the end of the corresponding shield conductor, and an insulator is placed in this space. Insulation is placed only in places where insulation reinforcement is necessary, and the thickness of the spacer disk between coils and the insulation coating covering the shield conductor are thinned by this insulation, and the space factor of the disk winding is reduced. In addition, the series capacitance between the coils is increased, and the electric field of the wedge between the coils and the wedge between the turns is reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of a disk winding of the stationary induction device of the present invention.
[0022]
In the figure, reference numeral 1 denotes an insulating cylinder serving as a winding cylinder; 2 denotes a plurality of linear spacers arranged substantially in a circle substantially parallel to the axial direction of the insulating cylinder 1; 3 denotes an insulating coating 5 on a conductor 4 through which a load current flows. The electric wire and the electric wire 3 were arranged in a circumferential direction with six electric wires 3 wound in a coil shape. Reference numeral 6 denotes a shielded wire in which an insulating coating 8 is applied to a shield conductor 7 through which no load current flows. The electric wire 3 is wound six turns, and the disk coil 9a in which the shield wire 6 is wound three turns on the outer peripheral side is stacked in the axial direction to form a disk winding.
[0023]
An inter-coil spacer 10a is arranged between the disc coil 9a and the disc coil 9b. One of the inter-coil spacers 10a, 10b is also arranged between the other disk coils 9c, 9d, 9e. The inter-coil spacers 10a and 10b are arranged radially similarly to the linear spacer 1. The inter-coil spacers 10a and 10b maintain insulation between the coils and secure a flow path through which the cooling medium flows.
[0024]
The inner wires 3 of the disk coils 9a and 9b disposed on both sides of the inter-coil spacer 10a of the odd-numbered layer are connected to each other by inner circumferential crossover wires 9y. The outer wire 3 on the disk coil 9b side connected to the inner wire 9y and the outer wire 3 of the even-numbered layer inter-coil spacer 10b adjacent thereto are connected by the outer wire 9z. are doing. Each of the disk coils 9a to 9e is electrically connected in series by an inner circumferential side connecting wire 9y and an outer circumferential side connecting wire 9z. A lead wire 11 on the line end side is connected to the electric wire 3 on the outer peripheral side of the disk coil 9a.
[0025]
Shield wires 6a to 6d are wound a plurality of turns between the electric wires 3 of each of the disk coils 9a to 9e. The shield wire 6 covers the shield conductor 7 with an insulating coating 8. The shield wire 6b wound around the disk coil 9b is connected to the lead wire 11 on the line end side. The odd-numbered shield wire 6a is not connected to the electric wire 3, but is connected to the shield wire 6d between the electric wires 3 of the disc coil 9d, which is four distances from each other, by the connecting wire 12 for shielding. It has become. The odd-numbered shield line 6c is also connected to the even-numbered layer shield line which is four distances away by the shield connecting wire 12. A normal CC shield disk winding is configured as described above.
[0026]
In the present embodiment, as shown in FIG. 2 (connection lines are omitted for convenience of explanation), one surface 18 of the even-numbered inter-coil spacer 10b and the end of the corresponding shield conductor 20 are provided. the distance L 1 between the parts, longer than the distance L 2 between the end of the shielding conductor 8 corresponding thereto with one surface 19 of the odd-th inter-coil spacer 10a, between the even-th layer of a coil spacer 10b A space is formed between the end of the shield conductor 20 corresponding to the one surface 18 and the insulating coating 21, and an insulator 22 is provided in the space.
[0027]
In order to provide the insulator 22 in the shield conductor 20, as shown in FIG. 4, an opening groove 22a is provided in the insulator 22, the shield conductor 20 is inserted into the opening groove 22a, and the insulator 22 and the shield conductor 20 are covered with an insulating coating 21. Then, the work of inserting the shield conductor 20 and the insulator 22 into the integrated insulation can be easily performed. The insulator 22 and the opening groove 22a are preferably formed integrally as a molded insulator. In the case of an oil-filled static induction device, polymethylpentene or PTFE (polytetrafluoroethylene) resin, which has high oil resistance and a small relative dielectric constant, is preferable as the molded insulator.
[0028]
In this embodiment, since the insulator 22 is provided, the following effects are obtained. In other words, the conventional shielded wire 6 facing the even-numbered inter-coil spacer 10 b having the highest potential has the shield conductor 7 covered with the insulating coating 8. The thickness of the insulating coating 8 is, for example, 10. On the other hand, in the present embodiment, if the thickness of the insulator 22 is set to, for example, 4 and the thickness of the insulating coating 21 is set to 6, the thickness of the insulating coating 21 of the shield wire 6b wound around the disk coil 9b can be reduced. As a result, the circumferential dimension of the disk winding can be reduced by an amount corresponding to the reduction in thickness, so that the winding space factor in the circumferential direction of the disk winding can be improved. Further, reducing the thickness of the insulating coating 21 increases the capacitance between the electric wire 3 and the shielded wire 6b, and increases the series capacitance between the coils. As a result, the winding length of the shield wire 6b can be shortened, so that the space factor of the disk winding is improved.
[0029]
Further, in this embodiment, if the thickness of the insulating coating 21 is set to 8, for example, and the thickness of the insulator 22 is set to 2, the thickness of the even-numbered inter-coil spacers 10b can be reduced by two as long as cooling restrictions permit. Since the stacking direction of the windings can be reduced, the space factor in the stacking direction of the disk windings can be improved, and the capacitance between the electric wire 3 and the shielded wire 6b increases. The series capacitance increases. In this case, when further reducing the thickness of the inter-coil spacer 10b, the thickness of the insulator 22 may be increased as compared with the above.
[0030]
As described above, in the present invention, the even-numbered inter-coil spacers 10b from the line end are made as thin as cooling restrictions permit, so that the space factor of the disk windings 9 in the stacking direction can be improved. it can. Further, since the insulating coating 21 of the shield wire 6b can be made thin, the capacitance between the shield wire 6b and the electric wire 3 increases, and the series capacitance between the coils increases. As a result, the winding length of the shield wire 6b can be shortened, so that the winding space factor of the disk winding 9 in the circumferential direction can be improved. Accordingly, by providing the insulator 22 on the shield conductor end face of the shield wire 6b corresponding to the even-numbered inter-coil spacer 10b, it is possible to improve the winding space factor in the laminating direction or circumferential direction of the disk winding. At the same time, the series capacitance between the coils increases. Therefore, by improving the space factor of the winding, it is possible to manufacture a small and light disk winding of the stationary induction device having excellent insulation reliability.
[0031]
Further, as shown in FIGS. 2 and 3, in the present embodiment, the distance L 3 between the oil wedge 15 between the coils at the corners of the triangular space 15 a and the end of the shield conductor 20 is determined by providing an insulator 22. distance L 1 by the end portion of the shield conductor 20 away from the coil between the oil wedge 15, so increased insulation distance can be significantly reduce the electric field of the coil between the oil wedge 15. The distance L 4 between the end portion corners of the turn between oil wedge 16 and the shield conductor 20 of the space 16a of the triangular shape, turn the end of the distance L 1 by the shield conductor 20 is provided an insulator 22 Since the insulation wedge 16 is separated from the oil wedge 16 and the insulation distance is increased, the electric field of the oil wedge 16 between turns can be greatly reduced. Specifically, the electric field of the oil wedge is reduced by about 40% even when the molded insulator, for example, the insulator 22 has the same relative dielectric constant as the insulating coating 8 (oil immersion paper) and a thickness of 1 mm.
[0032]
Next, another embodiment of the present invention will be described with reference to FIGS.
[0033]
5, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0034]
In this embodiment, the structure of the shield conductor 6a is the same as the conventional one, but the width h is smaller than the width H of the electric wire 3, but the relationship between the shield conductor 21 and the shield conductor 6a is the same as the distance L 1 as described above. > in the relationship between the distance L 2. Then, an insulator 24 shown in FIG. 6 which is formed in accordance with the shape of the shield line 6b is arranged between the even-numbered inter-coil spacers 10b and the shield line 6b from the line end. A contact surface 24b conforming to the shape of the shield wire 6b is formed on one surface of the insulator 24, and projections 24a are formed on both sides of the contact surface 24b. The protrusion 24 a was inserted into the inter-turn oil wedge 16 at the corner of the triangular space formed between both ends of the shield conductor 20 and the electric wire 3. As a result, a new inter-turn oil wedge 16 'is formed at the corner of the triangular space 16'a between both sides of the insulator 24 and the electric wire 3.
[0035]
In this embodiment, the distance between the end of the shield conductor 20 and the new inter-turn oil wedge 16 ′ is such that the width h of the shield conductor 20 is greater than the width H and is separated from the inter-coil spacer 10 b. By providing the projection 24a and forming the new inter-turn oil wedge 16 ', the insulation distance is increased, so that the electric field of the inter-turn oil wedge 16' can be greatly reduced.
[0036]
As for the material of the insulator 24, polymethylpentene or PTFE is suitable for the oil-filled static induction device, as in the above-described embodiment. In addition, if this filler is formed of porous PTFE, the relative permittivity is close to that of oil, and therefore, it is more effective in reducing the electric field of the oil wedge.
[0037]
As described above, according to the present embodiment, by disposing the insulator 24, the inter-turn oil wedge 16 formed between the insulator 24 and the electric wires 3 on both sides is filled with the protrusion 24a. The dielectric strength increases. Also, since the even-numbered inter-coil spacers 10b from the line ends or the insulating coating 21 of the shield wire 6b can be thinned, the present embodiment also has the same series capacitance between the coils as the above-described embodiment. It is possible to provide a small and lightweight stationary induction winding having a large size and excellent insulation reliability.
[0038]
In the embodiment of FIG. 7, the same components as those in FIGS. 1 and 4 are denoted by the same reference numerals, and description thereof will be omitted. This embodiment differs from the above-described embodiment only in the shape of the filler, and the cross section of the insulator 23 is rectangular. The distance L 1 between the end portion of the shield conductor 20 corresponding to the one surface 18 of the even-th inter-coil spacer 10b as shown in FIG. 2, in which the one surface 19 of the odd-th inter-coil spacer 10a longer than the distance L 2 between the end of the corresponding shielding conductor 8, forms a space portion in the one surface 18 and which corresponding shielded wire 6b of the even-th inter-coil spacer 10b, the insulator in the space portion 23, the thickness of the insulator 23 is adjusted in the same manner as described above, and the thickness of the even-numbered inter-coil spacers 10B is reduced without impairing the dielectric strength, or the insulating film is thinned or adjusted. As a result, the space factor of the disk winding can be improved, the inter-coil series capacitance can be increased, or the electric field of the inter-coil oil wedge 15 can be greatly reduced as described above. .
[0039]
Although the above embodiment has been described with reference to the example of the oil-filled static induction electric device, the present invention is not limited to this, and it is needless to say that the present invention can be applied to a gas insulated static induction electric device.
[0040]
【The invention's effect】
As described above, according to the present invention, the distance between one side of the even-numbered layer inter-coil spacer and the end of the corresponding shield conductor is set to one side of the odd-numbered layer inter-coil spacer and It is longer than the distance between the end of the corresponding shield conductor and a space is formed on one side of the inter-coil spacer of the even-numbered layer and the end of the corresponding shield conductor, and an insulator is placed in this space. The thickness of the insulation coating can be reduced by the thickness of the insulator, or the thickness of the even-numbered inter-coil spacer can be reduced, so that the space factor of the disk winding can be improved. Small and lightweight stationary induction with excellent insulation reliability by reducing the thickness of the coating to increase the series capacitance between the coils, and to alleviate the electric field of the oil wedge between the coils and the oil wedge between the turns. Electric winding It has become possible to produce a disc winding.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing one embodiment of a disk winding of a stationary induction device of the present invention.
FIG. 2 is a partially enlarged longitudinal sectional view illustrating the disk winding of FIG. 1;
FIG. 3 is a partially enlarged longitudinal sectional view illustrating an oil wedge between coils and an oil wedge between turns in FIG. 2;
FIG. 4 is a schematic perspective view of the shielded wire of the present invention used in FIGS. 1 to 3;
FIG. 5 is a longitudinal sectional view showing another embodiment of the disk winding of the stationary induction device of the present invention.
6 is a schematic perspective view of an insulator used for the shield wire of FIG.
FIG. 7 is a longitudinal sectional view of a disk winding of a stationary induction device according to another embodiment of the present invention.
FIG. 8 is a tangent diagram of a conventional CC shield winding.
FIG. 9 is a partial perspective view showing a part of the configuration of a conventional CC shield winding.
FIG. 10 is a partially enlarged sectional view of the CC shield winding of FIG. 9;
11 is a partially enlarged longitudinal sectional view illustrating an oil wedge between coils and an oil wedge between turns in FIG.
12 is a characteristic diagram showing a relationship between a relative dielectric constant of an inter-coil spacer and an electric field in a disk winding using the CC shield winding of FIG. 9;
13 is a characteristic diagram showing a relationship between a thickness of an inter-coil spacer and an electric field in a disk winding using the CC shield winding of FIG. 9;
14 is a characteristic diagram showing a relationship between a thickness of an insulating coating of a shield wire and an electric field in a disk winding using the CC shield winding of FIG. 9;
[Explanation of symbols]
3: electric wire, 4: conductor, 5: insulating coating, 6, 6a, 6b, 6c, 6d: shielded wire, 7: rectangular electric wire, 8: insulating coating, 9, 9a, 9b, 9c, 9d, 9e: disk Coil, 10: spacer between coils, 12: crossover wire for shield, 15: oil wedge between coils, 16: oil wedge between turns, 20: shield conductor, 21: insulating coating, 22, 23, 24: insulator.

Claims (7)

コイル状に巻回した電線の複数本を周方向に配置した円板コイルと、この円板コイルの複数個を絶縁筒の軸方向に積層し、円板コイルと円板コイルの間にコイル間スペーサを配置し、奇数層目のコイル間スペーサの両側に配置された内周側電線間を接続した内周側渡り線と、内周側渡り線と接続した外周側電線とこれに対応する偶数層目のコイル間スペーサの間の外周側電線とを接続した外周側渡り線と、各円板コイルの電線と電線との間にシールド導体を絶縁被覆したシールド線を複数ターン巻回し、奇数層目のシールド線とこれから数えて4層目のシールド線とをシールド用渡り線で接続し、偶数層目のシールド線とこれに隣接する電線とを線路端リード線に接続した静止誘導電器の円板巻線において、偶数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離を、奇数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との間の距離より長くし、偶数層目のコイル間スペーサの一方面とこれ対応するシールド導体の端部とに空間部を形成し、この空間部に絶縁物を設けたことを特徴とする静止誘導電器の円板巻線。A disk coil in which a plurality of coiled electric wires are arranged in the circumferential direction, and a plurality of the disk coils are laminated in the axial direction of the insulating cylinder. A spacer is arranged, an inner-side crossover wire connected between inner-side wires arranged on both sides of an odd-numbered layer inter-coil spacer, an outer-side wire connected to the inner-side crossover wire, and an even number corresponding thereto. An outer-side crossover wire connecting the outer-side wire between the inter-coil spacers of the layer and a shield wire insulated with a shield conductor between the wire of each disk coil and the wire are wound a plurality of turns. The static induction device circle in which the shield wire of the fourth layer and the shield wire of the fourth layer counted from now on are connected by a connecting wire for the shield, and the shield wire of the even layer and the adjacent wire are connected to the line end lead wire. In the plate winding, one of the even-numbered The distance between one surface of the spacer and the corresponding end of the shield conductor is longer than the distance between one surface of the inter-coil spacer of the odd-numbered layer and the corresponding end of the shield conductor. A disk winding of a stationary induction device, wherein a space is formed on one surface of an interspacer and an end of a corresponding shield conductor, and an insulator is provided in the space. 偶数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との間の距離を、奇数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離より長くし、偶数層目のコイル間スペーサの一方面と対応するシールド導体の端部と絶縁被覆との間に空間部を形成し、この空間部に絶縁物を設けたこと特徴とする請求項1に記載の静止誘導電器の円板巻線。The distance between one side of the even-numbered layer inter-coil spacer and the end of the corresponding shield conductor is defined as the distance between one side of the odd-numbered layer inter-coil spacer and the corresponding end of the shield conductor. A space portion is formed between the insulating coating and an end portion of the shield conductor corresponding to one surface of the even-numbered inter-coil spacer, and an insulator is provided in the space portion. 2. A disk winding of the static induction device according to 1. 偶数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離を、奇数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離より長くし、偶数層目のコイル間スペーサの一方面とこれに対応するシールド線との間に空間部を形成し、この空間部に絶縁物を設けたこと特徴とする請求項1に記載の静止誘導電器の円板巻線。The distance between one side of the even-numbered layer inter-coil spacer and the end of the corresponding shield conductor is longer than the distance between one side of the odd-numbered layer inter-coil spacer and the corresponding end of the shield conductor. 2. The static induction according to claim 1, wherein a space is formed between one surface of the even-numbered inter-coil spacer and the corresponding shield wire, and an insulator is provided in the space. Electric disk winding. 偶数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離を、奇数層目のコイル間スペーサの一方面とこれに対応するシールド導体の端部との距離より長くし、偶数層目のコイル間スペーサの一方面とこれ対応するシールド線及び電線との間に空間部を形成し、この空間部に絶縁物を充填すること特徴とする請求項1に記載の静止誘導電器の円板巻線。The distance between one side of the even-numbered layer inter-coil spacer and the end of the corresponding shield conductor is longer than the distance between one side of the odd-numbered layer inter-coil spacer and the corresponding end of the shield conductor. The stationary part according to claim 1, wherein a space is formed between one surface of the even-numbered inter-coil spacer and the corresponding shield wire and electric wire, and the space is filled with an insulator. Disc winding of induction machine. 絶縁物に開口溝を設け、開口溝に前記シールド導体を挿入し、絶縁物及びシールド導体を絶縁被覆することを特徴とする請求項2に記載の静止誘導電器の円板巻線。The disk winding of the stationary induction device according to claim 2, wherein an opening is formed in the insulator, the shield conductor is inserted into the opening, and the insulator and the shield conductor are insulated. 絶縁物の一方面に形成したシールド線の形状に合わせた接触面と、接触面の両側にシールド線と電線との間のくさびに挿入する突起部とを備えていることを特徴とする請求項4に記載の静止誘導電器の円板巻線。A contact surface adapted to a shape of a shield wire formed on one surface of the insulator, and a projection inserted into a wedge between the shield wire and the electric wire on both sides of the contact surface. 5. A disk winding of the static induction device according to 4. 絶縁物は、ポリメチルペンテン樹脂、又はポリテトラフルオロエチレン樹脂、又はポリテトラフルオロエチレンの多孔体を備えていることを特徴とする請求項1かた5のいずれか1項に記載の静止誘導電器の円板巻線。The static induction electric device according to any one of claims 1 to 5, wherein the insulator comprises a polymethylpentene resin, a polytetrafluoroethylene resin, or a porous body of polytetrafluoroethylene. Disk winding.
JP2000010048A 2000-01-13 2000-01-13 Disk winding of stationary induction machine Expired - Fee Related JP3593484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000010048A JP3593484B2 (en) 2000-01-13 2000-01-13 Disk winding of stationary induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010048A JP3593484B2 (en) 2000-01-13 2000-01-13 Disk winding of stationary induction machine

Publications (2)

Publication Number Publication Date
JP2001196237A JP2001196237A (en) 2001-07-19
JP3593484B2 true JP3593484B2 (en) 2004-11-24

Family

ID=18538110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010048A Expired - Fee Related JP3593484B2 (en) 2000-01-13 2000-01-13 Disk winding of stationary induction machine

Country Status (1)

Country Link
JP (1) JP3593484B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925705B2 (en) * 2002-05-15 2007-06-06 富士電機システムズ株式会社 Induction winding
CN102522189A (en) * 2011-12-28 2012-06-27 上海施能电器设备厂 High-power rectifier transformer of charger
JP2016004950A (en) * 2014-06-18 2016-01-12 株式会社東芝 Stationary induction electrical apparatus
JP6620059B2 (en) 2016-04-13 2019-12-11 株式会社日立製作所 Static induction machine
JP6789862B2 (en) * 2017-03-22 2020-11-25 株式会社日立製作所 Rest inducer

Also Published As

Publication number Publication date
JP2001196237A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
JP2000173836A (en) Electrostatic induction equipment
JPH04348508A (en) Static induction electric device
JP2013501369A (en) Current compensation choke and method of manufacturing current compensation choke
JP3593484B2 (en) Disk winding of stationary induction machine
JP6552779B1 (en) Stationary inductor
US11990268B2 (en) Transformer comprising winding
CA1153433A (en) Winding for static induction apparatus
JP6656187B2 (en) Stationary inductor
JP2728162B2 (en) Transformer for DC transmission
JPH0311534B2 (en)
WO2019179808A1 (en) Electromagnetic induction device having a low losses winding
JP2001093749A (en) Electric apparatus
JP2545313Y2 (en) Instrument transformer
JPH0155565B2 (en)
JPH10340818A (en) Winding for induction electrical appliance
JPH0211777Y2 (en)
JPS62229813A (en) Foil-wound transformer
JP6519497B2 (en) Instrument transformer
JP3522290B2 (en) Disk winding
JPH0546263Y2 (en)
JPS62250615A (en) Foil-wound transformer
JPH0624992Y2 (en) Disk winding of oil-filled induction
JP2839656B2 (en) Stationary induction electrical equipment
JPS5861612A (en) Winding for electric induction apparatus
JP2001203116A (en) Coil bobbin wound core transformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

LAPS Cancellation because of no payment of annual fees