JPS5960341A - Method for measuring particle size distribution using laser diffraction image - Google Patents

Method for measuring particle size distribution using laser diffraction image

Info

Publication number
JPS5960341A
JPS5960341A JP57171646A JP17164682A JPS5960341A JP S5960341 A JPS5960341 A JP S5960341A JP 57171646 A JP57171646 A JP 57171646A JP 17164682 A JP17164682 A JP 17164682A JP S5960341 A JPS5960341 A JP S5960341A
Authority
JP
Japan
Prior art keywords
diffraction image
particle size
size distribution
particles
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57171646A
Other languages
Japanese (ja)
Other versions
JPH032251B2 (en
Inventor
Suezo Nakatate
中楯 末三
Hiroyoshi Saito
斉藤 弘義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP57171646A priority Critical patent/JPS5960341A/en
Publication of JPS5960341A publication Critical patent/JPS5960341A/en
Publication of JPH032251B2 publication Critical patent/JPH032251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0211Investigating a scatter or diffraction pattern

Abstract

PURPOSE:To obtain continuously and precisely a particle size distribution by projecting a laser light to particles distributed randomly to form a diffraction image of the particles, making an electric signal indicating a space distribution of a luminous intensity of this diffraction image and by processing this electric signal in accordance with a specified equation. CONSTITUTION:The laser light is projected to the particles distributed randomly by a laser device 1 and an optical system 2, and the particles diffraction image obtained on a surface 5 through a Fourier transformation lens 4 is transduced to the electric signal l(rho) indicating the luminous intensity by a photoelectric transducer 6. Then the signal l(rho) is processed in accordance with the equations I - IIIusing a treating device 7, and the particle size distribution N(a) is obtained by adopting mutual correlation functions of F(T) and h(T) incicated by the equations II, III respectively.

Description

【発明の詳細な説明】 本発明は、レーザー回折像を用いる粒度分布の測定法に
関する。粒子の大きさやその分布状態を計測することは
、粉粒体工学、細胞学、大気汚染計測のみならず、鉄鉱
、食品、薬品などの製造業においても、品質管理、製造
工程制御などにとって極めて重要な問題となっている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring particle size distribution using a laser diffraction image. Measuring the size of particles and their distribution is extremely important not only for particle engineering, cytology, and air pollution measurement, but also for quality control and manufacturing process control in manufacturing industries such as iron ore, food, and pharmaceuticals. This has become a serious problem.

従来、レーザー光を用いた粒度分布の測定方法としては
、光散乱分光法や、レーザー光の回析像から行列計算に
より求める方法などがあったが、広範囲にわたって、連
読的な粒度分布を導出するのは、原理的に不可能であっ
た。
Conventionally, methods for measuring particle size distribution using laser light include light scattering spectroscopy and methods for determining it by matrix calculation from a diffraction image of laser light, but it is now possible to derive a continuous particle size distribution over a wide range of areas. It was impossible in principle to do so.

本発明は上記に鑑みなされたものであって、レーザー回
析像を用いて連続的な粒度分布を測定する方法を提供す
ることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method for measuring continuous particle size distribution using a laser diffraction image.

この目的は、次の工程によって達成される。This objective is achieved by the following steps.

■ ランダムに分布している粒子にレーザー光を投射し
て粒子の回析像をつくる。
■ Create a diffraction image of particles by projecting laser light onto randomly distributed particles.

■ この回析像の光強度の空間分布を表わす電気 aは粒子半径、ρは回折像面上の空間座標、N(a)は
粒度分布は定数)をつくる。
(2) Electricity a representing the spatial distribution of light intensity of this diffraction image is the particle radius, ρ is the spatial coordinate on the diffraction image surface, and N(a) is the particle size distribution, which is a constant).

〔0,∞〕の範囲で積分し、新たな変数(こゝで、A=
a2)を つくる。
Integrate over the range [0, ∞] and create a new variable (here, A=
Make a2).

U(T)はステップ関数)をつくる。U(T) is a step function).

■ 上記のF(T)h(T)との相互相関関数を求めて
N(a)を得る。
(2) Find the cross-correlation function with F(T)h(T) above to obtain N(a).

以下、添付図により本発明を説明する。第1図は本発明
の測定法の実施に用いる装置の一例であって、被測定粒
子の回析像を得るための光学系ならびに信号処理系を示
す。
The present invention will be explained below with reference to the accompanying drawings. FIG. 1 is an example of an apparatus used to carry out the measurement method of the present invention, and shows an optical system and a signal processing system for obtaining a diffraction image of a particle to be measured.

1.はコヒーレントな光を発する光源たとえばレーザー
装置であり、2.は光を平行光とする光学系、3.は粒
子がランダムに分布する被測定面であり、4.はフーリ
エ変換レンズであり、5は粒子の回折像(フーリエ変換
像)が得られる面である。6.は得られた回折像の光強
度を電気信号に変換する光電変換装置たとえばダイオー
ドアレイ、TVカメラ等であり、7.は電気信号を処理
する装置たとえばコンピュータ等である。
1. 2. is a light source that emits coherent light, such as a laser device; 2. 3. is an optical system that converts light into parallel light; is a surface to be measured on which particles are randomly distributed; 4. is a Fourier transform lens, and 5 is a surface from which a diffraction image (Fourier transform image) of particles is obtained. 6. 7. is a photoelectric conversion device that converts the light intensity of the obtained diffraction image into an electrical signal, such as a diode array or a TV camera; is a device that processes electrical signals, such as a computer.

いま、自然状態にある半径aの粒子がもつ粒度分布N(
a)を、粉粒体工学で一般に用いられている次式の対数
正規分布(logarithmic normal d
ist−ribution)で仮定すると、 得られる粒子の回析像の光強度を表わす電気信号l(ρ
)は、 (ただし、ρは回析像面上の空間座標、kは定数)で表
わされ、これは第2図に示す関係曲線となる。
Now, the particle size distribution N(
a) is defined by the logarithmic normal distribution (logarithmic normal d
ist-ribution), the electric signal l(ρ
) is expressed as (where ρ is a spatial coordinate on the diffraction image plane and k is a constant), which becomes the relationship curve shown in FIG.

の範囲で積分する、新たな関数F(T)は次式(たゞし
、A=a2) で表わされ、これは第3図に示す関係曲線となる数)を
3回微分して求めたオペレータh(T)を示し、で表わ
される。
The new function F(T), which is integrated over the range of The operator h(T) is expressed as .

そして、F(T)とh(T)の相互相関関数、すなわち
第3図と第4図との相互相関関数を求めて、粒度分布N
(a)を求めると、第5図の粒度分布曲線が得られる。
Then, the cross-correlation function of F(T) and h(T), that is, the cross-correlation function of FIGS. 3 and 4, is determined, and the particle size distribution N
When (a) is determined, the particle size distribution curve shown in FIG. 5 is obtained.

図中、イは初めに仮定した(1)式の分布曲線であり、
ロが上記処理からなる本発明により求めた分布曲線であ
る。一部分を除いて両分布曲線が一致しており、本発明
によれば連続的な粒度分布を極めて精度良く測定できる
ことが理解される。
In the figure, A is the distribution curve of equation (1) assumed at the beginning,
B is a distribution curve obtained by the present invention comprising the above processing. The two distribution curves coincide with each other except for a portion, and it is understood that according to the present invention, a continuous particle size distribution can be measured with extremely high accuracy.

なお、(1)式で表わされる粒度分布を例にとって説明
したが、第1図の装置を用いる場合について説明する。
Although the particle size distribution expressed by equation (1) has been explained as an example, the case where the apparatus shown in FIG. 1 is used will now be explained.

先ず、ランダムに分布している粒子にレーザー装置1及
び光学系2によりレーザー光を投射し、フーリエ変換レ
ンズ4を介して面5上に得られる粒子の回析像を、光電
変換装置6で光強度を表わす電気信号l(ρ)に変換す
る。次いで処埋装置7を用いて、電気信号l(ρ)を上
記(2)、(3)、(4)式に従って処理し、(3)、
(4)式で表わされるF(T)とh(T)の相互相関関
数をとって、粒度分布N(a)を求めればよい。
First, a laser device 1 and an optical system 2 project a laser beam onto randomly distributed particles, and a diffraction image of the particles obtained on a surface 5 through a Fourier transform lens 4 is converted into an optical image by a photoelectric conversion device 6. It is converted into an electrical signal l(ρ) representing the intensity. Next, using the processing device 7, the electric signal l(ρ) is processed according to the above equations (2), (3), and (4), and (3),
The particle size distribution N(a) may be obtained by taking the cross-correlation function of F(T) and h(T) expressed by equation (4).

以上説明したように、本発明はレーザー光の回析像を用
いるために、粒子の直径が光の半波長程度から、第1図
の光学系2、4を変えることにより、数cm程度までの
粒子の粒度分布を測定できる。
As explained above, since the present invention uses a diffraction image of laser light, the diameter of the particles can be changed from about half the wavelength of light to about several centimeters by changing the optical systems 2 and 4 in FIG. The particle size distribution of particles can be measured.

また、サンプルに特別な加工を必要としないため、製産
工程への導入が容易にでき、オンラインの計測ができ計
算機処理の高速化により実時間の測定が可能となる。し
たがって本発明は、粒度分布が連続的に精度良く求まる
ことゝ相俟って、製造品の異常検出や、原料の最適パラ
メータの決定など、品質管理、工程管理の迅速化、高精
度化に寄与することができる。
In addition, since no special processing is required on the sample, it can be easily introduced into the manufacturing process, and online measurement is possible, making real-time measurement possible due to faster computer processing. Therefore, the present invention allows the particle size distribution to be determined continuously and with high precision, which together contributes to speeding up and increasing the accuracy of quality control and process control, such as detecting abnormalities in manufactured products and determining optimal parameters for raw materials. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる装置の光学系と信号処理系の一
例を示す。第2図は本発明を説明するために用いた仮定
した粒度分布から成る粒子の回析像強度を表わすグラフ
、第3図は第2図に対して 第4図は本発明に用いるオペレータh(T)を示すグラ
フ。第5図は第3図と第4図との相互相関関数を求めて
得られた粒度分布N(a)を示すグラフ。 図中の符号:1−−−レーザー装置、2−−−光学系、
3−−−被測定面、4−−−フーリエ変換レンズ、5−
−−回析像が得られる面、6−−−光電変換装置、7−
−−電気信号変換装置。
FIG. 1 shows an example of an optical system and a signal processing system of an apparatus used in the present invention. FIG. 2 is a graph showing the intensity of the diffraction image of particles having the assumed particle size distribution used to explain the present invention. Graph showing T). FIG. 5 is a graph showing the particle size distribution N(a) obtained by calculating the cross-correlation function between FIG. 3 and FIG. 4. Codes in the figure: 1---Laser device, 2---Optical system,
3---Measurement surface, 4---Fourier transform lens, 5-
--Surface from which a diffraction image is obtained, 6--Photoelectric conversion device, 7-
--Electrical signal converter.

Claims (1)

【特許請求の範囲】 分布している粒子にレーザー光を投射して粒子の回折像
をつくり、この回析像の光強度の空間分布を表わす電気
信号 (こゝで、aは粒子半径、ρは回析像が表われる空間の
一次変数、N(a)は粒度分布、kは定数)をつくり、
この電気信号を次式に従って処理して粒度分布N(a)
を決定することを特徴とするレーザー回折像を用いる粒
度分布測定法。 積分し、a2=Aなる変数変換を行ってを導出し、オペ
レータ (こゝでU(T)はステップ関数)と F(T)との相関関数を導出してN(a)を求める。
[Claims] Laser light is projected onto distributed particles to create a diffraction image of the particles, and an electric signal representing the spatial distribution of the light intensity of this diffraction image (here, a is the particle radius, ρ is the primary variable of the space in which the diffraction image appears, N(a) is the particle size distribution, and k is a constant),
This electric signal is processed according to the following formula to obtain the particle size distribution N(a)
A particle size distribution measuring method using a laser diffraction image, which is characterized by determining the . Integrate, perform variable conversion such that a2=A, and derive N(a) by deriving the correlation function between the operator (here, U(T) is a step function) and F(T).
JP57171646A 1982-09-30 1982-09-30 Method for measuring particle size distribution using laser diffraction image Granted JPS5960341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171646A JPS5960341A (en) 1982-09-30 1982-09-30 Method for measuring particle size distribution using laser diffraction image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171646A JPS5960341A (en) 1982-09-30 1982-09-30 Method for measuring particle size distribution using laser diffraction image

Publications (2)

Publication Number Publication Date
JPS5960341A true JPS5960341A (en) 1984-04-06
JPH032251B2 JPH032251B2 (en) 1991-01-14

Family

ID=15927066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171646A Granted JPS5960341A (en) 1982-09-30 1982-09-30 Method for measuring particle size distribution using laser diffraction image

Country Status (1)

Country Link
JP (1) JPS5960341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175645A (en) * 1986-01-30 1987-08-01 Nikkiso Co Ltd Online automatic powdery and granular material grain size analyzer
JPH03115949A (en) * 1989-09-29 1991-05-16 Shimadzu Corp Measuring method for distribution of particle size

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535937A (en) * 1976-07-02 1978-01-19 Ibm Firsttin firsttout memory
JPS5544900A (en) * 1978-09-23 1980-03-29 Stamicarbon Stretching method for netted material web and its stretching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535937A (en) * 1976-07-02 1978-01-19 Ibm Firsttin firsttout memory
JPS5544900A (en) * 1978-09-23 1980-03-29 Stamicarbon Stretching method for netted material web and its stretching device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175645A (en) * 1986-01-30 1987-08-01 Nikkiso Co Ltd Online automatic powdery and granular material grain size analyzer
JPH03115949A (en) * 1989-09-29 1991-05-16 Shimadzu Corp Measuring method for distribution of particle size

Also Published As

Publication number Publication date
JPH032251B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
US7092105B2 (en) Method and apparatus for measuring the three-dimensional surface shape of an object using color informations of light reflected by the object
US4311383A (en) Method for determination of velocity and direction of motion of moving object by speckle patterns and apparatus therefor
JPH0754252B2 (en) Z-axis position measuring method and device
US5128550A (en) Method of and an apparatus for testing large area panes for optical quality
JPH07306018A (en) Device and method for non-contact measurement of thickness of semi-conductor
CN110726372B (en) Method for accurately processing single-slit diffraction image
CN111220088B (en) Measurement system and method
Maksarov et al. Studying parameters and quality of thread by optical light field recorder
JPS5960341A (en) Method for measuring particle size distribution using laser diffraction image
US20110157458A1 (en) Method and apparatus for focusing
JPH0327065B2 (en)
SU545174A1 (en) Method for particle analysis of variance
RU2044265C1 (en) Method and device for measuring mean diameter of objects in a group
JPS5796241A (en) Method and device for measuring density of impurity in semiconductor
JPS56132508A (en) Pattern measuring device
GB1293348A (en) A method of and apparatus for analysing objects with two or three dimensional shapes and/or patterns
CN110006924B (en) Method for detecting two-dimensional profile of micro defect on surface of optical element
JP3302991B2 (en) Particle size distribution measuring device
RU2535519C2 (en) Method of remote measurement of surface roughness parameters
JP6923931B2 (en) Necessary component separation method for thickness and shape measurement
SU735914A1 (en) Method of measuring small lateral dimensions
Iwai et al. Space-time Spectrum Correlation Function of the Dynamic Polychromatic Laser Speckle
Eiju et al. Determination of the central position of rotation of a rotating object by laser Doppler velocimetry
Harding Optical moire leveraging analysis
JPH0447206A (en) Measuring method and apparatus by vertical light cutting