JPH10340818A - Winding for induction electrical appliance - Google Patents

Winding for induction electrical appliance

Info

Publication number
JPH10340818A
JPH10340818A JP15118497A JP15118497A JPH10340818A JP H10340818 A JPH10340818 A JP H10340818A JP 15118497 A JP15118497 A JP 15118497A JP 15118497 A JP15118497 A JP 15118497A JP H10340818 A JPH10340818 A JP H10340818A
Authority
JP
Japan
Prior art keywords
coil
winding
insulating coating
conductive coating
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15118497A
Other languages
Japanese (ja)
Inventor
Hisahide Matsuo
尚英 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15118497A priority Critical patent/JPH10340818A/en
Publication of JPH10340818A publication Critical patent/JPH10340818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the series capacitance of a winding for an induction electrical appliance formed by piling up coil blocks in several stages without reducing the space factor of the winding so as to improve the surge voltage characteristic of the electrical appliance, by forming a conductive coating film on the surface of an insulating coating covering each coil conductor in each coil block of the winding. SOLUTION: Conductive coating layers 3 and 13 are formed around the insulating coating layers 2 of coil conductors 1 and 11 constituting each coil block 4 of a discoid winding, and adjacent conductive coating layers 3 and 13 are electrically brought into contact with each other. When the coating layers 3 and 13 are constituted in such a way, the capacitance, namely the so-called interlayer capacitance between the adjacent coil conductors 11 and the whole electrostatic coupling in the same coil because larger, because the equivalent facing areas in the electrostatic capacity between the coil conductors 1 and 11 increase and separated conductors are also electrostatically coupled with each other. In addition, the series capacitance of the windings and the surge voltage characteristics of a transformer can improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導電器巻線に係
り、特に、電力用に用いられる衝撃電圧特性を改良した
信頼度の高い変圧器巻線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction winding and, more particularly, to a highly reliable transformer winding having improved shock voltage characteristics used for electric power.

【0002】[0002]

【従来の技術】電力用変圧器の信頼性に関わる重要な特
性として、雷などのサージに対する衝撃電圧特性があ
る。これは高周波成分を含んだサージ電圧が侵入してき
た時の変圧器内部の過渡特性、所謂電位振動特性であ
り、この特性が悪いと変圧器内部に過電圧が発生し、場
合によっては破壊に至ることもある。変圧器の電位振動
特性改善方法としては、巻線の巻回構造を変えて巻線の
直列静電容量を増すことが一般的であり、インターリー
ブ巻線や、シールド導体を巻き込んだ巻線などがよく用
いられている。
2. Description of the Related Art As an important characteristic related to the reliability of a power transformer, there is a shock voltage characteristic against a surge such as lightning. This is the transient characteristic inside the transformer when a surge voltage containing high-frequency components enters, so-called potential oscillation characteristic. If this characteristic is bad, an overvoltage will occur inside the transformer, and in some cases, it will be destroyed. There is also. As a method for improving the potential oscillation characteristics of a transformer, it is common to increase the series capacitance of the winding by changing the winding structure of the winding, and an interleaved winding or a winding including a shield conductor is used. Often used.

【0003】インターリーブ巻線は、2本の導体を束ね
て巻いて離れたターン間を静電結合させることにより、
巻線の直列静電容量を増やすものであり、占積率が高い
という利点があるが、1コイル当たりのターン数が少な
いと効果が低く、直列静電容量増加量の調整が困難なた
め最適化が出来ない等の欠点がある。
[0003] An interleaved winding is formed by bundling and winding two conductors and electrostatically coupling the separated turns.
This increases the series capacitance of the windings and has the advantage of a high space factor. However, if the number of turns per coil is small, the effect is low, and it is difficult to adjust the amount of increase in the series capacitance. There are drawbacks, such as the inability to convert the product.

【0004】これに対し、図6に示したようにコイル導
体1、11間に巻き込んだシールド導体5と他の位置に
あるシールド導体25とをシールド導体接続線6によっ
て、離れた位置にある単位コイル4、24間を静電結合
させて等価的に各コイルの直列静電容量を増加させる方
法は、ターン数が少なくても高い効果が得られ、シール
ド巻き込み回数の調整によって電位振動特性の最適化が
図れる、といった利点がある。しかし、シールド導体の
存在によって占積率が低下するという問題があった。
On the other hand, as shown in FIG. 6, a shield conductor 5 wound between the coil conductors 1 and 11 and a shield conductor 25 at another position are separated by a shield conductor connection line 6 into a unit located at a distance from the unit. The method of equivalently increasing the series capacitance of each coil by electrostatically coupling the coils 4 and 24 can provide a high effect even with a small number of turns, and optimize the potential oscillation characteristics by adjusting the number of times the shield is wound. There is an advantage that conversion can be achieved. However, there is a problem that the space factor is reduced by the presence of the shield conductor.

【0005】また、この方法ではコイル導体とシールド
導体間の静電結合が重要であるため、例えば図7に示す
ように転位電線など他導体との接触面が平坦でないコイ
ル導体を使用する場合には、転位電線素導体7の転位に
よりシールド導体5との間の静電結合が弱まり、その効
果が低下する恐れもあった。尚、この種のシールド導体
による衝撃電圧特性改善方法としては、例えば特開昭4
9−9622号公報が挙げられる。
In this method, since the electrostatic coupling between the coil conductor and the shield conductor is important, when a coil conductor having a non-flat contact surface with another conductor such as a dislocation wire is used as shown in FIG. 7, for example. According to the method, the transposition of the transposed electric wire element conductor 7 weakens the electrostatic coupling between the transposed electric wire element conductor 7 and the shield conductor 5, and the effect may be reduced. Incidentally, as a method of improving the shock voltage characteristics by using this kind of shield conductor, for example, Japanese Patent Application Laid-Open
No. 9-9622.

【0006】[0006]

【発明が解決しようとする課題】上記シールド導体を用
いた従来技術は、衝撃電圧特性を改善し変圧器の信頼性
を向上させる有効手段ではあるが、反面、占積率の低下
を招くため、変圧器の小型化、軽量化を図る際の問題点
の一つともなっていた。また、損失低減のため転位電線
を使用するとコイル導体とシールド導体間の静電結合が
低下するため、場合によってはシールド巻回数を増す必
要があり、さらに占積率が低下することもあった。
The prior art using the above-mentioned shield conductor is an effective means for improving the shock voltage characteristic and improving the reliability of the transformer, but on the other hand, it causes a decrease in the space factor. This has been one of the problems in reducing the size and weight of the transformer. Further, when a dislocated electric wire is used to reduce the loss, the electrostatic coupling between the coil conductor and the shield conductor is reduced. Therefore, in some cases, the number of turns of the shield needs to be increased, and the space factor may be further reduced.

【0007】本発明の目的は、占積率の低下を招くこと
なく巻線の直列静電容量を増加させ、衝撃電圧特性を向
上させることにより、変圧器の小型化、軽量化を可能と
する誘導電器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to increase the series capacitance of a winding without lowering the space factor and improve the shock voltage characteristics, thereby making it possible to reduce the size and weight of a transformer. It is to provide an induction appliance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、コイル導体とコイル導体表面
を被覆した絶縁被覆層とより成る巻線と、巻線を鉄心外
周側から内周側に複数個配置したコイルブロックとを備
え、コイルブロックを複数段に積層した誘導電器巻線で
あって、上記コイルブロック内の各コイル導体表面を覆
う絶縁被覆表面に導電性被覆を設けたことにある。
In order to achieve the above object, a first aspect of the present invention is to provide a winding comprising a coil conductor and an insulating coating layer covering the surface of the coil conductor, and forming the winding on the outer periphery of the iron core. And a plurality of coil blocks arranged on the inner peripheral side, wherein the coil block is stacked in a plurality of stages, wherein the conductive coating is applied to an insulating coating surface covering each coil conductor surface in the coil block. It has been provided.

【0009】本発明の請求項2は、コイル導体とコイル
導体表面を被覆した絶縁被覆層とより成る巻線と、巻線
を鉄心外周側から内周側に複数個配置したコイルブロッ
クとを備え、コイルブロックを複数段に積層し、複数段
のコイルブロックを絶縁冷媒を循環して冷却する誘導電
器巻線であって、上記複数段のコイルブロック内の各コ
イル導体表面を覆う絶縁被覆表面に該絶縁被覆の一部を
露出させて導電性被覆を設け、且つ露出した絶縁被覆層
を絶縁冷媒下流側に配置したことにある。
According to a second aspect of the present invention, there is provided a winding comprising a coil conductor and an insulating coating layer covering the surface of the coil conductor, and a coil block having a plurality of windings arranged from the outer periphery to the inner periphery of the core. An induction winding wound by stacking coil blocks in a plurality of stages and cooling the plurality of coil blocks by circulating an insulating refrigerant, wherein the insulating coating surface covers each coil conductor surface in the plurality of coil blocks. The conductive coating is provided by exposing a part of the insulating coating, and the exposed insulating coating layer is disposed downstream of the insulating refrigerant.

【0010】本発明の請求項3は、導電性被覆と導電性
被覆の一部に露出した露出絶縁被覆層とを備えたコイル
ブロック同士を互いに対応配置する際に、一方側コイル
ブロックの導電性被覆と他方側コイルブロックの露出絶
縁被覆層とを対応して配置することにある
[0010] The third aspect of the present invention is to dispose the coil block having the conductive coating and the exposed insulating coating layer exposed on a part of the conductive coating in correspondence with each other. The present invention is to arrange the coating and the exposed insulating coating layer of the other coil block correspondingly.

【0011】[0011]

【発明の実施の形態】以下、本発明による変圧器巻線の
一実施例を図1及び図2を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a transformer winding according to the present invention will be described below with reference to FIGS.

【0012】図1は円板巻線の一部分を抜き出し、その
断面を簡略化して示したものである。同図において、コ
イル導体1は連続して巻かれており、巻回構造自体は衝
撃電圧特性向上対策を施していない基本的な円板巻線と
同様である。図2は図1におけるコイル導体の1本を抜
き出して、その構造を模式的に示したものである。
FIG. 1 shows a part of a disk winding extracted and a simplified cross section thereof. In FIG. 1, the coil conductor 1 is continuously wound, and the wound structure itself is the same as a basic disc winding without taking measures to improve the impact voltage characteristics. FIG. 2 schematically shows a structure of one of the coil conductors shown in FIG.

【0013】即ち、図1に示す如く、本実施例では、円
板巻線のコイルブロック4を構成する各コイル導体1、
11の絶縁被覆層2の周囲に導電性被覆3及び13を施
し、隣り合う該導電性被覆同士3及び13を電気的に接
触させている。このような構成にすることにより、隣り
合うコイル導体間の静電結合における等価的な対向面積
が増え、更に、離れたコイル導体間も静電結合させるこ
とになるため、隣り合うコイル導体1、11間の静電容
量、所謂ターン間静電容量および同一コイル内全体の静
電結合が大きくなる。
That is, as shown in FIG. 1, in this embodiment, each of the coil conductors 1,
Conductive coatings 3 and 13 are provided around the 11 insulating coating layers 2, and the adjacent conductive coatings 3 and 13 are electrically contacted with each other. With such a configuration, the equivalent opposing area in the electrostatic coupling between the adjacent coil conductors is increased, and further, the distant coil conductors are also electrostatically coupled. 11, so-called inter-turn capacitance, and the overall electrostatic coupling within the same coil increases.

【0014】円板巻線の直列静電容量は、主に該ターン
間静電容量と、間に絶縁冷媒10を介したコイルロック
4とコイルロック14間のコイル間静電容量との合成に
よって決まるので、シールド導体を巻き込んだ時のよう
に占積率を低下させることなく、また、シールド導体同
士の接続作業なしに巻線の直列静電容量を増加させ、変
圧器の衝撃電圧特性を向上させることができる。
The series capacitance of the disc winding is mainly determined by the combination of the inter-turn capacitance and the inter-coil capacitance between the coil lock 4 and the coil lock 14 with the insulating refrigerant 10 interposed therebetween. As it is determined, the series capacitance of the winding is increased without lowering the space factor as when a shield conductor is involved, and without connecting the shield conductors, improving the shock voltage characteristics of the transformer. Can be done.

【0015】該ターン間静電容量の増え方はコイル導体
1の断面形状によって異なるが、例えば正方形のコイル
導体であれば、隣り合うコイル導体間の静電結合におけ
る等価的な対向面積は約4倍となる。ターン間静電容量
の増加による巻線の等価直列静電容量の増え方は、コイ
ルの巻回数によって異なるが、5、6ターン程度だと
1.5倍程度に増加する。実際にはターン間静電容量だ
けではなく、同一コイル内全体の静電結合も増加するた
め、巻線の等価直列静電容量はさらに大きくできる。ま
た、コイル導体の絶縁被覆層2に高誘電率のものを使用
すれば、より大きな直列静電容量を得ることができる。
The way of increasing the inter-turn capacitance depends on the cross-sectional shape of the coil conductor 1. For example, in the case of a square coil conductor, the equivalent facing area in the electrostatic coupling between adjacent coil conductors is about 4 Double. The manner in which the equivalent series capacitance of the winding increases due to the increase in the inter-turn capacitance depends on the number of turns of the coil, but increases to about 1.5 times for about 5 or 6 turns. Actually, not only the capacitance between turns but also the total electrostatic coupling in the same coil increases, so that the equivalent series capacitance of the winding can be further increased. In addition, when a material having a high dielectric constant is used for the insulating coating layer 2 of the coil conductor, a larger series capacitance can be obtained.

【0016】また、転位電線使用時のように隣り合うコ
イル導体との対向面に凹凸がある場合でも、コイル導体
間の等価対向面積を大きく取ることができるので、平角
電線使用時と同等のコイル導体間静電容量及び、巻線の
等価直列静電容量を得ることができる。
Further, even when there is unevenness in the surface facing the adjacent coil conductor as in the case of using a displaced electric wire, the equivalent opposing area between the coil conductors can be made large, so that the same coil as in the case of using the rectangular electric wire is used. The capacitance between conductors and the equivalent series capacitance of the winding can be obtained.

【0017】コイル導体の絶縁被覆層2の周囲に施す導
電性被覆3としては、例えば図2に模式的に示したよう
に、μmオーダーから0.1mmオーダー程度の厚さの
金属箔テープや、金属蒸着テープ、導電性粘着テープ、
導電性高分子材料によるテープ等を巻回したものが考え
られる。また、絶縁被覆表面に、金属蒸着や導電性塗料
の塗布などを施すことも考えられる。尚、本実施例にお
いてはコイルブロックを構成する全コイル導体の絶縁被
覆層周囲全体に導電性被覆を施しているが、一部のコイ
ル導体、あるいは絶縁被覆周囲の一部分を対象として導
電性被覆を施すことにより、巻線の直列静電容量増加量
の調整を行うことも可能である。
As the conductive coating 3 applied around the insulating coating layer 2 of the coil conductor, for example, as schematically shown in FIG. 2, a metal foil tape having a thickness on the order of μm to 0.1 mm, Metal deposition tape, conductive adhesive tape,
What wound the tape etc. by a conductive polymer material is considered. Further, it is also conceivable to apply metal deposition, application of a conductive paint, or the like to the surface of the insulating coating. In this embodiment, the conductive coating is applied to the entire periphery of the insulating coating layer of all the coil conductors constituting the coil block, but the conductive coating is applied to a part of the coil conductor or a part of the periphery of the insulating coating. By doing so, it is also possible to adjust the increase in the series capacitance of the winding.

【0018】本発明の請求項2ないし3の実施例を図
1,図3を用いて説明する。請求項2の実施例である図
3はコイル導体1とコイル導体表面を被覆した絶縁被覆
層2とより成る巻線3´と、巻線3´を外周側から鉄心
内周側に複数個配置したコイルブロック4,14と、コ
イルブロック4,14を複数段に積層し、この複数段の
コイルブロックを絶縁冷媒10を循環させて冷却する場
合の零である。この場合にはコイルブロック4内の各コ
イル導体表面を覆う絶縁被覆層表面に該絶縁被覆層2の
一部に露出した露出絶縁被覆層15になるように導電性
被覆3を設け、この露出絶縁被覆層15を絶縁冷媒10
の下流側つまり巻線3´の上側13Aに配置すると良
い。尚、13Bは巻線3´の下側である。
Embodiments 2 and 3 of the present invention will be described with reference to FIGS. FIG. 3, which is an embodiment of the second embodiment, shows a winding 3 'composed of a coil conductor 1 and an insulating coating layer 2 covering the surface of the coil conductor, and a plurality of windings 3' arranged from the outer peripheral side to the inner peripheral side of the core. This is zero when the coil blocks 4 and 14 and the coil blocks 4 and 14 are stacked in a plurality of stages and the plurality of coil blocks are cooled by circulating the insulating refrigerant 10. In this case, a conductive coating 3 is provided on the surface of the insulating coating layer covering the surface of each coil conductor in the coil block 4 so as to become an exposed insulating coating layer 15 exposed on a part of the insulating coating layer 2. The coating layer 15 is applied to the insulating refrigerant 10
, That is, on the upper side 13A of the winding 3 '. 13B is the lower side of the winding 3 '.

【0019】一般に絶縁冷媒10の下流側つまり上側1
3Aは下側13Bより冷却が悪く、温度が下側13Bよ
り高い。そこで、この実施例では温度が高い上側13A
には露出絶縁被覆層15を配置し、温度が低い下側13
Bには導電性被覆3を配置し、負荷容量の大小に応じて
伸縮する導電性被覆3を露出絶縁層15で吸収するよう
にして、例えば導電性被覆3が伸びて、互いに当接して
突出するのを防止している。また導電性被覆3の一部に
露出した露出絶縁被覆層15があることにより、巻線1
3´を乾燥或いは油含浸時の空気及び油の流通を良くす
ることが出来る。
Generally, the downstream side of the insulating refrigerant 10, that is, the upper side 1
3A has lower cooling than the lower side 13B and has a higher temperature than the lower side 13B. Therefore, in this embodiment, the upper side 13A where the temperature is high
The exposed insulating coating layer 15 is disposed on the lower side 13 where the temperature is low.
B, a conductive coating 3 is arranged, and the conductive coating 3 that expands and contracts according to the magnitude of the load capacity is absorbed by the exposed insulating layer 15. For example, the conductive coatings 3 are extended and come into contact with each other and protrude. Is prevented from doing so. In addition, since the exposed insulating coating layer 15 is exposed on a part of the conductive coating 3, the winding 1
The air and oil flow during drying or oil impregnation of 3 'can be improved.

【0020】また請求項3のコイルブロック4は下側1
3Bに配置した導電性被覆3とコイルブロック14は上
側13Aに露出絶縁被覆層15とを対応して配置するこ
とにより、例えば露出絶縁層15と露出絶縁被覆層15
とを対応して配置するのに比べて、各コイルブロック巻
線の直列静電容量を平均化することが出来るので、雷な
どの衝撃電流を分散させることが出来、絶縁破棄を防止
出来る。
Further, the coil block 4 of the third aspect is the lower side 1.
The conductive coating 3 and the coil block 14 arranged in 3B correspond to the exposed insulating coating layer 15 on the upper side 13A, for example, by exposing the exposed insulating layer 15 and the exposed insulating coating layer 15 to each other.
Since the series electrostatic capacitance of each coil block winding can be averaged as compared with the case where they are arranged correspondingly, it is possible to disperse a shock current such as lightning and to prevent insulation destruction.

【0021】本発明の他の実施例を図4を用いて説明す
る。本実施例の特徴は、離れたコイル位置にあるコイル
2及びコイル24のコイル導体1及び21の絶縁被覆層
2の周囲に施した導電性被覆3同士及び23を導電性被
覆接続線8を用いて電気的に接続することにより、該導
電性被覆3、23に従来のシールド導体の役割も併せて
持たせた点にある。その他の構成は図1に示した実施例
と同様である。このような構成とすることにより、図1
に示した実施例よりもさらに大きな巻線の直列静電容量
を得ることができ、衝撃電圧特性をより向上させること
ができる。
Another embodiment of the present invention will be described with reference to FIG. This embodiment is characterized in that the conductive coatings 3 and 23 applied around the insulating coating layer 2 of the coil conductors 1 and 21 of the coil 2 and the coil 24 at the remote coil positions are formed by using the conductive coating connecting wires 8. In this case, the conductive coatings 3 and 23 also have the role of a conventional shield conductor. Other configurations are the same as those of the embodiment shown in FIG. With such a configuration, FIG.
It is possible to obtain a larger series capacitance of the winding than in the embodiment shown in FIG.

【0022】導電性被覆同士の接続パターンとして、本
実施例では、4つ離れたコイル4及び24の導電性被覆
同士を接続している。これは、図4に示したような従来
のシールド導体を用いた静電結合の場合に頻繁に用いら
れているパターンであり、同様に6つ離れたコイルの導
電性被覆同士を接続するものなどもある。さらに、本発
明によれば、従来の場合に比べてコイル導体とシールド
導体間の静電結合が強いため、もっと近い、例えば隣り
合うコイルの導電性被覆同士の接続でも十分な効果が得
られる。
In this embodiment, as the connection pattern between the conductive coatings, the conductive coatings of the coils 4 and 24 which are four apart from each other are connected. This is a pattern frequently used in the case of the conventional electrostatic coupling using a shielded conductor as shown in FIG. There is also. Further, according to the present invention, since the electrostatic coupling between the coil conductor and the shield conductor is stronger than in the conventional case, a sufficient effect can be obtained even when the conductive coatings of closer coils, for example, adjacent coils are connected.

【0023】本発明のさらに他の実施例を図5を用いて
説明する。本実施例の特徴は、コイル導体の絶縁被覆周
囲に施した導電性被覆3の外側にさらに絶縁被覆層9を
施した点であり、その他の構成は、図1あるいは図4に
示した実施例と同様である。
Another embodiment of the present invention will be described with reference to FIG. The present embodiment is characterized in that an insulating coating layer 9 is further provided outside the conductive coating 3 provided around the insulating coating of the coil conductor, and the other configuration is the same as the embodiment shown in FIG. 1 or FIG. Is the same as

【0024】このように導電性被覆表面が直接冷媒中に
さらされるのを防ぐことにより、コロナの発生や導電性
材料の冷媒中への混入などを防止し、従来構造と同等の
絶縁信頼性を確保することができる。なお、導電性被覆
3外側の該絶縁被覆層9を施す際には、隣り合うコイル
導体間の該導電性被覆同士の電気的接続を保つようにし
ておく必要がある。
By preventing the surface of the conductive coating from being directly exposed to the refrigerant in this way, it is possible to prevent the occurrence of corona and the incorporation of the conductive material into the refrigerant, and to achieve insulation reliability equivalent to that of the conventional structure. Can be secured. When applying the insulating coating layer 9 outside the conductive coating 3, it is necessary to keep the electrical connection between the conductive coatings between adjacent coil conductors.

【0025】以上、幾つかの実施例を用いて本発明を説
明してきたが、これら複数の実施例の組み合わせや、従
来構成との併用もまた可能である。また、各実施例では
円板巻線を対象として説明したが、円筒巻線やヘリカル
巻線等、他の巻回構造の変圧器巻線にも適用可能であ
る。
Although the present invention has been described with reference to several embodiments, a combination of these embodiments or a combination with a conventional configuration is also possible. Further, in each of the embodiments, the disc winding has been described, but the present invention can be applied to a transformer winding having another winding structure such as a cylindrical winding or a helical winding.

【0026】[0026]

【発明の効果】以上説明した本発明の誘導電器巻線によ
れば、巻線の占積率を低下させることなく巻線の直列静
電容量を増加させることができ、変圧器の衝撃電圧特性
を向上させることができる。従って、変圧器の耐サージ
信頼性を低下させることなく小型化、軽量化を図ること
ができる。
According to the above-described induction winding of the present invention, the series capacitance of the winding can be increased without lowering the space factor of the winding, and the shock voltage characteristics of the transformer can be increased. Can be improved. Therefore, it is possible to reduce the size and weight of the transformer without deteriorating the surge resistance of the transformer.

【0027】又コイルブロックに設けた導電性被覆と導
電性被覆の一部に露出した絶縁被覆層とを備え、露出絶
縁被覆層を絶縁冷媒下流側に配置すことにより、負荷容
量の大小に応じて伸縮する導電性被覆を露出絶縁被覆層
で吸収することがえきる。例えば導電性被覆が伸びて、
互いに当接して突出するのを防止することができる。
In addition, a conductive coating provided on the coil block and an insulating coating layer exposed on a part of the conductive coating are provided, and the exposed insulating coating layer is disposed on the downstream side of the insulating refrigerant, so that the load capacity can be adjusted according to the load capacity. The conductive coating that expands and contracts can be absorbed by the exposed insulating coating layer. For example, the conductive coating is stretched,
It can be prevented that they come into contact with each other and protrude.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における変圧器巻線の断面を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a cross section of a transformer winding according to an embodiment of the present invention.

【図2】図1の一実施例におけるコイル導体の構造を示
す斜視図である。
FIG. 2 is a perspective view showing a structure of a coil conductor in the embodiment of FIG.

【図3】図1のコイルブロックの構造を示す模式図であ
る。
FIG. 3 is a schematic diagram showing a structure of a coil block of FIG. 1;

【図4】本発明の他の実施例における変圧器巻線の断面
を示す模式図である。
FIG. 4 is a schematic view showing a cross section of a transformer winding according to another embodiment of the present invention.

【図5】本発明の他の実施例における変圧器巻線の断面
を示す模式図である。
FIG. 5 is a schematic diagram showing a cross section of a transformer winding in another embodiment of the present invention.

【図6】従来の変圧器巻線の構造を示す模式図である。FIG. 6 is a schematic diagram showing the structure of a conventional transformer winding.

【図7】従来の転位電線にシールド導体を用いた場合の
構造を示す模式図である。
FIG. 7 is a schematic diagram showing a structure when a shield conductor is used for a conventional dislocation electric wire.

【符号の説明】[Explanation of symbols]

1,11,21…コイル導体、2…絶縁被覆層、3,1
3,23…導電性被覆、4,14,24…コイルブロッ
ク、10…絶縁冷媒、13…´巻線、15…露出絶縁被
覆層。
1, 11, 21 ... coil conductor, 2 ... insulating coating layer, 3, 1
3, 23: conductive coating, 4, 14, 24: coil block, 10: insulating refrigerant, 13: winding, 15: exposed insulating coating layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コイル導体とコイル導体表面を被覆した
絶縁被覆層とより成る巻線と、巻線を鉄心外周側から内
周側に複数個配置したコイルブロックとを備え、コイル
ブロックを複数段に積層した誘導電器巻線であって、上
記コイルブロック内の各コイル導体表面を覆う絶縁被覆
表面に導電性被覆を設けたことを特徴とする誘導電器巻
線。
1. A winding comprising a coil conductor and an insulating coating layer covering the surface of the coil conductor, and a coil block in which a plurality of windings are arranged from the outer peripheral side to the inner peripheral side of the iron core. And a conductive coating is provided on an insulating coating surface covering each coil conductor surface in the coil block.
【請求項2】 コイル導体とコイル導体表面を被覆した
絶縁被覆層とより成る巻線と、巻線を鉄心外周側から内
周側に複数個配置したコイルブロックとを備え、コイル
ブロックを複数段に積層し、複数段のコイルブロックを
絶縁冷媒を循環して冷却する誘導電器巻線であって、上
記複数段のコイルブロック内の各コイル導体表面を覆う
絶縁被覆表面に該絶縁被覆の一部を露出させて導電性被
覆を設け、且つ露出した絶縁被覆層を絶縁冷媒下流側に
配置したことを特徴とする誘導電器巻線。
2. A winding comprising a coil conductor and an insulating coating layer covering the surface of the coil conductor, and a coil block in which a plurality of windings are arranged from the outer peripheral side to the inner peripheral side of the iron core. An induction winding wound to cool the plurality of coil blocks by circulating an insulating refrigerant, and a part of the insulating coating on an insulating coating surface covering each coil conductor surface in the plurality of coil blocks. A conductive coating is provided by exposing the conductive coating, and the exposed insulating coating layer is disposed downstream of the insulating refrigerant.
【請求項3】 導電性被覆と導電性被覆の一部に露出し
た露出絶縁被覆層とを備えたコイルブロック同士を互い
に対応配置する際に、一方側コイルブロックの導電性被
覆と他方側コイルブロックの露出絶縁被覆層とを対応し
て配置することを特徴とする請求項2記載の誘導電器巻
線。
3. When the coil blocks each having a conductive coating and an exposed insulating coating layer exposed on a part of the conductive coating are arranged corresponding to each other, the conductive coating of one coil block and the other coil block are arranged. 3. The induction winding according to claim 2, wherein the exposed insulating coating layers are arranged correspondingly.
JP15118497A 1997-06-09 1997-06-09 Winding for induction electrical appliance Pending JPH10340818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15118497A JPH10340818A (en) 1997-06-09 1997-06-09 Winding for induction electrical appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15118497A JPH10340818A (en) 1997-06-09 1997-06-09 Winding for induction electrical appliance

Publications (1)

Publication Number Publication Date
JPH10340818A true JPH10340818A (en) 1998-12-22

Family

ID=15513128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15118497A Pending JPH10340818A (en) 1997-06-09 1997-06-09 Winding for induction electrical appliance

Country Status (1)

Country Link
JP (1) JPH10340818A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089303A1 (en) * 1999-09-28 2001-04-04 DenkenSeiki Re. In. Corp. Isolation transformers
JP2005150264A (en) * 2003-11-13 2005-06-09 Iq Four:Kk Lightning resistant transformer and conductive coating single molding coil therefor
JP2008153665A (en) * 2006-12-15 2008-07-03 General Electric Co <Ge> Insulation system and insulation method for transformer
JP2013016607A (en) * 2011-07-04 2013-01-24 Hitachi Ltd Winding for stationary induction electric device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089303A1 (en) * 1999-09-28 2001-04-04 DenkenSeiki Re. In. Corp. Isolation transformers
JP2005150264A (en) * 2003-11-13 2005-06-09 Iq Four:Kk Lightning resistant transformer and conductive coating single molding coil therefor
JP2008153665A (en) * 2006-12-15 2008-07-03 General Electric Co <Ge> Insulation system and insulation method for transformer
JP2013016607A (en) * 2011-07-04 2013-01-24 Hitachi Ltd Winding for stationary induction electric device

Similar Documents

Publication Publication Date Title
US7046492B2 (en) Power transformer/inductor
JP4794999B2 (en) Lightning proof type low voltage insulation transformer
CA2612819C (en) Insulation system and method for a transformer
JPH10340818A (en) Winding for induction electrical appliance
WO2020053931A1 (en) Static inductor
US6177848B1 (en) High frequency snubber for transformers
EP1060483B1 (en) Winding transient suppression technique
JPH05291060A (en) Transformer winding wire
JP2001143937A (en) Transformer coil
JPH0311534B2 (en)
KR200217073Y1 (en) A transformer for reducing a surge valtage
JPS637010B2 (en)
KR102075878B1 (en) High Voltage Windings and High Voltage Electromagnetic Induction Devices
JPH0338821Y2 (en)
JPH09120922A (en) Transposed conductor winding
JP3444567B2 (en) Gas insulation induction equipment
JPH0624992Y2 (en) Disk winding of oil-filled induction
JPH0410666Y2 (en)
JPH01122109A (en) Molded winding
JPH0428198Y2 (en)
CN111755228A (en) Winding and transformer
JPS63211710A (en) Multiplex cylindrical coil winding
MXPA00008446A (en) Winding transient suppression technique
JPS5861612A (en) Winding for electric induction apparatus
JPS596045B2 (en) Double conductor connection structure