JPH03115949A - Measuring method for distribution of particle size - Google Patents

Measuring method for distribution of particle size

Info

Publication number
JPH03115949A
JPH03115949A JP1256158A JP25615889A JPH03115949A JP H03115949 A JPH03115949 A JP H03115949A JP 1256158 A JP1256158 A JP 1256158A JP 25615889 A JP25615889 A JP 25615889A JP H03115949 A JPH03115949 A JP H03115949A
Authority
JP
Japan
Prior art keywords
measured
liquid
particle size
sample
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256158A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hayashida
林田 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1256158A priority Critical patent/JPH03115949A/en
Publication of JPH03115949A publication Critical patent/JPH03115949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance measurement precision by holding liquid having the nearly same refractive index as solid in which particles to be measured are dispersed in a transparent vessel optically free from a strain and irradiating this liquid by laser beams in such a state that a sample to be measured is immersed in this liquid and measuring the intensity distribution of diffracted light or scattered light of laser beams. CONSTITUTION:Liquid 3 having the nearly same refractive index as solid (medium) 2b in which particles 2a to be measured are dispersed is held in a transparent vessel 1 made so that a strain is not optically caused. This liquid is irradiated by laser beams L in such a state that a sample 2 to be measured is immersed in this liquid 3. The intensity distribution of diffracted light or scattered light of laser beams L is measured. Thereby the distribution of particle size of particles 2a group in glass and a transparent film or sheet, etc., can be rapidly and easily measured by utilizing a laser diffracting/scattering method. Potentiality for interposing artificial error is reduced and measurement precision is enhanced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光透過性の固体中に分散している粒子群の粒度
分布を測定する方法に関し、ガラス、高分子、プラスチ
ック工業等における粒度分布の測定に利用するとこので
きる粒度分布測定方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for measuring the particle size distribution of a group of particles dispersed in a light-transmitting solid. This invention relates to a particle size distribution measurement method that can be used to measure particle size distribution.

〈従来の技術〉 粒度分布の測定方法としては、一般に、レーザ回折/散
乱法や、沈降法、あるいは顕微鏡法等があるが、ガラス
等の光透過性の固体中に分散している粒子群の粒度分布
を測定するには、従来、専ら顕微鏡法が用いられている
<Prior art> Generally, methods for measuring particle size distribution include laser diffraction/scattering method, sedimentation method, and microscopy method. To measure particle size distribution, microscopy has traditionally been used exclusively.

なお、顕微鏡性以外の測定法のうち、レーザ回折/散乱
法は、第4図にその測定原理を示すように、媒液中に粒
子Gを分散させた懸濁液Sを収容し、これにレーザ光り
を照射して得られる回折光ないしは散乱光を集光レンズ
Cを介してデテクタD上に集光して、その強度分布を測
定する方法であって、懸濁液Sの代わりに、ガラスや高
分子フィルム等の固体中に分散した粒子を置くことによ
って、−見測定が可能かのように考えられる。
Among measurement methods other than microscopic ones, the laser diffraction/scattering method, as shown in Figure 4, contains a suspension S in which particles G are dispersed in a medium. This is a method in which diffracted light or scattered light obtained by irradiating laser light is focused onto a detector D via a condensing lens C, and the intensity distribution thereof is measured. It is thought that it is possible to make measurements by placing particles dispersed in a solid such as a polymer or a polymer film.

ところが、このような光透過性の試料は通常は光学的に
歪んでおり、特に高分子フィルムや樹脂シートの場合は
歪みは大きく、第5図に示すように、レーザ光は反射し
たり屈折したりして正確な測定はできない。
However, such optically transparent samples are usually optically distorted, especially in the case of polymer films and resin sheets, and as shown in Figure 5, the laser light is reflected or refracted. Therefore, accurate measurements cannot be made.

すなわち、第4図のように光学的に歪みのない場合には
、粒子Gによって回折ないしは散乱しない透過光はレン
ズCによってデテクタDの中心に集中する。また、第4
図においてLaは粒子Gによって回折した光の進路を一
つだけ示したものであるが、このような回折光は、歪み
の無い場合には通常は透過光の影響を受けずに測定でき
る。しかし、第5図に示すように試料に歪みがあると、
透過光はデテクタDの中心に集中しないため、回折光と
の判別がつかなくなり、実質的に測定不可能となる。
That is, when there is no optical distortion as shown in FIG. 4, transmitted light that is not diffracted or scattered by the particles G is concentrated at the center of the detector D by the lens C. Also, the fourth
In the figure, La indicates only one path of light diffracted by the particle G, but such diffracted light can normally be measured without being affected by transmitted light if there is no distortion. However, if the sample is distorted as shown in Figure 5,
Since the transmitted light is not concentrated at the center of the detector D, it cannot be distinguished from the diffracted light, making measurement virtually impossible.

〈発明が解決しようとする課題〉 ところで、顕微鏡法は、顕微鏡写真から粒子の大きさと
個数を測定し、その結果に基づいて粒度分布を求める方
法であって、測定に多大な時間と労力が必要である。
<Problem to be solved by the invention> By the way, microscopy is a method of measuring the size and number of particles from a microscopic photograph and determining the particle size distribution based on the results, and the measurement requires a great deal of time and effort. It is.

本発明の目的は、従来実質的に測定不能であったレーザ
回折/散乱法を用いて、固体中に分散した粒子群の粒度
分布の測定を可能とし、この種測定の迅速化と能率化を
達成することのできる粒度分布測定方法を提供すること
にある。
The purpose of the present invention is to make it possible to measure the particle size distribution of particles dispersed in a solid using laser diffraction/scattering, which has been virtually impossible to measure in the past, and to speed up and streamline this type of measurement. The object of the present invention is to provide a method for measuring particle size distribution that can be achieved.

〈課題を解決するための手段〉 上記の目的を達成するため、本発明では、実施例に対応
する第1図に示すように、光学的に歪みのないように作
られた透明容器1内に、被測定粒子2aが分散している
固体(媒質)2bと路間等の屈折率を持つ液体3を収容
し、かつ、その液体3内に被測定試料2を浸漬した状態
でこれにレーザ光りを照射し、そのレーザ光の回折光も
しくは散乱光の強度分布を測定することによって特徴付
けられる。
<Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIG. A liquid 3 having a refractive index is contained between a solid (medium) 2b in which particles to be measured 2a are dispersed and a liquid 3 having a refractive index is contained, and a laser beam is applied to the sample to be measured 2 immersed in the liquid 3. It is characterized by irradiating a laser beam and measuring the intensity distribution of the diffracted light or scattered light of the laser light.

なお、本発明明細書でいう光学的に歪みのない容器とは
、レーザ光の行路付近の壁体が、前後とも厚さがむらな
く均一で、かつ、両壁体が互いに平行になっている容器
をいう。
Note that a container without optical distortion as used in the specification of the present invention refers to a container in which the wall near the path of the laser beam has a uniform thickness from front to back, and both walls are parallel to each other. means a container.

〈作用〉 被測定試2の周囲をその媒質2bの屈折率と路間等の屈
折率を持つ液体3で囲み、かつ、その液体3を光学的に
歪みのない透明容器1内に収容しているので、被測定試
料2の光学的歪みは外に対してはなくなる。つまり、被
測定試料2の表面の凹凸の影響がなくなり、この凹凸に
よる光の屈折あるいは反射が生じない。
<Function> The sample to be measured 2 is surrounded by a liquid 3 having a refractive index equal to that of the medium 2b, and the liquid 3 is contained in a transparent container 1 without optical distortion. Therefore, optical distortion of the sample to be measured 2 to the outside is eliminated. In other words, the influence of the unevenness on the surface of the sample to be measured 2 is eliminated, and no refraction or reflection of light occurs due to the unevenness.

〈実施例〉 第1図は本発明実施例の説明図である。。<Example> FIG. 1 is an explanatory diagram of an embodiment of the present invention. .

被測定粒子2aが光透過性の固体である媒質2b中に分
散した被測定試料2は、透明容器1内に満たされた液体
3中に浸漬されている。この液体3は媒質2bとほぼ等
しい屈折率を持っている。
A sample 2 to be measured, in which particles 2a to be measured are dispersed in a medium 2b that is a light-transmitting solid, is immersed in a liquid 3 filled in a transparent container 1. This liquid 3 has approximately the same refractive index as the medium 2b.

また、透明容器1の壁体は−様な厚さを持ち、がつ、互
いに対抗する壁は平行になっており、光学的に歪みがな
い。
Further, the walls of the transparent container 1 have a uniform thickness, and the opposing walls are parallel, so there is no optical distortion.

そして、このような被測定試料2と液体3を収容した透
明容器1には、その壁体に直行してレーザ光りが照射さ
れるとともに、透明容器1を経たレーザ光はその後ろの
集光レンズCを介してデテクタDに導かれる。
The transparent container 1 containing the sample to be measured 2 and the liquid 3 is irradiated with laser light directly to its wall, and the laser light that has passed through the transparent container 1 is directed to the condenser lens behind it. C to a detector D.

以上のような本発明実施例によれば、被測定試料2が樹
脂シート等のように表面に凹凸があり光学的に歪みの多
いものであっても、その表面が媒− 質2bと同等の屈折率を持つ液体3によって囲まれ、し
かもこれらが光学的に歪みのない透明容器1内に収容さ
れているので、被測定試料2と液体3との界面は光学的
には実質的にほとんどなくなり、被測定試料2の表面の
凹凸によるレーザ光の反射や屈折による影響は生じない
According to the embodiments of the present invention as described above, even if the sample to be measured 2 has an uneven surface and is optically distorted, such as a resin sheet, the surface is equivalent to that of the medium 2b. Surrounded by a liquid 3 having a refractive index and housed in a transparent container 1 with no optical distortion, the interface between the sample 2 to be measured and the liquid 3 is optically virtually eliminated. , there is no effect of reflection or refraction of the laser beam due to the unevenness of the surface of the sample 2 to be measured.

以上のような本発明実施例により、実際に粒度分布を測
定した例を〔表1〕、〔表2〕に示す。
[Table 1] and [Table 2] show examples in which the particle size distribution was actually measured using the above embodiments of the present invention.

この測定例は、被測定試料としてポリエチレンフィルム
の表面にけい砂(SfO□)を固定したものを使用し、
これの周囲を満たす液体としてはp−キシレンを使用し
た。ここで、ポリエチレンの屈折率は1.51で、p−
キシレンの屈折率は1.49である。
In this measurement example, a polyethylene film with silica sand (SfO□) fixed on the surface was used as the sample to be measured.
p-xylene was used as the liquid that filled the surrounding area. Here, the refractive index of polyethylene is 1.51, and p-
The refractive index of xylene is 1.49.

〔表1〕は粒度分布表で、表中q、は頻度分布%、Q3
は積算ふるい下%である。また、〔表2〕は〔表1〕の
基になる回折光の強度分布(回折角度に対する光強度)
であり、リングナンバー(RfngNα)はデテクタD
上の同心円状の受光面の名称であり、値が小さい程その
半径が小さい、つまり回=6一 折角度の小さい光を受けるものである。
[Table 1] is a particle size distribution table, q in the table is frequency distribution %, Q3
is the cumulative under-sieving %. In addition, [Table 2] is the basis of [Table 1], which is the intensity distribution of diffracted light (light intensity versus diffraction angle).
and the ring number (RfngNα) is the detector D
This is the name of the above concentric light-receiving surface, and the smaller the value, the smaller the radius, that is, the smaller the angle of refraction.

そして、第2図は〔表1〕のQ3をグラフで表したもの
である。
FIG. 2 is a graph representing Q3 in [Table 1].

一方、比較例として、上記と全く同様の被測定試料に、
第5図のように直接レーザ光を照射して粒度分布を測定
した例を〔表3〕および〔表4〕に示し、また、第3図
には同様にグラフ化したものを示す。
On the other hand, as a comparative example, for a sample to be measured that is exactly the same as above,
Tables 3 and 4 show examples in which the particle size distribution was measured by direct laser beam irradiation as shown in FIG. 5, and FIG. 3 shows a similar graph.

〔表1〕 〔表2〕 〔表3〕 一 〔表4〕 ここで、通常、回折光の強度分布は連続的に変化する、
換言すればなめらかに変化するものであるが、比較例で
は、その強度分布は不連続でなめらかさがない。特に、
リングナンバー01〜06において顕著である。これは
、第5図に示したような被測定試料の歪み、表面反射に
よる迷光によるものである。その結果、粒度分布も10
0μm以上に異常な分布を示しており、うまく測定でき
ていないことが明らかとなっている。
[Table 1] [Table 2] [Table 3] [Table 4] Here, the intensity distribution of the diffracted light usually changes continuously,
In other words, it changes smoothly, but in the comparative example, the intensity distribution is discontinuous and lacks smoothness. especially,
This is noticeable in ring numbers 01-06. This is due to distortion of the sample to be measured and stray light due to surface reflection as shown in FIG. As a result, the particle size distribution is also 10
It shows an abnormal distribution above 0 μm, and it is clear that the measurement is not successful.

1〇− これに対して、本発明実施例では、このような傾向は極
めて少なく、正常な測定が行われていると判断できる。
10- On the other hand, in the examples of the present invention, such a tendency is extremely rare, and it can be determined that normal measurements are being performed.

なお、被測定試料2の周囲を満たす液体3としては、ヨ
ウ化エチレン(CHz I z )とメチルアルコール
(CH30H)の混合物を一例として挙げることができ
る。この両者の屈折率は、CHzIzが1,74、CH
30Hが1.33であり、これらの混合比を変えること
によって1.33〜1.74の範囲で種六の屈折率の媒
液を作ることができる。
An example of the liquid 3 filling the area around the sample to be measured 2 is a mixture of ethylene iodide (CHz I z ) and methyl alcohol (CH30H). The refractive index of both is 1.74 for CHzIz and CH
30H is 1.33, and by changing the mixing ratio of these, it is possible to create a medium having a refractive index of type 6 in the range of 1.33 to 1.74.

このとき、混合後の屈折率nは、成分1の屈折率および
密度ををnlおよびρ1、成分2の屈折率および密度を
n2およびρ2とし、混合後の密度をρ、更に成分2の
重量比率をCとすると、で与えられるので、被測定試料
と同等の屈折率の液体を得るための混合比は容易に決定
できる。
At this time, the refractive index n after mixing is defined as the refractive index and density of component 1 as nl and ρ1, the refractive index and density of component 2 as n2 and ρ2, the density after mixing as ρ, and the weight ratio of component 2. Assuming that C is given by, the mixing ratio for obtaining a liquid having a refractive index equivalent to that of the sample to be measured can be easily determined.

ここで、被測定試料の媒質の屈折率が未知の場合、混合
比率を決定する方法として、成分1に被測定試料を沈め
、これに成分2を少量ずつ滴下し、目視によって被測定
試料の界面が見えなくなるところをもって測定する方法
も考えられる。
Here, if the refractive index of the medium of the sample to be measured is unknown, the method of determining the mixing ratio is to submerge the sample to be measured in component 1, drop component 2 little by little, and visually check the interface of the sample to be measured. Another possible method is to measure at the point where it becomes invisible.

〈発明の効果〉 以上説明したように、本発明によれば、従来顕微鏡法に
頼っていたガラスや透明フィルム、あるいはシート中等
の粒子群の粒度分布が、レーザ回折/散乱法を用いて迅
速かつ容易に測定可能となる。また、顕微鏡法に比して
人為的誤差の介入する余地も少なくなり、測定精度およ
び信顛性の向上も見込まれる。
<Effects of the Invention> As explained above, according to the present invention, the particle size distribution of particles in glass, transparent films, sheets, etc., which conventionally relied on microscopy, can be quickly and easily determined using laser diffraction/scattering. Easily measurable. Furthermore, compared to microscopy, there is less room for human error to intervene, and measurement accuracy and reliability are expected to be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の説明図、第2図は本発明実施例
により実[こ粒度分布を測定した結果を示すグラフ、第
3図は比較例によって同様の粒度分布を測定した結果を
示すグラフ、第4図はレーザ回折/散乱法の測定原理図
、第5図は通常のレーザ回折/散乱法を用いて歪みのあ
る試料を測定した場合の説明図である。 1・・・・透明容器 2・・・・被測定試料 2a・・・・被測定粒子 2b・・・・媒質 3・・・・液体 L・・・・レーザ光 C・・・・集光レンズ D・・・・デテクタ
Fig. 1 is an explanatory diagram of an example of the present invention, Fig. 2 is a graph showing the results of measuring the actual particle size distribution according to the example of the present invention, and Fig. 3 is a graph showing the results of measuring the similar particle size distribution using a comparative example. The graph shown in FIG. 4 is a measurement principle diagram of the laser diffraction/scattering method, and FIG. 5 is an explanatory diagram of the case where a distorted sample is measured using the normal laser diffraction/scattering method. 1... Transparent container 2... Sample to be measured 2a... Particles to be measured 2b... Medium 3... Liquid L... Laser light C... Condensing lens D...Detector

Claims (1)

【特許請求の範囲】[Claims] 光透過性の板状固体中に分散している粒子群の粒度分布
を、レーザ回折法もしくは散乱法を用いて測定する方法
であって、光学的に歪みのないように作られた透明容器
内に、被測定粒子が分散している固体と略同等の屈折率
を持つ液体を収容し、かつ、その液体内に被測定試料を
浸漬した状態でこれにレーザ光を照射し、そのレーザ光
の回折光もしくは散乱光の強度分布を測定することを特
徴とする粒度分布測定方法。
A method of measuring the particle size distribution of particles dispersed in a light-transmitting plate-like solid using a laser diffraction method or a scattering method, in a transparent container made to avoid optical distortion. A liquid with a refractive index approximately equal to that of the solid in which the particles to be measured are dispersed is contained, and the sample to be measured is immersed in the liquid and irradiated with a laser beam. A particle size distribution measuring method characterized by measuring the intensity distribution of diffracted light or scattered light.
JP1256158A 1989-09-29 1989-09-29 Measuring method for distribution of particle size Pending JPH03115949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256158A JPH03115949A (en) 1989-09-29 1989-09-29 Measuring method for distribution of particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256158A JPH03115949A (en) 1989-09-29 1989-09-29 Measuring method for distribution of particle size

Publications (1)

Publication Number Publication Date
JPH03115949A true JPH03115949A (en) 1991-05-16

Family

ID=17288711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256158A Pending JPH03115949A (en) 1989-09-29 1989-09-29 Measuring method for distribution of particle size

Country Status (1)

Country Link
JP (1) JPH03115949A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524283A (en) * 1974-09-18 1977-01-13 Dihaco Diamanten Handels Co Method of detecting coated substance in jewel
JPS5960341A (en) * 1982-09-30 1984-04-06 Rikagaku Kenkyusho Method for measuring particle size distribution using laser diffraction image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524283A (en) * 1974-09-18 1977-01-13 Dihaco Diamanten Handels Co Method of detecting coated substance in jewel
JPS5960341A (en) * 1982-09-30 1984-04-06 Rikagaku Kenkyusho Method for measuring particle size distribution using laser diffraction image

Similar Documents

Publication Publication Date Title
US3850525A (en) Simultaneous multiple measurements in laser photometers
US4402614A (en) Method and apparatus for measuring the motility of sperm cells
EP0152834B1 (en) Apparatus for automatic measurement of stress in a transparent body by means of scattered light
US4027973A (en) Detector apparatus for laser light scattering photometers
CN105891063A (en) Multi-angle dynamic light scattering particle size distribution measuring device and method
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
US4928153A (en) Optical measurement of particle concentration
ATE22732T1 (en) METHOD FOR MEASUREMENT OF VELOCITY GRADIENTS IN A FLOWING MEDIUM AND DEVICE FOR CARRYING OUT THE METHOD.
US3843268A (en) Sample container for laser light scattering photometers
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JPH0658865A (en) Method and apparatus for obtaining grain-size distribution with spectrum-light absorbing measurement during sedimentation
EP1441211A2 (en) Apparatus for measuring residual stress in optical fiber
US3049047A (en) Method for analyzing microscopic particles and the like
JPH03115949A (en) Measuring method for distribution of particle size
GB2061495A (en) Improvements In or Relating To Measurement of the Thickness of a Liquid Film
Billmeyer Jr Measurements of the refractive index of films
GB2059051A (en) An apparatus for measuring the aggregation of dispersed particles
US5110208A (en) Measurement of average density and relative volumes in a dispersed two-phase fluid
JPS6131907A (en) Film thickness measuring instrument
US3068687A (en) Method and apparatus for measuring the surface tension of liquids
US12000769B2 (en) Particle standards for reflected light scatter measurements from degenerate particle foci
SU1004755A1 (en) Optical method of measuring object surface roughness height
Wright The measurement of the refractive index of a drop of liquid
SU819646A1 (en) Device for determination of diffusive media optical characteristics
RU1820206C (en) Method for determination roughness of workpiece