JPS59593A - Fan - Google Patents

Fan

Info

Publication number
JPS59593A
JPS59593A JP11032282A JP11032282A JPS59593A JP S59593 A JPS59593 A JP S59593A JP 11032282 A JP11032282 A JP 11032282A JP 11032282 A JP11032282 A JP 11032282A JP S59593 A JPS59593 A JP S59593A
Authority
JP
Japan
Prior art keywords
blade
acceleration
flow
static pressure
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11032282A
Other languages
Japanese (ja)
Other versions
JPH0474560B2 (en
Inventor
Kanjiro Kinoshita
歓治郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP11032282A priority Critical patent/JPS59593A/en
Publication of JPS59593A publication Critical patent/JPS59593A/en
Publication of JPH0474560B2 publication Critical patent/JPH0474560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/025Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal comprising axial flow and radial flow stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To raise the static pressure efficiency of a fan, by employing such an arrangement that centripetal acceleration is caused at the front half of a blade and axial-flow or mixed-flow acceleration is caused at the rear-half of the blade so that a high static pressure can be obtained without stator blades. CONSTITUTION:Blades 3 are fixed to the outer circumferential surface of a hub 2 of an impeller 1 whose surface is shaped substantially in hyperboloid of one sheet, and the part of the leading edge 3a of the blade 3 located on the tip side 3a1 is tilted to extend in more parallel to the fluid flow than the part of the leading edge 3a located on the hub side 3a2. The outer circumferential surface of the hub 2 is composed of a front curved surface 6a where centripetal acceleration directed obliquely toward the inside is produced and a rear curved surface 6b where axial-flow acceleration in the axial direction or mixed-flow acceleration directed obliquely toward the outside is produced. Thus, since the centripetal acceleration is produced at the front half of the blade and the axial-flow acceleration or mixed-flow acceleration is produced at the rear half of the blade, a high static pressure can be obtained without stator blades. Therefore, it is enabled to increase the chord length of the blade, to make a fluid flow through fluid passages between the blades substantially at a uniform speed, to reduce the internal loss of a fan and to raise the static pressure efficiency.

Description

【発明の詳細な説明】 本発明は、流体を外周方向から求心的に吸い込み、中心
部から吐出するようにした送風機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blower that sucks in fluid centripetally from the outer circumference and discharges it from the center.

第1図および第2図には、従来の求心型送風機の7例(
特公昭3!;−20071号公報参照)が周側に、流入
空気に予旋回を与えるための前置静翼3′、動翼コ′の
後縁 blの内周側に、動圧の静圧転換を行なわしめる
ための後置静翼≠′がそれぞれ取付けられている。
Figures 1 and 2 show seven examples of conventional centripetal blowers (
Special Public Show 3! ;-20071 publication) converts dynamic pressure to static pressure on the inner circumferential side of the front stator vane 3' for giving pre-swirl to the incoming air, and the trailing edge bl of the rotor blade A'. A rear stator vane ≠' is attached to each for closing.

ここで、一般の求心型送風機の作動について説明する。Here, the operation of a general centripetal blower will be explained.

第3図には、第1図の求心型送風機において、前置静翼
3′および後置静翼t′がない状態で動翼λ′を作動さ
せた場合の羽根入口(前線コα′)および出口(後縁2
b′)における速度三角形が示されている。第3図にお
いて、符号Uは周速度(−)、Cは絶対速度(%)、W
ti相対速度(%)をそれぞれ示し、且つ各符号におけ
る添字/は入口、コは出口、語は周方向成分、鵬は径方
向成分をそれぞれ示している。
FIG. 3 shows the blade inlet (front line α') when the rotor blade λ' is operated in the centripetal blower shown in FIG. and exit (trailing edge 2
The velocity triangle at b′) is shown. In Fig. 3, the symbol U is the peripheral speed (-), C is the absolute speed (%), and W
ti indicates the relative velocity (%), and the subscript / in each symbol indicates the inlet, the letter the outlet, the term the circumferential component, and the letter the radial component, respectively.

さて、動翼λ′の運転によって生じる理論全圧上昇P@
(III A))は次式で与えられる。
Now, the theoretical total pressure increase P@ caused by the operation of rotor blade λ'
(IIIA)) is given by the following formula.

p、=γ乃 (U、09に、 −U 、OS、 )  
    ・・・(1)ここにγ;流体の比重量Ckf/
d) 9:重力の加速度C−/l’) 式(1)において、第3図の場合、前置静翼3′がない
ので流体りほば径方向流入となりO=十〇である。
p, = γno (U, 09, -U, OS, )
...(1) Here γ; Specific weight of fluid Ckf/
d) 9: Acceleration of gravity C-/l') In the equation (1), in the case of FIG. 3, since there is no front stator vane 3', the fluid flows in the radial direction and O=10.

故に、P= = Vy (U、Os、)       
” ” ” (2)従って、前記従来の求心型送風機り
これと同一外径の遠心ファンを同一回転数で運転させた
場合に比べて、Ll、<U、であり、得られる理論全圧
上昇りが小さくなる。又、動翼λの運転によって生じる
理論静圧上昇Pg、は次式で与えられる。
Therefore, P= = Vy (U, Os,)
(2) Therefore, compared to the case where a centrifugal fan with the same outer diameter as the conventional centripetal blower is operated at the same rotation speed, Ll<U, and the resulting theoretical total pressure increase The theoretical static pressure increase Pg caused by the operation of the rotor blade λ is given by the following equation.

PI、 ” ps  7 G”/−29(/  W )
    ・・・(’)ここにマ:デイ7ユーザ効率 式(8)において、後置静翼≠がなければ、マー>0−
である。遠心ファンの場合は、渦室あるいは渦形室が設
置されており、ディフューザ効率ηの同上によって動圧
γOl’/、2 yの静圧回復が良好に行なわれ、高い
静圧が得られるようになっている。
PI, “ps 7 G”/-29 (/W)
...(') Here, Ma: Day 7 In the user efficiency formula (8), if there is no trailing stationary vane, then Ma > 0-
It is. In the case of a centrifugal fan, a vortex chamber or a vortex-shaped chamber is installed, and the static pressure recovery of the dynamic pressure γOl'/, 2y is performed well due to the same as the diffuser efficiency η, so that a high static pressure can be obtained. It has become.

以上の1点から考察すると、動翼ノのみをもつ求心型送
風機は、普通の遠心ファンと比較して、同一回転数の場
合に得られる静圧上昇が小さい。
Considering the above points, a centripetal blower having only rotor blades has a smaller increase in static pressure at the same rotation speed than a normal centrifugal fan.

この対策として、従来は第1図および第1図図示の如く
、動翼λ′の前縁2 g’外周側に、回転方向と逆方向
の絶対速度Cの周方向成分(Os、)を与え得るように
前置静翼3′を設置して、前記式(1)で与えられる理
論全圧上昇P・を大きくし、且つ動翼ノの後縁、2b′
内周側に後置静翼lを設置して、前記式(8)における
動圧γC,ン、!9が少しでも静圧回復に供せられるよ
うにしている。
As a countermeasure against this problem, in the past, as shown in Figs. The front stator vane 3' is installed so as to increase the theoretical total pressure rise P given by the above formula (1), and the trailing edge of the rotor blade, 2b'
By installing a rear stator vane l on the inner peripheral side, the dynamic pressure γC,n,! in the above equation (8) is calculated. 9 is used to restore static pressure as much as possible.

第1図および第2図に示す求心型送風機において、動翼
λ′を作動させた場合の動翼前縁、21L′および動翼
後縁2 b’における速度三角形が第弘図に示されてい
る。
In the centripetal blower shown in FIGS. 1 and 2, the velocity triangle at the leading edge of the rotor blade, 21L', and the trailing edge 2b' of the rotor blade when the rotor blade λ' is operated is shown in FIG. There is.

従って、この求心型送風機にて得られる静圧上昇PJは
次式で与えられる。
Therefore, the static pressure increase PJ obtained by this centripetal blower is given by the following equation.

P、r = rig (U、Csz、  u+cvb、
)−γ’12.9 (/ −t) )−△P、    
        ・・・(4)ここに△PI:ファン内
部損失 このファン内部損失ΔP8は、前置靜翼内損失。
P, r = rig (U, Csz, u+cvb,
)-γ'12.9 (/-t))-△P,
...(4) Here, △PI: Fan internal loss This fan internal loss ΔP8 is the loss in the front silent blade.

動′翼内損失、後置静翼内損失、出口部の直角曲がり損
失およびその他の損失の和として表わされるが、従来例
の求心型送風機においては、(α)前置静翼3′および
後置静翼Jを有しているため、動R,2′との間のポテ
ンシャル干渉および静翼自体の表面摩擦損失が存在する
ことによる損失、(A)  比較的短い翼弦長L′の動
翼ゴで所定の仕事をしなければならないため、真面負荷
分布が急激に変化するための形状損失、 (C)  後置静翼≠′を設置して、旋回速度成分Os
It is expressed as the sum of losses in the rotor blade, loss in the rear stator blade, right angle bending loss at the outlet, and other losses.In the conventional centripetal blower, (α) Since it has a stationary vane J, there is potential interference with the dynamic R,2' and loss due to the surface friction loss of the stationary vane itself.(A) Motion with a relatively short chord length L' (C) By installing a trailing stationary vane≠', the rotation speed component Os
.

をもつ出口絶対速度0.を径方向へ向かわしめてC・−
〇m、としても、後置静翼弘′の内径r:が動麺内径r
ζよりも小さくなるので、a、−C,が小さくなり、動
圧の静圧回復はほとんど見込めない、(d)  羽根車
/′出口において、空気流Wの流線に一径方向から軸方
向へ向う急激な直角曲がりが存在することによる損失、 (−)動翼λ′および静翼3’、!I’の組合せによる
ポテンシャル干渉に伴う騒音増大、 等が考えられる。従って1.前記式(4)において、フ
ァン内部損失ΔF、rが大きくなり、得られる静圧上昇
りが小さくなる。
Exit absolute velocity with 0. Direct it in the radial direction to C・-
Even if 〇m, the inner diameter r of the trailing stationary blade is the inner diameter r of the moving noodles.
Since it becomes smaller than ζ, a, -C, becomes smaller, and recovery of static pressure from dynamic pressure is hardly expected. Losses due to the presence of sharp right-angled bends towards (-) rotor blade λ' and stationary blade 3', ! Possible causes include noise increase due to potential interference due to the combination of I', etc. Therefore 1. In the above equation (4), the fan internal loss ΔF,r becomes large, and the resulting rise in static pressure becomes small.

上記せる如く、従来の求心型送風機には、静圧効率が低
く、又騒音が大きい、という問題点があった。更に、前
置静翼および後M静翼が必要なことにより、構造が複雑
化するという問題もあった。
As mentioned above, conventional centripetal blowers have the problems of low static pressure efficiency and large noise. Furthermore, there is a problem in that the structure becomes complicated due to the necessity of front stator vanes and rear M stator vanes.

本発明は、上記問題点に鑑み、羽根車を構成する略単葉
双曲面状のハブの外周面形状を内方への求心加速および
軸流加速あるいは外方への斜流加速を生ぜしめ得るよう
な新規な曲面で構成するとともに、羽根の前半部におい
て求心加速を生ぜしぬ、後半部で軸流あるいは斜流加速
を生ぜしめ得るような形状にすることによって、送風機
の静圧効率を向上せしめることを目的とするものであり
、かかる目的達成のため、略単葉双曲面状のハブおよび
これに植設された複数枚の羽根を有する羽根車と該羽根
車の外周を被包する案内ガイドとからなる送風機におい
て、前記各羽根における前縁部のチップ側をハブ側より
も流れ方向に近づくように傾斜させるとともに、前記ハ
ブの外周面を、斜め内方への求心加速な生ぜしめる前部
曲面と軸方向への軸流加速あるいL斜め外方への斜流加
速を生ぜしめる後部曲面とで構成するとともに、羽根の
前半部において求心加速を生せしめ、後半部で軸流ある
いは斜流加速を生ぜしめ得る形状にしたことを特徴とす
る。
In view of the above-mentioned problems, the present invention has been devised so that the outer peripheral surface shape of the substantially monoplane hyperboloid hub constituting the impeller can produce inward centripetal acceleration and axial flow acceleration or outward diagonal flow acceleration. The static pressure efficiency of the blower is improved by constructing it with a new curved surface and creating a shape that does not produce centripetal acceleration in the front half of the blade, but allows axial flow or diagonal flow acceleration to occur in the rear half. In order to achieve this purpose, an impeller having a substantially monoplane hyperboloid hub, a plurality of blades planted on the hub, and a guide guide covering the outer periphery of the impeller are provided. A front curved surface that causes the tip side of the leading edge of each blade to be inclined closer to the flow direction than the hub side, and that causes the outer peripheral surface of the hub to be centripetally accelerated diagonally inward. and a rear curved surface that produces axial flow acceleration in the axial direction or diagonal flow acceleration diagonally outward, and centripetal acceleration in the front half of the blade, and axial flow or diagonal flow acceleration in the rear half. It is characterized by having a shape that can cause

以下、第5図ないし第り図を参照して本発明の実施例に
かかる送風機を説明する。
Hereinafter, a blower according to an embodiment of the present invention will be explained with reference to FIGS.

第5図には、本発明の第1実施例が示されており、この
送風機は略単葉双曲面状のハブ2およびその外周面に植
設された複数の羽根3,3・・を有する羽根車/と、該
羽根車/の外周を被包する案内ガイド弘と、前記羽根車
/の吸込領域において軸方向に垂直で互いに平行な流入
案内板3.6とによって構成されている。
FIG. 5 shows a first embodiment of the present invention, and this blower has a substantially monoplane hyperboloid hub 2 and a plurality of blades 3, 3, etc. implanted on the outer peripheral surface of the hub 2. It is constituted by a wheel, a guiding rod enclosing the outer periphery of the impeller, and inlet guide plates 3.6 that are perpendicular to the axial direction and parallel to each other in the suction region of the impeller.

前記ハブλの外周面形状は、前縁半径T、に比べて、中
間部半径ちが小さく後縁半径もが大きくなるような凹面
状とされている。即ち、前縁から中間部までの前部曲面
ttLは漸次径が縮小される一方、中間部から後縁まで
の後部曲面tbは漸次径が拡大され、”m > TI>
 rHとなる如く形成されている。なお、へプユ内面の
略中央部には、駆動軸を結合すべき主板部7が設けられ
ており、合成樹脂による一体成形が可能なようにされて
いる。
The shape of the outer peripheral surface of the hub λ is a concave shape such that the radius of the intermediate portion is smaller and the radius of the trailing edge is larger than the leading edge radius T. That is, the diameter of the front curved surface ttL from the leading edge to the middle portion is gradually reduced, while the diameter of the rear curved surface tb from the middle portion to the rear edge is gradually expanded, so that "m>TI>
rH. A main plate part 7 to which a drive shaft is to be connected is provided approximately at the center of the inner surface of the hepu, and can be integrally molded with synthetic resin.

又、前記各羽根3の前縁部3αは、外径側であるチップ
側3a、を内径側であるハブ側3α、よリモ流れ方向に
近づくように傾斜させて、大きい略円錐状の環状面積を
形成せしめている。符号3bは羽根後縁部である。
The front edge 3α of each blade 3 is inclined so that the tip side 3a, which is the outer diameter side, is closer to the hub side 3α, which is the inner diameter side, and has a large approximately conical annular area. is formed. Reference numeral 3b indicates the trailing edge of the blade.

更に、各羽根3のチップ側端面3cは、ハブλの外周面
と略同形状の凹面状に形成されている。
Furthermore, the tip side end surface 3c of each blade 3 is formed into a concave shape that is approximately the same shape as the outer peripheral surface of the hub λ.

前記案内ガイド弘は、その内半径r、が羽根後縁部3b
のチップ側半径r、より本大きくなるように形成されて
おり、羽根車/の組立てを容易ならしめている。
The guide hole has an inner radius r that is the rear edge portion 3b of the blade.
The radius r on the tip side of the impeller is formed to be larger than that, making assembly of the impeller easier.

上記構成の羽根車/を駆動させると、流入案内板j、j
間の通路を通って径方向から吸引された空気流Wは、各
羽根3.の前半部でスムーズな斜め内方への求心加速を
受は且つ後半部で斜め外方へ縁部3aに対して直角とな
して、空気流Wの流線の曲率な一層大ならしめるように
している。
When the impeller/ having the above configuration is driven, the inflow guide plates j, j
The air flow W sucked in from the radial direction through the passage between each vane 3. The first half of the air flow receives smooth centripetal acceleration diagonally inward, and the second half of the air flow W receives smooth centripetal acceleration diagonally outward at right angles to the edge 3a, thereby further increasing the curvature of the streamline of the air flow W. ing.

第り図には、本発明の第3実施例が示されており、この
場合、第1実施例におけるハブλの外周面において、中
間部位半径r、と後縁部半径r・とを等しくなして、後
部曲面6bを円筒面とし、羽根後半部において軸方向へ
の細流加速を生ぜしめるようにしている。
FIG. 3 shows a third embodiment of the present invention, in which the intermediate portion radius r and the trailing edge radius r are made equal to each other on the outer circumferential surface of the hub λ in the first embodiment. The rear curved surface 6b is made into a cylindrical surface so as to produce trickle acceleration in the axial direction at the rear half of the blade.

続いて本発明の送風機の効果を以下に列記する。Next, the effects of the blower of the present invention will be listed below.

(1)略単葉双曲面状のハブλの外周面上に植設する羽
根3における前縁部3aのチップ側3a、をハブ側3a
、よりも流れ方向に近づくように傾斜さぜるとともに、
前記ハブコの外周面を、斜め内方への求心加速を生せし
める前部曲部乙aと軸方向への細流加速あるいは斜め外
方への斜流加速を生ぜしめる後部曲面6bとで構成し、
羽根の前半部−で求心加速を、羽根の後半部で軸流加速
あるいは斜流加速を生ぜしめ得るようにしたので、静翼
がなくても高静圧が得られ、又、更に翼弦長を大きく且
つ羽根通路内流速を略等速とできることにより、スムー
ズな翼面負荷分布が得られることおよび大きな曲率の流
線パターンが得られることから、ファン内部損失を小さ
くすることができることとなり、より高性能、高静圧効
率の送風機が得られる。
(1) The tip side 3a of the leading edge 3a of the blade 3 implanted on the outer peripheral surface of the substantially monoplane hyperboloid hub λ, and the hub side 3a
, while tilting it closer to the flow direction,
The outer circumferential surface of the hubco is composed of a front curved portion Oa that causes centripetal acceleration diagonally inward and a rear curved surface 6b that causes trickle acceleration in the axial direction or diagonal flow acceleration diagonally outward,
Since the front half of the blade can generate centripetal acceleration and the rear half of the blade can generate axial flow acceleration or diagonal flow acceleration, high static pressure can be obtained even without stationary blades, and the chord length can also be increased. By increasing the flow rate and making the flow velocity in the blade passage approximately constant, a smooth blade surface load distribution and a streamline pattern with a large curvature can be obtained, which makes it possible to reduce the internal loss of the fan, making it even more efficient. A blower with high performance and high static pressure efficiency can be obtained.

(2)送風機の性能および静圧効率が向上する結果、同
一能力を低い回転数でだせることとなり、また、従来の
ような静翼が存在することによるポテンシャル干渉に基
づく発生音がないので騒音低下を計ることができる。
(2) As a result of improving the performance and static pressure efficiency of the blower, the same capacity can be produced at a lower rotation speed, and noise is reduced because there is no sound generated due to potential interference due to the presence of conventional stator blades. can be measured.

(8)従来例におけるように静翼の設置が不要となるの
で、検数を著しく簡略化できる。
(8) Since it is not necessary to install stationary blades as in the conventional example, the counting can be significantly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の求心型送風機の縦断面図、第2図は第1
図の■−■半断面断面図3開拡静翼がない場合における
求心型送風機の羽根入口および出口における速度三角形
、第≠図は第1図の求心型送風機の羽根人口および出口
における速度三角形、第5図は本発明の第1実施例にか
かる送風機の縦断面図、第6図は第5図の送風機におけ
る羽根入口および出口の速度三角形、第7図は第5図の
送風機における性能(実線図示)を従来例のもの(点線
図示)と無次元の流量係数φおよび静圧圧力係数ψIで
比較したダラフ、第g図および第り図はそれぞれ本発明
の第1および第3実施例にかかる送風機の縦断面図であ
る。 / ・・・・・羽根車 λ ・I+L1+ハ  ブ 3 ・・・・・羽  根 3a ・・・・・羽根前縁部 弘  ・・・:・案内ガイド 6a  ・・・・・前部曲面 6b  ・・・・・後部曲面
Figure 1 is a vertical cross-sectional view of a conventional centripetal blower, and Figure 2 is a vertical cross-sectional view of a conventional centripetal blower.
Figure ■-■ Half-section cross-sectional view 3 Velocity triangle at the blade inlet and outlet of a centripetal blower in the case of no expanding stationary blades, Figure ≠ is the speed triangle at the blade population and outlet of the centripetal blower in Figure 1, 5 is a vertical cross-sectional view of the blower according to the first embodiment of the present invention, FIG. 6 is a velocity triangle of the blade inlet and outlet of the blower of FIG. 5, and FIG. 7 is a performance (solid line) of the blower of FIG. Figures Drough, G, and D, which compare the dimensionless flow coefficient φ and static pressure coefficient ψI, with those of the conventional example (shown with dotted lines) are related to the first and third embodiments of the present invention, respectively. FIG. 3 is a longitudinal cross-sectional view of the blower. / ... Impeller λ ・I+L1+Hub 3 ...Blade 3a ...Blade leading edge part ... :・Guide 6a ...Front curved surface 6b ・・・・Rear curved surface

Claims (1)

【特許請求の範囲】[Claims] 1、略単葉双曲面状のへブ(コ)およびその外周面上に
植設された複数枚の羽根(3)、(J)  ・・を有す
る羽根車(1)と該羽根車(1)の外周を被包する案内
ガイド(4t)とからなる送風機において、前記各羽根
(3)における前縁部(3a)−のチップ側(3α1)
をへブ側(34)よりも流れ方向に近づくように傾斜さ
せるとともに、前記ハブ(,2)の外周面を、斜め内方
への求心加速を生ぜしめる前部曲面(6α)と、軸方向
への軸流加速あるいは斜め外方への斜流加速を生ぜしめ
る後部曲面(≦b)とで構成して羽根の前半部で求心
1. An impeller (1) having a substantially monoplane hyperboloid-shaped heb (C) and a plurality of blades (3), (J), etc. planted on its outer peripheral surface; and the impeller (1) In the blower, the tip side (3α1) of the front edge portion (3a) of each blade (3) is
is inclined closer to the flow direction than the heb side (34), and the outer peripheral surface of the hub (2) is formed with a front curved surface (6α) that causes diagonally inward centripetal acceleration and an axial direction. It consists of a rear curved surface (≦b) that causes axial flow acceleration to the blade or diagonal flow acceleration diagonally outward.
JP11032282A 1982-06-25 1982-06-25 Fan Granted JPS59593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11032282A JPS59593A (en) 1982-06-25 1982-06-25 Fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032282A JPS59593A (en) 1982-06-25 1982-06-25 Fan

Publications (2)

Publication Number Publication Date
JPS59593A true JPS59593A (en) 1984-01-05
JPH0474560B2 JPH0474560B2 (en) 1992-11-26

Family

ID=14532784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032282A Granted JPS59593A (en) 1982-06-25 1982-06-25 Fan

Country Status (1)

Country Link
JP (1) JPS59593A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194097A (en) * 1983-04-19 1984-11-02 Daikin Ind Ltd Fan
JPS60190700A (en) * 1984-03-12 1985-09-28 Daikin Ind Ltd Fan
WO1997009572A1 (en) * 1995-09-07 1997-03-13 Daikin Industries, Ltd. Outlet unit for underfloor air conditioning and underfloor air conditioning system using same
WO2010139030A2 (en) 2009-06-02 2010-12-09 Peter Devriese Diagonal ventilator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194097A (en) * 1983-04-19 1984-11-02 Daikin Ind Ltd Fan
JPS6365839B2 (en) * 1983-04-19 1988-12-16 Daikin Kogyo Co Ltd
JPS60190700A (en) * 1984-03-12 1985-09-28 Daikin Ind Ltd Fan
JPH0448960B2 (en) * 1984-03-12 1992-08-10 Daikin Ind Ltd
WO1997009572A1 (en) * 1995-09-07 1997-03-13 Daikin Industries, Ltd. Outlet unit for underfloor air conditioning and underfloor air conditioning system using same
US5910045A (en) * 1995-09-07 1999-06-08 Daikin Industries, Ltd. Air discharge unit for underfloor air conditioning and underfloor air conditioning system using same
WO2010139030A2 (en) 2009-06-02 2010-12-09 Peter Devriese Diagonal ventilator
BE1018767A5 (en) * 2009-06-02 2011-08-02 Devriese Peter DIAGONAL FAN.

Also Published As

Publication number Publication date
JPH0474560B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
JP5608062B2 (en) Centrifugal turbomachine
US3788765A (en) Low specific speed compressor
JP3356510B2 (en) Centrifugal or mixed flow pump vaned diffuser
DK145512B (en) AXIAL BLOWER OR PUMP
JP2010001851A (en) Centrifugal compressor having vaneless diffuser and vaneless diffuser thereof
NZ569987A (en) Improved impeller for a ventilation fan that has an aerofoil section and a centrifugal accelerator portion
JP6034162B2 (en) Centrifugal fluid machine
JP2012072735A (en) Centrifugal compressor
JP2014047775A (en) Diffuser, and centrifugal compressor and blower including the diffuser
JPH0826877B2 (en) Turbo molecular pump
KR20180019416A (en) Centrifugal compressor
TWI747758B (en) Multi-blade centrifugal blower
JP2015212551A (en) Centrifugal fluid machine
JPS59593A (en) Fan
JP4727425B2 (en) Centrifugal impeller and clean system equipped with it
JPH04334798A (en) Diffuser for centrifugal fluid machine
JP6860331B2 (en) Diffuser, discharge channel, and centrifugal turbomachinery
KR100790305B1 (en) Axial turbo blower by driving centrifugal turbo impeller
JP3072867B2 (en) Multistage centrifugal compressor
JP3383023B2 (en) Centrifugal fluid machine
AU2021210097B2 (en) A return channel with non-constant return channel vanes pitch and centrifugal turbomachine including said return channel
JPH11257291A (en) Diffuser of centrifugal compressor
JPH11257290A (en) Diffuser of centrifugal compressor
JPH06299994A (en) Multiblade fan
JP3380897B2 (en) Compressor