JPS5960425A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS5960425A
JPS5960425A JP17121882A JP17121882A JPS5960425A JP S5960425 A JPS5960425 A JP S5960425A JP 17121882 A JP17121882 A JP 17121882A JP 17121882 A JP17121882 A JP 17121882A JP S5960425 A JPS5960425 A JP S5960425A
Authority
JP
Japan
Prior art keywords
optical
electrode
optical switch
refractive index
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17121882A
Other languages
Japanese (ja)
Other versions
JPH0449098B2 (en
Inventor
Minoru Kiyono
實 清野
Hiroki Nakajima
啓幾 中島
Ippei Sawaki
一平 佐脇
Eiji Mishiro
三代 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17121882A priority Critical patent/JPS5960425A/en
Priority to EP83305761A priority patent/EP0105693B1/en
Priority to DE8383305761T priority patent/DE3381598D1/en
Publication of JPS5960425A publication Critical patent/JPS5960425A/en
Priority to US06/890,974 priority patent/US4730884A/en
Publication of JPH0449098B2 publication Critical patent/JPH0449098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Abstract

PURPOSE:To enable operation at a low voltage by providing an electrode having a symmetrical construction in the central part where crossed optical guides intersect so that the waveguides are changed over by an increase in the refractive index when a voltage is applied on the electrode. CONSTITUTION:Two optical waveguides are formed as a layer 3 having the refractive index higher than the refractive index of a substrate 1 by diffusing a thin titanium film layer 2 on the substrate 1. An electrode 4 having a rectangular shape is provided in the part where the waveguides intersect in parallel with the line connecting the vertex P of the crossing angle of parts 31, 32 on the incident side and the vertex Q at the crossing angle of parts 33, 34 on an exit side. A signal voltage is then applied on the electrode 4 to change the refractive index in the region of the optical waveguides where the waveguides face to the electrode 4, thereby branching the light made incident from a direction X to a direction Y or Z. Since the optical switch of a 2X2 type is formed, the integration of the optical circuit element is possible.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、光回路素子に係り、とくに交差型光導波路を
用いる光スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an optical circuit element, and particularly to an optical switch using crossed optical waveguides.

(b)技術の背景 現在実用化されている光回路においては、レンズ、フィ
ルター、アイソレーター、スイッチ等の回路部品はそれ
ぞれが独立しており、その小型化、集積化が困難である
と共に、回路形成時にこれら回路部品相互間における高
精度の光軸調整が必要であり、かつまた形成された光回
路に対する充分な耐震性が要求される。
(b) Background of the technology In optical circuits currently in practical use, circuit components such as lenses, filters, isolators, and switches are each independent, making it difficult to miniaturize and integrate them, as well as to form circuits. At times, highly accurate optical axis adjustment between these circuit components is required, and the formed optical circuit is also required to have sufficient earthquake resistance.

上記従来の光回路部品にお1.ノる種々の難点を解決す
るものとして、基板上に形成された光導波路を用いる光
回路の開発が活発に行われている。
In addition to the above conventional optical circuit components, 1. Optical circuits using optical waveguides formed on a substrate are being actively developed to solve the various problems described above.

(c)従来技術と問題点 光導波路を用いる光回路素子の基本となる光スィッチと
しては、従来、方向性結合型および全反射型のものが提
案されている。
(c) Prior Art and Problems Conventionally, directional coupling type and total reflection type optical switches have been proposed as basic optical switches for optical circuit elements using optical waveguides.

前者は素子長が長く、かつ高度の寸法精度を要求される
等の問題があり、一方、後者は動作電圧が高いという欠
点があった。
The former has problems such as long element length and requires a high degree of dimensional accuracy, while the latter has the drawback of high operating voltage.

本発明者らは、すでに先導波路の交差部分におりる屈折
率を高くすることによって、動作電圧の低い光スイッチ
が得られることを見出している(特願昭55−1640
!11 )。
The present inventors have already discovered that an optical switch with low operating voltage can be obtained by increasing the refractive index at the intersection of the leading waveguides (Japanese Patent Application No. 55-1640).
! 11).

(d)発明の目的 本発明は、交差型光導波路を用い、低電圧動作が可能な
新規な構造の光スイッチを提供することを目的とする。
(d) Purpose of the Invention An object of the present invention is to provide an optical switch with a novel structure that uses crossed optical waveguides and is capable of low voltage operation.

(e)発明の構成 本発明は、交差する1組の先導波路を用いた光スィッチ
において、光入射側導波路端辺がなす交差角頂点と光出
射側導波路端辺がなす交差角頂点とを結ぶ線に対して、
その長辺が平行にかつ原線に関して対称になるようにし
て長方形電極を該光導波路の交差iJ1分に設け、かつ
該電極への電圧印加による導波路切換えが少なくとも屈
折率の増加によって行われるザイクルを含むことを特徴
とする。
(e) Structure of the Invention The present invention provides an optical switch using a pair of intersecting guide waveguides, in which the intersection angle apex formed by the light input side waveguide end side and the intersection angle apex formed by the light output side waveguide end side. For the line connecting
A cycle in which a rectangular electrode is provided at the intersection iJ1 of the optical waveguide so that its long sides are parallel and symmetrical with respect to the original line, and waveguide switching by applying a voltage to the electrode is performed at least by increasing the refractive index. It is characterized by including.

(f)発明の実施例 以下本発明の実施例を図面を参照して説明する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

第1図は交差型光導波路を模式的に示しノこ図であり、
例えばニオブ酸リチウム(LiNb03)等の電気光学
結晶から成る基板1の表面に、例えば2つの帯状チタン
’FiHfAm2を交差するように形成し、これを例え
ば1040℃で5時間、熱処理を行うことにより、前記
チタン薄膜層2が前記基板1に拡散し、該基板1より屈
折率が商い層3が形成され、これが光導波路として用い
られる。
FIG. 1 is a sawtooth diagram schematically showing a crossed optical waveguide.
For example, by forming two strips of titanium 'FiHfAm2 so as to cross each other on the surface of a substrate 1 made of electro-optic crystal such as lithium niobate (LiNb03), and heat-treating this at, for example, 1040° C. for 5 hours, The titanium thin film layer 2 is diffused into the substrate 1 to form a layer 3 having a refractive index lower than that of the substrate 1, which is used as an optical waveguide.

第2図は、上記のようにして形成された光導波路を用い
た本発明に係る光スィッチの1構成例の概要を示す図で
ある。
FIG. 2 is a diagram schematically showing one configuration example of an optical switch according to the present invention using the optical waveguide formed as described above.

第2図において、2つの先導波路の交差部分に長方形の
電極4が、その長辺を該2つの先導波路の光入射側部分
31および32の端辺がなす交差角頂点Pと光出射側部
分33および34の端辺がなす交差角頂点Qを結んだ線
に対して平行に、かつ原線に関して対称になるようにし
て設けられている。
In FIG. 2, a rectangular electrode 4 is located at the intersection of two leading waveguides, and its long side is the intersection angle apex P formed by the end sides of the light incident side parts 31 and 32 of the two leading wavepaths, and the light output side part. It is provided so as to be parallel to the line connecting the intersection angle vertices Q formed by the end sides of 33 and 34 and symmetrical with respect to the original line.

ここで言う電極の形状とは、蔽密には電極そのものの形
状ではなく、該電極に対する信号電圧の印加によって該
電極下の先導波路部分に形成される屈折率変化領域の形
状を意味するものであって、以下の説明においても便利
上この表現を用いている。
The shape of the electrode here refers not to the shape of the electrode itself, but to the shape of the refractive index changing region formed in the leading waveguide section under the electrode by applying a signal voltage to the electrode. Therefore, this expression will be used in the following explanation for convenience.

上記の構成において、電極4に信号電圧を印加し、光導
波路の該電極4に対向する領域の屈折率を変化さ〜Lる
ことにより、矢印X方向から入射する光を矢印Yの方向
に直進、あるいは矢印2の方向に偏向(分岐)させる。
In the above configuration, by applying a signal voltage to the electrode 4 and changing the refractive index of the region of the optical waveguide facing the electrode 4, light incident from the direction of the arrow X is directed straight in the direction of the arrow Y. , or deflect (branch) in the direction of arrow 2.

この場合、信号電圧の極性と大きさに応じて、電極4に
対向する前記領域(屈折率変化領域)の屈折率は増加(
+Δn効果)あるいは減少(−Δn効果)を示す。
In this case, the refractive index of the region (refractive index change region) facing the electrode 4 increases (
+Δn effect) or decrease (−Δn effect).

本発明は、光が進行する先導波路を切り換える場合に、
少なくとも上記十Δn効果を用いる点において従来の全
反射型光スイッチとは異なっており、この点が本発明に
係る光スィッチの低電圧動作ならびに光導波路間の低ク
ロストークの実現を可能にするのである。
In the present invention, when switching the leading waveguide along which light travels,
It differs from conventional total reflection optical switches in that it uses at least the above-mentioned 10Δn effect, and this point enables the optical switch according to the present invention to operate at low voltage and achieve low crosstalk between optical waveguides. be.

第3図は、第2図に示した構成の光スィッチにおりる信
号電圧の印加にともなう屈折率の変化に対する直進光出
力(S)および分岐光出力(B)の変化の一例を示す図
である。
FIG. 3 is a diagram showing an example of changes in straight optical output (S) and branched optical output (B) with respect to changes in refractive index caused by application of a signal voltage to the optical switch having the configuration shown in FIG. be.

同図の光スイッチは、基板としてLiNbO3を用い、
これにチタンを拡散して光導波路を形成したもので、光
導波路幅7.5μm、交差角1.7°、電極幅4μm、
基板と光導波路の屈折率差(無信号時)は0.004で
ある。
The optical switch in the figure uses LiNbO3 as a substrate,
An optical waveguide was formed by diffusing titanium into this, and the optical waveguide width was 7.5 μm, the crossing angle was 1.7°, the electrode width was 4 μm,
The refractive index difference between the substrate and the optical waveguide (when there is no signal) is 0.004.

第3図に示すように、本例の光スィッチにおい、では、
無信号時(Δn−0)には、直進光出力(S)と分岐光
出力(B)とはほぼ等しい。すなわち、第2図において
矢印X方向から入射した光の約1/2が矢印Zの方向へ
分岐して出射されている。
As shown in FIG. 3, in the optical switch of this example,
When there is no signal (Δn-0), the straight optical output (S) and the branched optical output (B) are almost equal. That is, in FIG. 2, approximately 1/2 of the light incident in the direction of arrow X is branched and emitted in the direction of arrow Z.

いま、屈折率を増加させるように信号電圧を印加すると
、Δn = 0.0012付近で分岐光出力(B)は極
大となり、直進光出力(S)は極小となる。
Now, when a signal voltage is applied to increase the refractive index, the branched light output (B) becomes maximum and the straight light output (S) becomes minimum near Δn = 0.0012.

一方、屈折率を減少させるように信号電圧を印加すると
、Δn = −0,0012付近で直進光出力(S’)
は極大となり、分岐光出力(B)は極小となる。
On the other hand, when a signal voltage is applied to decrease the refractive index, the straight optical output (S') increases around Δn = -0,0012.
becomes the maximum, and the branched light output (B) becomes the minimum.

これに対して従来の全反射型光スイッチの場合には、無
信号時(Δn=0)において直進光出力が最大となり、
信号電圧印加時(Δnく0)において分岐光出力が最大
となるように設計されている。
On the other hand, in the case of a conventional total reflection type optical switch, the straight optical output is maximum when there is no signal (Δn=0),
It is designed so that the branched light output is maximum when a signal voltage is applied (Δn×0).

また、本発明の光スイッチが従来の全反射型のものと異
なる他の重要な点は、本発明の光スィッチは第2図に示
すように対称構造の電極を有するために、1つの光スイ
ツチ素子が2×2型のスイッチ(1つのスイッチ素子に
関して入射光方向弁よび出射光方向が2方向ずつあり、
いずれの入射光力向と出射光力向の組合せに対してもス
イッチ機能を有するもの)として機能することができる
点である。これに対し、従来の全反射型光スイッチはI
XZ型のスイッチ(入射光方向1方向と出射光力向2方
向を有し、これらの組合せ方向は2つであるもの)とし
ての機能しか持たせることができず、2×2型と同等の
機能とするためには光スイツチ素子を4つ必要とした。
Another important point in which the optical switch of the present invention differs from the conventional total reflection type is that the optical switch of the present invention has electrodes with a symmetrical structure as shown in FIG. A switch with a 2x2 type element (one switch element has two input light direction valves and two output light directions,
The point is that it can function as a device having a switch function for any combination of the incident light power direction and the output light power direction. In contrast, conventional total internal reflection type optical switches
It can only function as an XZ type switch (having one direction of incident light and two directions of output light power, and the combination of these directions is two), and is equivalent to a 2 x 2 type switch. Four optical switch elements were required to make it functional.

このことから、本発明の光スイッチによれば、光回路素
子の集積化においても有利となる。
Therefore, the optical switch of the present invention is advantageous in integrating optical circuit elements.

」−記から推測されるように、本発明の光スィッチは従
来の全反射型光スイッチとは異った動作機構にもとづく
ものであって、以下両者の動作を比較して説明する。
As can be inferred from the above description, the optical switch of the present invention is based on a different operating mechanism from the conventional total reflection type optical switch, and the operations of the two will be compared and explained below.

本発明の光スィッチは、第2図に示すように電極4は光
導波路交差部中央に対称に配置され、その幅は光導波路
の幅および交差角等の導波路の形状、光の波長等の条件
に応じて最適値を有し、一般に先導波路の幅より小さい
値をとる。
In the optical switch of the present invention, as shown in FIG. 2, the electrodes 4 are arranged symmetrically at the center of the intersection of the optical waveguides, and the width of the electrodes 4 depends on the width of the optical waveguide, the shape of the waveguide such as the intersection angle, the wavelength of the light, etc. It has an optimal value depending on the conditions, and generally takes a value smaller than the width of the leading wavepath.

これに対して全反射型光スイッチでは、電極4は第4図
に示すように、一般に交差部中心線L−Lを越えないよ
うにして、光入射側(矢印X)と反対側に偏って配置さ
れる。また、その幅は光を分岐側(矢印Z)に完全に分
岐さ−U゛るために、できるだり大きくし、これによっ
て全反射を行うための障壁を′厚くすることが行われる
On the other hand, in a total reflection type optical switch, as shown in Fig. 4, the electrode 4 is generally biased toward the side opposite to the light incident side (arrow Placed. In addition, the width is made as large as possible in order to completely branch the light to the branching side (arrow Z), thereby making the barrier for total reflection thicker.

上記本発明および従来の全反射型の光スイッチ内におけ
る光の伝播状況を理論的解析法を用いて調べた結果を第
5図から第8図に示す。
FIGS. 5 to 8 show the results of investigating the propagation state of light in the total internal reflection type optical switch of the present invention and the conventional optical switch using a theoretical analysis method.

第5図および第6図は全反射型光スイッチの動作機構を
示し、第5図は信号がオフの状態、第6図はオンの状態
である。
5 and 6 show the operating mechanism of the total internal reflection type optical switch, FIG. 5 shows the signal in the OFF state, and FIG. 6 shows the signal in the ON state.

全反射型光スイッチにおいては、オフ状態で光が直進し
、この状態における分岐側への光の漏れ(クト1ス1〜
−り)を十分小さくするために、交差角を太き(選ぶ等
が必要となる。第5図の例は交差角2°であり、大部分
の光パワーはほぼ交差部を直進して伝播しているが、分
岐側に僅かに光の漏れが認められる。一方、この光スィ
ッチのオン状態では、第6図に示すように、光パワーは
基本モード状態が保たれたままで伝播し、全反射障壁7
で反射されて分岐側へ進む。この光スイツチ機構におい
ては、通雷の光の全反射現象そのものが表現されている
In a total internal reflection type optical switch, light travels straight in the off state, and in this state, light leaks to the branch side (1 to 1).
In order to make the intersection angle sufficiently small, it is necessary to choose a large intersection angle. In the example shown in Figure 5, the intersection angle is 2°, and most of the optical power propagates almost straight through the intersection. However, a slight leakage of light is observed on the branching side.On the other hand, when this optical switch is in the on state, the optical power propagates while the fundamental mode state is maintained, and the total reflective barrier 7
It is reflected and goes to the branch side. This optical switch mechanism expresses the phenomenon of total reflection of light from a lightning strike.

これに対し、第7図および第8図は本発明の光スィッチ
の動作機構を示し、全反射型光スイッチのオフ状態に相
当(直進)するのが第7図、オン状態に相当(分岐)す
るのが第8図である。両図の場合においては、第3図の
例と異なって、光は、十Δn効果で直進、−Δn効果で
分岐する。
On the other hand, Figs. 7 and 8 show the operating mechanism of the optical switch of the present invention, and Fig. 7 corresponds to the off state (straight forward) of a total internal reflection type optical switch, whereas Fig. 8 corresponds to the on state (branching). This is shown in Figure 8. In the cases shown in both figures, unlike the example in FIG. 3, the light travels straight due to the 10Δn effect and is split due to the −Δn effect.

第7図の場合、屈折率変化Δnは+0.001であり、
また、光の軌跡は直線でなく2回蛇行して直進側の光導
波路を進んでいる。このように、第5図における直進の
場合とは、信号電圧を印加している点はもちろん、その
軌跡も異っている。また、第8図の場合は屈折率変化Δ
nは−0,0005であり、光はほぼ1回の屈曲で分岐
側へ進む。しかしながら、この方向を転する場所が障壁
の手前ではなく、むしろ、光導波路の壁面近傍であり、
この点でも全反射型光スイッチの場合と異なっている。
In the case of FIG. 7, the refractive index change Δn is +0.001,
Furthermore, the trajectory of the light is not a straight line, but meanderes twice as it travels through the optical waveguide on the straight side. In this way, the trajectory differs from the case of straight travel in FIG. 5, not only in that a signal voltage is applied, but also in the trajectory. In addition, in the case of Fig. 8, the refractive index change Δ
n is −0,0005, and the light travels to the branch side with approximately one bend. However, the place where this direction changes is not in front of the barrier, but rather near the wall of the optical waveguide.
This point also differs from the case of a total internal reflection type optical switch.

これら本発明の光スイッチにおける光の伝播現象は、方
向性結合器におけるパワーの遷移と類似するものである
The light propagation phenomenon in these optical switches of the present invention is similar to the power transition in a directional coupler.

また、第3図に示した交差型先導波路(交差角1.7°
)の場合には、直進は一へ〇効果により、また分岐は+
Δn効果によって実現されるのに対し、第7図および第
8図の場合(交差角1°)にはこれと逆の屈折率変化に
よって動作が行われることば注目すべき点である。
In addition, the crossed leading waveguide shown in Figure 3 (crossing angle 1.7°
), going straight goes to 1 due to the 〇 effect, and branching goes to +
It is noteworthy that while this is achieved by the Δn effect, in the case of FIGS. 7 and 8 (crossing angle of 1°), the operation is performed by the opposite refractive index change.

すなわら、本発明の光スィッチにおいては、先導波路お
よび電極の設計条件によって、スイノチ動作を行う電圧
の大きさおよびその極性を種々異なるように設定できる
のである。これは、本発明の光スィッチにおいては、第
9図に示すように、電極下の領域における屈折率変化(
Δn)に対し直進光出力(S)および分岐光出力CB)
が周期性を右し、このような周期上における0電圧状態
は、先導波路の設計条件(拡散物質濃度、光導波路幅、
電極幅、交差角等)によってΔn軸」二の種々の点に設
定できるためである。したがって、この設計条件によっ
ては、0電圧状態(Δn =O)で直進状態とすること
も、あるいは、分岐状態とすることも可能であり、また
、同極性の大きさの異なる印加電圧によって隣り合う直
進光の極大と分岐光の極大を選択し、スイツチ動作を行
わせることも可能である。
In other words, in the optical switch of the present invention, the magnitude and polarity of the voltage for performing the Suinochi operation can be set to be variously different depending on the design conditions of the leading waveguide and electrodes. In the optical switch of the present invention, as shown in FIG.
Straight optical output (S) and branched optical output CB) for Δn)
determines the periodicity, and the zero voltage state on such a period depends on the design conditions of the leading waveguide (diffusion material concentration, optical waveguide width,
This is because it can be set at various points on the Δn axis depending on the electrode width, crossing angle, etc.). Therefore, depending on this design condition, it is possible to have a straight state in the 0 voltage state (Δn = O) or a branched state, and it is also possible to create a state in which adjacent It is also possible to perform a switching operation by selecting the maximum of the straight light and the maximum of the branched light.

(g)発明の効果 本発明によれば、動作電圧が低くクロストークの小さい
光スィッチを提供可能とし、また、2×2型の光スィッ
チを構成できるので、高集積度の光スイツチを提供可能
とする効果がある。
(g) Effects of the Invention According to the present invention, it is possible to provide an optical switch with low operating voltage and low crosstalk, and since it is possible to configure a 2×2 type optical switch, it is possible to provide a highly integrated optical switch. This has the effect of

【図面の簡単な説明】 第1図は光導波路の基本構造を示す図、第2図は本発明
に係る光スィッチの構成を示す図、第3図は本発明に係
る光スィッチにおける屈折率変化と光出力の関係の一例
を示す図、第4図は全反射型の光スイツチにおける電極
配置と動作を説明するための図、第5図および第6図は
全反射型の光スィッチの光導波路内における光の伝播状
況の一例を示す図、第7図および第8図は本発明の光ス
ィッチの光導波路内における光の伝播状況の一例を示す
図、第9図は本発明の光スィッチにおりる屈折率変化と
光出力の周期性の一例を示す図である。 図において、1は基板、2はチタン薄膜層、3は光導波
路、4は電極、7は全反射障壁、31および32は光導
波路の光入射側63分、33および34ば光導波路の光
出射側部分、PおよびQは光導波路の交差角頂点、Sば
直進光出力、Bは分岐光出力である。 蔦q 図 屈酢卑聚化ひな) l’、i Jll  5η4′・2・2if  Ill
、事f1の表ボ 3、 jdi +1を4−るh ’Iit’lトUI関HI      ↑l’、l’l
出願人11 所 神奈用県川崎山中11;i lズトj
・1)1中1015番地(522)名(ろ、富士通株式
会社 4 代  理  人     IL所 神全用県川崎山
中11ifl< l)I山1中]015ff’i地富士
通株式会社内 プ\ 昭和  で1  月  11   よ仁(1)本願特許
請求の範囲を下記の如く補正する。 (2)電気光学結晶上に形成した交差型光導波路の交差
中央部に棒状の電極を設け、該電極に正および負の電圧
を切り換えて印加することによって光路青史を行うこと
を特徴とする特許請求の範囲第1項記載の光スィッチ。 (3)交差する1組の光導波路を用いた光スィッチにお
いて、光入射側導波路端辺がなす交差角頂点と光出射側
導波路端辺がなす交差角頂点とを結ぶ線に対して、その
長辺が平行にかつ原線に関して対称になるようにして長
方形電極を紋光導波路の交差部分に設け、かつ訪電極へ
の電圧印加による導波路切換えが少なくとも屈折率の増
加によって行われるサイクルを含むことを特徴とする特
許請求の範囲第1項記載の光スィッチ。 (4)上記電気光学結晶上ト−力、トLiNb0:+板
で光スィッチ。」 (2)明細書第4頁10行〜第11行目「示す図である
。v、2図に督いて」を[示す図であり、第2図(a)
は2−カット−LiNbO3基板を用いた時の光スィッ
チの平面ツ1、第2図(b)は斜視図であり、接地電w
15も示されている。第2図(a)において」と補正す
る。 (3)明細書第5頁17行目[可能にするのである。1
を「町卵にするのである。上記例としては電気光学結晶
上板としてZ−カット−LiNb03.1用いルfi1
を上げたが、本発明を適用して、基板としてY−カッ)
−LiNb03を用い、電極に対する信号電圧の印加に
よって光導波路部分に形成される111)折率変化を起
こさせるには第2図(Oの如き’Fff、 1lliy
 4 、 5を交叉光導波路に対し?1Kri4. 5
間の間隔が光導波路中より狭くなるように形成する。な
お、第2図(C)けY−カッl−−L i N b O
3基板を用いる本発明の光スィッチの斜視図である。」 代1人 弁理士 松 岡 宏vq1H 124−
[Brief Description of the Drawings] Fig. 1 is a diagram showing the basic structure of an optical waveguide, Fig. 2 is a diagram showing the configuration of an optical switch according to the present invention, and Fig. 3 is a diagram showing the refractive index change in the optical switch according to the present invention. Figure 4 is a diagram for explaining the electrode arrangement and operation in a total reflection type optical switch. Figures 5 and 6 are diagrams showing an optical waveguide of a total reflection type optical switch. FIGS. 7 and 8 are diagrams showing examples of light propagation conditions within the optical waveguide of the optical switch of the present invention, and FIG. FIG. 3 is a diagram illustrating an example of periodicity of the refractive index change and the optical output. In the figure, 1 is a substrate, 2 is a titanium thin film layer, 3 is an optical waveguide, 4 is an electrode, 7 is a total reflection barrier, 31 and 32 are 63 minutes on the light incidence side of the optical waveguide, and 33 and 34 are light outputs of the optical waveguide. In the side portions, P and Q are the crossing angle vertices of the optical waveguides, S is the straight optical output, and B is the branched optical output. Tsutaq Tsukuku vinegar obscene hina) l', i Jll 5η4'・2・2if Ill
, the table of f1 is 3, jdi +1 is 4-h 'Iit'l to UI HI ↑l', l'l
Applicant 11 Location Kawasaki Yamanaka 11, Kanayo Prefecture;
・1) Address 1015 (522) in 1 (Ro, Fujitsu Ltd. 4 Agent IL Office Kawasaki Yamanaka, Shinzenyo Prefecture 11 ifl < l) I Yama 1 Naka] 015ff'i Location Fujitsu Ltd. Office \ Showa January 11 Yoni (1) The scope of the claims of the present application is amended as follows. (2) A patent characterized in that a bar-shaped electrode is provided at the center of the intersection of crossed optical waveguides formed on an electro-optic crystal, and optical path history is performed by switching and applying positive and negative voltages to the electrode. An optical switch according to claim 1. (3) In an optical switch using a pair of intersecting optical waveguides, with respect to the line connecting the intersection angle apex formed by the end of the light input side waveguide and the intersection angle apex formed by the end side of the light output side waveguide, A rectangular electrode is provided at the intersection of the patterned optical waveguides so that its long sides are parallel and symmetrical with respect to the original line, and a cycle is established in which waveguide switching is performed by at least an increase in the refractive index by applying a voltage to the visiting electrode. An optical switch according to claim 1, characterized in that the optical switch comprises: (4) Power on the electro-optic crystal, LiNb0: Optical switch with + plate. ” (2) Page 4 of the specification, lines 10 to 11, “This is a figure shown.
Figure 2(b) is a perspective view of the optical switch when using a 2-cut LiNbO3 substrate, and the ground voltage w.
15 is also shown. In FIG. 2(a)," the correction is made as follows. (3) Page 5, line 17 of the specification [It makes it possible. 1
In the above example, Z-cut-LiNb03.1 is used as the upper plate of the electro-optic crystal.
However, by applying the present invention, it is possible to use a Y-cut as a substrate.
- Using LiNb03, in order to cause a change in the refractive index formed in the optical waveguide section by applying a signal voltage to the electrode, see Figure 2 ('Fff, 1lliy
4 and 5 for crossed optical waveguides? 1Kri4. 5
The space between the optical waveguides is formed to be narrower than that in the optical waveguide. In addition, in Fig. 2 (C), Y-cut--Li N b O
1 is a perspective view of an optical switch of the present invention using three substrates; FIG. ” 1 patent attorney Hiroshi Matsuoka vq1H 124-

Claims (1)

【特許請求の範囲】[Claims] (1)電気光学結晶上に形成した交差型光導波路の交差
中央部に棒状の電極を設り、該電極に正および負の電圧
を切り換えて印加することによって光路変更を行うこと
を特徴とする光スィッチ(2)交差する1組の光導波路
を用いた光スィッチにおいて、光出射側導波路端辺がな
す交差角頂点と光出射側導波路端辺がなす交差角頂点と
を結ぶ線に対して、その長辺が平行にかつ該線に関して
対称になるようにして長方形電極を該光導波路の交差部
分に設り、かつ該電極への電圧印加による導波路切換え
が少なくとも屈折率の増加によって行われるサイクルを
含むことを特徴とする特許請求の範囲第1項記載の光ス
ィッチ
(1) A bar-shaped electrode is provided at the center of the intersection of the crossed optical waveguides formed on the electro-optic crystal, and the optical path is changed by applying positive and negative voltages to the electrode while switching between them. Optical switch (2) In an optical switch using a pair of intersecting optical waveguides, for the line connecting the intersection angle apex formed by the light output side waveguide end side and the intersection angle apex formed by the light output side waveguide end side. A rectangular electrode is provided at the intersection of the optical waveguide with its long sides parallel and symmetrical with respect to the line, and waveguide switching by applying a voltage to the electrode is performed at least by increasing the refractive index. The optical switch according to claim 1, characterized in that the optical switch includes a cycle in which
JP17121882A 1982-09-30 1982-09-30 Optical switch Granted JPS5960425A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17121882A JPS5960425A (en) 1982-09-30 1982-09-30 Optical switch
EP83305761A EP0105693B1 (en) 1982-09-30 1983-09-27 Bipolar voltage controlled optical switch using intersecting waveguide
DE8383305761T DE3381598D1 (en) 1982-09-30 1983-09-27 OPTICAL BIPOLAR SWITCH WITH VOLTAGE CONTROL BY INTERMEDIATE WAVE GUIDES.
US06/890,974 US4730884A (en) 1982-09-30 1986-07-29 Bipolar voltage controlled optical switch using intersecting waveguides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17121882A JPS5960425A (en) 1982-09-30 1982-09-30 Optical switch

Publications (2)

Publication Number Publication Date
JPS5960425A true JPS5960425A (en) 1984-04-06
JPH0449098B2 JPH0449098B2 (en) 1992-08-10

Family

ID=15919225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17121882A Granted JPS5960425A (en) 1982-09-30 1982-09-30 Optical switch

Country Status (1)

Country Link
JP (1) JPS5960425A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396853A (en) * 1977-01-31 1978-08-24 Thomson Csf Photoconductive wave instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396853A (en) * 1977-01-31 1978-08-24 Thomson Csf Photoconductive wave instrument

Also Published As

Publication number Publication date
JPH0449098B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
US4130342A (en) Passive optical channel crossover, switch and bend structure
US5153770A (en) Total internal reflection electro-optic modulator
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPS623784Y2 (en)
US5291566A (en) Total internal reflection electro-optic modulator for multiple axis and asymmetric beam profile modulation
JP3488776B2 (en) Tapered waveguide and optical waveguide device using the same
JPH08194196A (en) Production of optical waveguide device
JPH0375847B2 (en)
JPS5960425A (en) Optical switch
JPH05289119A (en) Digital optical switch
JPS5895715A (en) Optical switch
JP2613942B2 (en) Waveguide type optical device
JPH045174B2 (en)
JPH05281583A (en) Electro-optical element
JP2812974B2 (en) Polarization independent optical switch
JPH0361932B2 (en)
JPH0713685B2 (en) Crossed-waveguide optical switch
JPS59214020A (en) Optical switch
JPS6151775B2 (en)
JPS62127829A (en) Waveguide type liquid crystal matrix switch
JPS58121024A (en) Optical switch
JPS5993428A (en) Optical branch device
JPH07230013A (en) Intersection waveguide structure and optical switch using the same
JPH03293644A (en) Optical switch and deflecting method for monochromatic luminous flux using the same
JPS5936249B2 (en) light switch