JPH01122109A - Molded winding - Google Patents

Molded winding

Info

Publication number
JPH01122109A
JPH01122109A JP62279672A JP27967287A JPH01122109A JP H01122109 A JPH01122109 A JP H01122109A JP 62279672 A JP62279672 A JP 62279672A JP 27967287 A JP27967287 A JP 27967287A JP H01122109 A JPH01122109 A JP H01122109A
Authority
JP
Japan
Prior art keywords
winding
voltage winding
low
molded
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62279672A
Other languages
Japanese (ja)
Other versions
JPH0779055B2 (en
Inventor
Takao Maeda
孝夫 前田
Takafumi Otsubo
大坪 啓文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62279672A priority Critical patent/JPH0779055B2/en
Publication of JPH01122109A publication Critical patent/JPH01122109A/en
Publication of JPH0779055B2 publication Critical patent/JPH0779055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To decrease the radial size between a high voltage winding and a low voltage winding and to reduce the size and weight of a molded transformer by composing the high voltage winding of a plurality of coils, and independently providing insulators at the respective coils. CONSTITUTION:A high voltage winding 2 is formed by connecting in series 5 coils 21-25, and the coils 21 are formed as a winding called 'strip coils' formed by radially laminating and winding aluminum strips whole holding an insulating film therebetween. Since insulators 4 are independently provided at the coils 21-25, its width may be slightly larger than the height as the axial size of the coil. Accordingly, since the width of the film is smaller in a step of manufacturing the insulators 4, the film is not wrinkled, and the film is not wrinkled in a step of winding the coils 21-25 of the high voltage winding. Thus, the size of the whole winding can be reduced, and a core is also reduced due to its far-reaching effect, and the size and weight of a molded transformer are decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、需要家における受電用変圧器として多く使
用されるモールド変圧器の高圧巻線を含むモールド巻線
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molded winding including a high-voltage winding of a molded transformer that is often used as a power receiving transformer in a consumer.

(従来の技術〕 近年、エポキシ樹脂等により巻線をモールドしたモール
ド変圧器が広く使用され始めている。このモールド変圧
器は油入変圧器に比べ難燃性、小型軽量、低騒音等の特
長を有している。
(Prior art) In recent years, molded transformers whose windings are molded with epoxy resin, etc., have begun to be widely used. Compared to oil-immersed transformers, these molded transformers have features such as flame retardancy, small size, light weight, and low noise. have.

第3図は従来のモールド変圧器の巻線構成の例を示す断
面図で、1は低圧巻線、2は高圧巻線、3は高圧巻線の
モールド樹脂、5は低圧巻線1と高圧巻線2との間の空
気部であり、高圧巻線は線輪21,22,23,24.
25の5個の線輪が直列接続されて構成されており、そ
れぞれの線輪は厚さが0.1ms+前後の薄いアルミ導
体を厚みが約110l1のポリエチレン製の絶縁フィル
ムを介して半径方向に巻回積層されて形成されており、
低圧巻線は絶縁被覆された平角導体を半径方向と高さ方
向に積層巻回して形成されている。空気部5は高圧巻線
の低圧巻線に対する絶縁空間であると同時に両巻線を冷
却するための冷却ダクトともなっている。
Figure 3 is a sectional view showing an example of the winding configuration of a conventional molded transformer, in which 1 is a low voltage winding, 2 is a high voltage winding, 3 is a molded resin for the high voltage winding, and 5 is a low voltage winding 1 and a high voltage winding. This is an air section between the high-voltage winding 2 and the high-voltage winding wires 21, 22, 23, 24 .
25 wire rings are connected in series, and each wire wire is made of a thin aluminum conductor with a thickness of about 0.1 ms+, which is radially connected through a polyethylene insulating film with a thickness of about 110 l1. It is formed by winding and laminating,
The low voltage winding is formed by laminating and winding insulated rectangular conductors in the radial and height directions. The air portion 5 serves as an insulating space for the high voltage winding and the low voltage winding, and at the same time serves as a cooling duct for cooling both windings.

高圧巻線を構成する線輪の数はモールド変圧器の容量等
によって変わるがいずれにしても数個という程度であり
、低圧巻線の巻線の種類も前記以外のものもある。
The number of wire rings constituting the high-voltage winding varies depending on the capacity of the molded transformer, etc., but in any case it is only a few, and there are also types of low-voltage winding other than those mentioned above.

これらの構造の巻線高さ寸法はモールド変圧器の容量に
よって大きく変わるが、大きいものでは1.5m程度に
なるものもある。
The height of the winding in these structures varies greatly depending on the capacity of the molded transformer, but some are as large as about 1.5 m.

第4図はモールド変成器の巻線構成を示す断面図で、高
圧巻線2Aと低圧巻線lAとを前記の絶縁フィルムと同
じ材料の絶縁フィルムを巻回し積層した絶縁物4Aを挟
んで一体にモールドした構成である。変成器は容量が小
さいが電圧は高いので高圧巻線の電流は小さいためその
導体は細い丸線を使用している。実際の丸線の大きさは
第4図に示す丸線の大きさよりもはるかに細いのが実状
である。この変成器の大きさは低圧巻線の軸方勉寸法で
ある高さ寸法は200mm前後である。
FIG. 4 is a sectional view showing the winding structure of a molded transformer, in which a high voltage winding 2A and a low voltage winding 1A are integrated with an insulator 4A formed by winding and laminating an insulating film made of the same material as the above-mentioned insulating film. It has a molded configuration. A transformer has a small capacity but a high voltage, so the current in the high-voltage winding is small, so its conductor is a thin round wire. The actual size of the round wire is actually much thinner than the size of the round wire shown in FIG. The size of this transformer is approximately 200 mm in height, which is the axial dimension of the low voltage winding.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図のモールド変圧器の巻線構成で、空間部5は前記
のごとく絶縁と冷却の2つの機能を持っているのである
が、空気の絶縁性能が低く許容電界強度はせいぜい3k
V/am  程度であり、モールド樹脂の許容電界強度
が30から50kV/ms程度であるのに対しはなはだ
小さい値である。そのためにこの空気部5の半径方向寸
法は主に絶縁強度を維持するための寸法から決定されて
いる。一方、低圧巻線、高圧巻線とも巻線の内径側か外
径側かのどちらか一方の面だけの冷却で充分な巻線の冷
却効果が得られるような小容量のモールド変圧器の場合
に第3図の構成を採用すると、絶縁強度を維持するため
の前記巻線間の空気部5の寸法を保持しなければならな
いので、モールド変圧器としての最適設計から外れて寸
法、重量、損失のいずれもが増大して合理的でない設計
になってしまうという欠点があった。
In the winding configuration of the molded transformer shown in Figure 3, the space 5 has the two functions of insulation and cooling as described above, but the air insulation performance is low and the allowable electric field strength is only 3K at most.
V/am, which is a much smaller value than the allowable electric field strength of the mold resin, which is about 30 to 50 kV/ms. Therefore, the radial dimension of this air portion 5 is determined mainly from the dimension for maintaining insulation strength. On the other hand, in the case of a small-capacity molded transformer where a sufficient winding cooling effect can be obtained by cooling only either the inner or outer diameter side of the winding for both the low-voltage and high-voltage windings. If the configuration shown in Figure 3 is adopted, the dimensions of the air space 5 between the windings must be maintained to maintain insulation strength, so the dimensions, weight, and losses will deviate from the optimal design as a molded transformer. Both of these factors increased, resulting in an unreasonable design.

この問題点を解決するためには、高圧巻線の電圧に応じ
た絶縁強度を持たせるだけの材質と寸法を持った絶縁フ
ィルムを介して低圧巻線の上に直接高圧巻線を巻回する
構成を採用することにより空気部を無くする方法が考え
られる。この方法は第4図に示すように高電圧の測定に
使用される変成器に使用されているが、この場合は巻線
の高さが2001前後と小さいので前記絶縁フィルムを
巻回する作業の問題は生じないが、第3図のようなモー
ルド変圧器の場合は前記のごと(巻線の高さは1m前後
もしくはそれ以上になることから、この巻線の高さ寸法
を覆う幅の絶縁フィルムを低圧巻線に巻回する場合、絶
縁フィルムが幅広であるので、巻回張力を均一に保持す
るのが困難なので巻回作業の時点でフィルムに部分的な
しわがよったりするとともに、この上に高圧巻線を各線
輪ごとに巻回していった時にこの線輪の巻回の際のコイ
ル導体にかける張力によってフィルムが締めつけられそ
のために更にしわがよってしまうなどの問題が生ずる。
In order to solve this problem, the high-voltage winding is directly wound on the low-voltage winding through an insulating film of sufficient material and dimensions to provide insulation strength corresponding to the voltage of the high-voltage winding. It is possible to consider a method of eliminating the air portion by adopting this structure. This method is used for transformers used for high voltage measurements as shown in Figure 4, but in this case the height of the winding is small, around 200mm, so the work of winding the insulating film is difficult. Although this does not cause any problems, in the case of a molded transformer like the one shown in Figure 3, as mentioned above (the height of the winding is around 1 m or more, it is necessary to insulate with a width that covers the height of the winding). When winding a film around a low-voltage winding wire, since the insulating film is wide, it is difficult to maintain the winding tension uniformly, and the film may wrinkle partially during the winding process. When the high-voltage winding is wound on each wire ring, the tension applied to the coil conductor during winding of the wire tightens the film, causing further wrinkles.

更にこれらを樹脂モールドをする過程でフィルムの間に
も樹脂が含浸されるが、フィルムの幅が広いので積層さ
れたフィルム間の中の方まで樹脂が充分含浸されず空隙
が残ったり、捲線時に生じた絶縁フィルムのしわの部分
への樹脂の含浸も不十分になることによりこの部分も空
隙、が生ずる可能性が高いことになる。この低圧巻線と
高圧巻線間に存在する空隙は絶縁性能上致命的な欠陥に
なる、すなわちモールド樹脂の比誘電率が5.3である
のに対して空気のそれはlなので、電界強度はこの比誘
電率に逆比例して分布することから空隙部の電界強度は
モールド樹脂部の5.3倍と大きくなり、一方前記のご
とく空隙部の絶縁強度はモールド樹脂の10分の1程度
ゆえこの空隙部で部分放電が生ずる。この部分放電は最
初は空隙部のみに発生するのでその影害は小さいが徐々
に樹脂を浸食して行きついには全面的な絶縁破壊に発展
することになる。したがってこのような樹脂をモールド
して固体絶縁物で絶縁強度を確保する絶縁構成では極力
空隙を排除する必要がある。
Furthermore, in the process of resin molding these, resin is impregnated between the films, but since the width of the film is wide, the resin may not be sufficiently impregnated into the middle between the laminated films, leaving gaps, or when winding. Since the resin is not sufficiently impregnated into the wrinkled portion of the insulating film, there is a high possibility that voids will be formed in this portion as well. This air gap that exists between the low-voltage winding and the high-voltage winding becomes a fatal defect in terms of insulation performance.In other words, the relative dielectric constant of the molding resin is 5.3, while that of air is l, so the electric field strength is Since the electric field strength in the void is inversely proportional to the relative dielectric constant, the electric field strength in the void is 5.3 times greater than that in the mold resin.On the other hand, as mentioned above, the insulation strength of the void is about one-tenth that of the mold resin. Partial discharge occurs in this gap. At first, this partial discharge occurs only in the gap, so its effect is small, but it gradually erodes the resin and eventually develops into a complete dielectric breakdown. Therefore, in an insulation structure in which resin is molded to ensure insulation strength with a solid insulator, it is necessary to eliminate voids as much as possible.

このような理由で巻線の冷却上からは低圧巻線と高圧巻
線とを一体に樹脂モールドできる場合でも前記の絶縁構
成上の理由から空気部5を設けて絶縁強度を確保する他
なかった。
For this reason, from the standpoint of cooling the windings, even if the low-voltage winding and high-voltage winding could be integrally molded in resin, there was no choice but to provide the air portion 5 to ensure insulation strength due to the above-mentioned insulation structure. .

この発明は、高圧巻線と低圧巻線との間の絶縁構成を固
体絶縁物のみで構成することにより高圧巻線と低圧巻線
との間の半径方向寸法を縮小し、モールド変圧器の寸法
1重量の小さい効率の高いモールド変圧器を提供するこ
とを目的とする。
This invention reduces the radial dimension between the high-voltage winding and the low-voltage winding by configuring the insulation structure between the high-voltage winding and the low-voltage winding only with solid insulators, thereby reducing the size of the molded transformer. An object of the present invention is to provide a molded transformer that is small in weight and highly efficient.

〔問題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するためにこの発明によれば、筒状の
形状からなる低圧部と、この低圧部の外径側に絶縁フィ
ルムを巻回して半径方向に積層してなる絶縁物と、この
絶縁物の外径側の面に巻回してなる高圧巻線とが一体に
樹脂モールドされた構成からなるモールド巻線において
、前記高圧巻線が所定の間隔を隔てて前記低圧部の軸方
向に配列された複数の線輪でなり、かつ前記絶縁物をこ
れらの線輪ごとに独立して設けるものとする。
In order to solve the above-mentioned problems, the present invention includes a low-voltage part having a cylindrical shape, an insulating material made by winding an insulating film around the outer diameter side of the low-voltage part and laminating it in the radial direction. In a molded winding having a structure in which a high voltage winding wound on the outer diameter side of an insulator is integrally molded with resin, the high voltage winding is spaced apart from each other by a predetermined interval in the axial direction of the low voltage part. It consists of a plurality of wire rings arranged in an arrangement, and the insulator is provided independently for each of these wire rings.

〔作用〕[Effect]

この発明の構成において、高圧巻線の線輪の位置するご
とに低圧部との間に独立して絶縁フィルムを巻回するに
は、絶縁フィルムの幅寸法を線輪の高さ寸法より少し大
きい程度で良いことになることから、絶縁フィルムの巻
回時や、この絶縁フィルムの上に線輪を巻回する時に絶
縁フィルムの幅が小さいので、巻回張力は均一となり絶
縁フィルムにしわが生じなくなる。また、絶縁フィルム
の幅寸法が小さいこと、および各線輪は間隔を有して配
設されることから、樹脂をモールドする際に絶縁フィル
ム間への樹脂の侵入が容易になる、などのことから低圧
部と高圧巻線間に巻回積層した前記絶縁フィルム間の空
隙の発生を防ぐことができる。
In the configuration of this invention, in order to independently wind an insulating film between each wire ring of the high voltage winding and the low voltage section, the width dimension of the insulating film is slightly larger than the height dimension of the wire wire. Since the width of the insulating film is small when winding the insulating film or when winding the wire ring on top of the insulating film, the winding tension becomes uniform and wrinkles do not occur in the insulating film. . In addition, because the width of the insulating film is small and the wire rings are spaced apart, it is easy for the resin to enter between the insulating films when molding the resin. It is possible to prevent the generation of gaps between the insulating films wound and laminated between the low voltage section and the high voltage winding.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示す巻線構成を示す断面図で1.lは
低圧巻線、2は高圧巻線、3はモールド樹脂、4はポリ
エステルフィルム(厚み約50μm)の絶縁フィルムを
巻回積層してなる絶縁物、8は低圧巻線の巻枠でもある
ガラスクロスにエポキシ樹脂を含浸させて製作した絶縁
筒である。
The present invention will be explained below based on examples. FIG. 1 is a sectional view showing a winding structure according to an embodiment of the present invention. l is a low-voltage winding, 2 is a high-voltage winding, 3 is a molded resin, 4 is an insulator made by winding and laminating polyester film (about 50 μm thick) insulating film, and 8 is a glass which is also the winding frame of the low-voltage winding. This is an insulating cylinder made by impregnating cloth with epoxy resin.

この図において、低圧巻線1は絶縁筒8を巻枠として軸
方向に連続して巻回された円筒巻線であり、高圧巻線2
は5個の線輪21から25をを直列接続したもので、こ
れらの線輪21はアルミ条を絶縁フィルムを挟みながら
半径方向に積層巻回して形成された条コイルと称される
巻線である。
In this figure, the low-voltage winding 1 is a cylindrical winding that is continuously wound in the axial direction using an insulating cylinder 8 as a winding frame, and the high-voltage winding 2
is a series connection of five wire rings 21 to 25, and these wire rings 21 are windings called strip coils, which are formed by laminating and winding aluminum strips in the radial direction while sandwiching an insulating film. be.

絶縁物4は線輪21ないし25のそれぞれごとに独立し
て設けれれているので、その幅は線輪の軸方向寸法であ
る高さ寸法よ、り少し大きい程度でよく、したがって絶
縁物4を製作する過程でフィルム幅が小さいので絶縁フ
ィルムにしわが生ずることはなく、またこの上に高圧巻
線の各線輪を巻回する過程でも絶縁フィルムにしわがよ
ることがない。
Since the insulator 4 is provided independently for each of the wire rings 21 to 25, its width may be slightly larger than the height dimension, which is the axial dimension of the wire wire. Since the width of the film is small, the insulating film does not wrinkle during the manufacturing process, and the insulating film also does not wrinkle during the process of winding each coil of the high-voltage winding on top of the insulating film.

m2図にこの発明のもう一つ別の実施例を示す。Figure m2 shows another embodiment of the present invention.

この実施例はモールド変圧器の容量が大きくなって高圧
巻線か低圧巻線かの少なくともいずれかが外径側と内径
側の両側の空気層で冷却する必要のある場合に適用する
もので、低圧巻線lは第3図の従来の構成と同一であり
、高圧巻線2の外径側への冷却は第1図の構成と同じで
ある。この図で、5Bは空気部、8Bは絶縁筒、9はこ
の絶縁筒8Bにアルミ箔を張付けてなる接地電極である
This embodiment is applied when the capacity of the molded transformer increases and at least either the high voltage winding or the low voltage winding needs to be cooled with air layers on both the outer diameter side and the inner diameter side. The low voltage winding 1 is the same as the conventional structure shown in FIG. 3, and the cooling of the high voltage winding 2 toward the outer diameter side is the same as the structure shown in FIG. In this figure, 5B is an air section, 8B is an insulating cylinder, and 9 is a ground electrode made by pasting aluminum foil on this insulating cylinder 8B.

この図において、接地電極9には上端もしくは下端から
接地リードを引き出しこの接地リードを図示しない鉄心
締めつけ用のフレームに電気的に接続することにより接
地電極9に接地電位を持たせており、この接地電極9の
材質として前記のとおりアルミ箔としたが、これの代わ
りに導電性のあるカーボン紙や金属網でもよいが、鉄心
11を回るlターンを形成しない構造でなければならな
いと同時に高圧巻線2と低圧巻線lの間に設けるので、
漏れ磁束によって発生するうず電流によって過熱するこ
とのないよう配慮されたものでなければならない。
In this figure, the ground electrode 9 has a ground potential by pulling out a ground lead from the upper end or the lower end and electrically connecting this ground lead to a frame for tightening the iron core (not shown). Aluminum foil was used as the material for the electrode 9 as described above, but conductive carbon paper or metal mesh may be used instead, but the structure must not form an L-turn around the iron core 11 and at the same time the high voltage winding Since it is installed between 2 and low voltage winding l,
It must be designed to prevent overheating due to eddy currents generated by leakage magnetic flux.

高圧巻線2の低圧巻線1側の対地絶縁強度はこの接地電
極9と高圧巻線2との間の絶縁構成によって確保される
ので、空気部5Bは殆ど絶縁に関係しないことになるの
で、この空気部5Bの半径方向寸法は冷却上必要とする
寸法だけでよいことから、低圧巻線lと高圧巻線2との
間の半径方向寸法を縮小することができる。
Since the ground insulation strength of the high voltage winding 2 on the low voltage winding 1 side is ensured by the insulation structure between the ground electrode 9 and the high voltage winding 2, the air portion 5B has little to do with insulation. Since the radial dimension of the air portion 5B is only required for cooling, the radial dimension between the low voltage winding 1 and the high voltage winding 2 can be reduced.

高圧巻線の内径側の冷却は、高圧巻線からの熱流が絶縁
物4、接地電極9、絶縁筒8Bを通って空気部5Bに触
れてここで空気に熱伝達されるのであるが、絶縁物4や
絶縁筒8Bの熱伝導率はモールド樹脂と大差なく、これ
らを含めた高圧巻線の内径側から空気部5Bまでの距離
は第3図のそれにくらべ少し大きくなるが、固体内での
温度降下に比べて固体から空気への熱伝達の際の温度降
下の方がずっと大きいので、結局この実施例において高
圧巻線2の内径側からの冷却効果は第3図の従来の構成
と大差のない程度である。
Cooling of the inner diameter side of the high-voltage winding is achieved by the heat flow from the high-voltage winding passing through the insulator 4, the ground electrode 9, and the insulating cylinder 8B, and touching the air portion 5B, where the heat is transferred to the air. The thermal conductivity of the object 4 and the insulating tube 8B is not much different from that of the molded resin, and the distance from the inner diameter side of the high-voltage winding including these to the air portion 5B is a little larger than that in Fig. 3, but Since the temperature drop during heat transfer from the solid to the air is much larger than the temperature drop, the cooling effect from the inner diameter side of the high voltage winding 2 in this embodiment is significantly different from the conventional configuration shown in Fig. 3. There is no such thing.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように高圧巻線と低圧部との間を絶縁
するための絶縁フィルムを高圧巻線の各線輪の配設する
位置ごとに線輪の幅より少し大きい幅の絶縁フィルムを
低圧部の外径上に巻回することによる絶縁フィルムのし
わの発生や、巻回された絶縁フィルム層上に線輪を巻回
する際にも絶縁フィルムにしわが生ずることなく、更に
樹脂をモールF含浸する際には絶縁フィルム間に充分樹
脂が含浸するので信頼性の高い絶縁特性を確保すること
ができることになったので、高圧巻線と低圧巻線とを一
体にモールドする構成をとることができるようになった
結果、巻線全体の寸法を縮小することができ、その波及
効果として鉄心も小さくり、モールド変圧器としての寸
法重量も低減することになった。
As described above, this invention provides an insulating film for insulating between the high-voltage winding and the low-voltage part at each position of each wire ring of the high-voltage winding. In order to avoid wrinkles in the insulating film caused by winding it around the outer diameter of the insulation film, and also to avoid wrinkles in the insulating film when winding the wire on the wound insulation film layer, the resin is During impregnation, sufficient resin is impregnated between the insulation films, ensuring highly reliable insulation properties. Therefore, it is now possible to adopt a configuration in which the high-voltage winding and low-voltage winding are integrally molded. As a result, the dimensions of the entire winding can be reduced, which has the ripple effect of making the core smaller and reducing the size and weight of the molded transformer.

さらに、高圧巻線か低圧巻線の少なくとも一方の巻線を
冷却するのに内径側と外径側の両側に空気層が必要にな
るために前記のような高圧巻線と低圧巻線とを一体にモ
ールドすることができない場合に、高圧巻線と一体にモ
ールドする接地電極を設けることにより高圧巻線を低圧
巻線と別にモールドする構成としながら高圧巻線の内側
の絶縁を接地電極との間の絶縁強度に持たせることがで
き、高圧巻線と低圧巻線間の空隙は巻線の冷却のためだ
けに設けることができることから、この空気部の寸法を
縮小することができることとなったので、高圧巻線と低
圧巻線とを一体にモールドすることのできる比較的小容
量のモールド変圧器だけでなく、大容量のモールド変圧
器にもこの発明を通用できることとなり、モールド変圧
器の広い範囲の仕様のものについて寸法縮小、重量低減
、コストダウンの効果を生ずることとなった。
Furthermore, in order to cool at least one of the high-voltage winding and the low-voltage winding, an air layer is required on both the inner diameter side and the outer diameter side. If integral molding is not possible, by providing a grounding electrode that is molded integrally with the high-voltage winding, the high-voltage winding can be molded separately from the low-voltage winding, but the insulation inside the high-voltage winding can be separated from the ground electrode. Since the gap between the high-voltage winding and the low-voltage winding can be provided only for cooling the winding, the dimensions of this air section can be reduced. Therefore, this invention can be applied not only to relatively small-capacity molded transformers in which high-voltage windings and low-voltage windings can be integrally molded, but also to large-capacity molded transformers. This resulted in size reduction, weight reduction, and cost reduction for products with a range of specifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の拡大断面図、第2図はもう
一つの実施例の巻線構成の断面図、第3図は従来の巻線
構成の断面図、第4図は従来のモールド変成器の巻線構
成の断面図。 1.1八・・・低圧巻線、2,2A・・・高圧巻線、2
1.22,23.24.25・・・線輪、3.3A・−
・モールド樹脂、4.4A・・・絶縁物、5.5B、・
・・空気部、8.8B・・・絶縁筒、9・・・接地電極
、11.IIA・・・鉄心。
FIG. 1 is an enlarged sectional view of an embodiment of the present invention, FIG. 2 is a sectional view of a winding configuration of another embodiment, FIG. 3 is a sectional view of a conventional winding configuration, and FIG. 4 is a sectional view of a conventional winding configuration. FIG. 2 is a cross-sectional view of a winding configuration of a molded transformer. 1.18...Low voltage winding, 2,2A...High voltage winding, 2
1.22, 23.24.25... Line wheel, 3.3A・-
・Mold resin, 4.4A...Insulator, 5.5B,・
...Air part, 8.8B...Insulating cylinder, 9...Grounding electrode, 11. IIA... Iron core.

Claims (1)

【特許請求の範囲】 1)筒状の形状からなる低圧部と、この低圧部の外径側
に絶縁フィルムを巻回して半径方向に積層してなる絶縁
物と、この絶縁物の外径側の面に巻回してなる高圧巻線
とが一体に樹脂モールドされた構成からなるモールド巻
線において、前記高圧巻線が所定の間隔を隔てて前記低
圧部の軸方向に配列された複数の線輪でなり、かつ前記
絶縁物をこれらの線輪ごとに独立して設けることを特徴
とするモールド巻線。 2)特許請求の範囲第1項記載のものにおいて、低圧部
が低圧巻線であることを特徴とするモールド巻線。 3)特許請求の範囲第1項記載のものにおいて、低圧部
が接地電極であることを特徴とするモールド巻線。
[Claims] 1) A low-pressure part having a cylindrical shape, an insulator formed by winding an insulating film around the outer diameter side of this low-pressure part and laminating it in the radial direction, and an outer diameter side of this insulator. In the molded winding, the high-voltage winding is integrally molded with resin, and the high-voltage winding is formed of a plurality of wires arranged in the axial direction of the low-voltage part at predetermined intervals. 1. A molded winding wire comprising rings, and the insulator is provided independently for each of these wire rings. 2) The molded winding according to claim 1, wherein the low voltage portion is a low voltage winding. 3) The molded winding according to claim 1, wherein the low voltage portion is a ground electrode.
JP62279672A 1987-11-05 1987-11-05 Mold winding Expired - Lifetime JPH0779055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279672A JPH0779055B2 (en) 1987-11-05 1987-11-05 Mold winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279672A JPH0779055B2 (en) 1987-11-05 1987-11-05 Mold winding

Publications (2)

Publication Number Publication Date
JPH01122109A true JPH01122109A (en) 1989-05-15
JPH0779055B2 JPH0779055B2 (en) 1995-08-23

Family

ID=17614254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279672A Expired - Lifetime JPH0779055B2 (en) 1987-11-05 1987-11-05 Mold winding

Country Status (1)

Country Link
JP (1) JPH0779055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388314U (en) * 1989-12-26 1991-09-10

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228606A (en) * 1987-03-18 1988-09-22 Hitachi Ltd Resin molded coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228606A (en) * 1987-03-18 1988-09-22 Hitachi Ltd Resin molded coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388314U (en) * 1989-12-26 1991-09-10

Also Published As

Publication number Publication date
JPH0779055B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
US6417456B1 (en) Insulated conductor for high-voltage windings and a method of manufacturing the same
US3891955A (en) Electrical inductive apparatus
JP2000511387A (en) Electromagnetic device
JPH04348508A (en) Static induction electric device
US3708875A (en) Methods of constructing electrical inductive apparatus
EP0901705B1 (en) Insulated conductor for high-voltage windings
US3602857A (en) Shielded winding with cooling ducts
JP2001525653A (en) High voltage rotating electric machine
JPH01122109A (en) Molded winding
EP1034607B1 (en) Insulated conductor for high-voltage machine windings
JPH10340818A (en) Winding for induction electrical appliance
JP3064785B2 (en) Sheet winding
JP2839656B2 (en) Stationary induction electrical equipment
JPH0428198Y2 (en)
JP3161201B2 (en) Transformer winding
CN111755228A (en) Winding and transformer
JPH11234937A (en) Stator coil end structure of dynamo electric machine
JPH0338821Y2 (en)
JPH05267075A (en) Static induction electric apparatus
JPS60241206A (en) Foil-wound transformer
JP2001518698A (en) How to fit power transformers / reactors with high voltage cables
JPH0897052A (en) Static induction electric equipment
JPS62132307A (en) Foil wound transformer
JPH0574928B2 (en)
JPS62250614A (en) Foll-wound transformer