JPS5957160A - Separation of humor component - Google Patents

Separation of humor component

Info

Publication number
JPS5957160A
JPS5957160A JP57167473A JP16747382A JPS5957160A JP S5957160 A JPS5957160 A JP S5957160A JP 57167473 A JP57167473 A JP 57167473A JP 16747382 A JP16747382 A JP 16747382A JP S5957160 A JPS5957160 A JP S5957160A
Authority
JP
Japan
Prior art keywords
body fluid
separation
dissolve
fluid components
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167473A
Other languages
Japanese (ja)
Inventor
Masao Kasai
笠井 雅夫
Yuzo Yanagihara
柳原 裕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57167473A priority Critical patent/JPS5957160A/en
Publication of JPS5957160A publication Critical patent/JPS5957160A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To enable a quick separation of components in a humor with a high recovery rate by using for a humor chromatograph column a filler obtained by saponification and other treatments of a suspension polymer particle between vinyl ester calboxylic acid and a crosslinking monomer having an isocyanurate ring. CONSTITUTION:Vinyl ester calboxylic acid such as vinyl acetate and vinyl propionic acid and a monomer having more than two polymerizing group in isocyanurate ring are dissolved into a solvent such as decane and dibutyl eter which dissolves both monomers but hard to dissolve into water. After the addition of polymerization initiator, the solution undergoes a suspension polymerization in a water having a suspension stabilizer dissolved to obtain a particulate polymer. The polymer thus obtained subjected to a saponification and ester conversion reaction and cleassified to obtain a particle which fills a liquid chromatograph column. When this column is used, components in a humor, for example, immunoglobulin and other protein can be separated with a high recovery rate with a higher separation performance at a high speed through an eluent containing 0.01-0.4M/l of a buffer basic agent comprising a weak acid and weak acid salt.

Description

【発明の詳細な説明】 本発明は、液体クロマトグラフィーによる体液成分の分
離法に関し、更に詳しくは、高い親水性と適当な微細孔
を持つ分子ふるいを第−義的な分離機構とする液体クロ
マトグラフィーカラムと好適な組成の溶離液を組合せて
、分子ふるい作用と分配作用を同時に行わせた画期的な
体液成分の分離技術に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating body fluid components by liquid chromatography, and more specifically, to a liquid chromatography method using a molecular sieve with high hydrophilicity and appropriate micropores as the primary separation mechanism. This paper relates to an innovative separation technology for body fluid components that uses a combination of a graphic column and an eluent with a suitable composition to perform molecular sieving and distribution functions at the same time.

近年、液体クロマトグラフィーの高速化が急速に進展し
、従来広く普及している分別沈澱法や電気泳動法に比べ
て操作の簡便性、迅速性、分離性能等多くの利点が考え
られ、体液成分の分離技術としても期待されている。液
体クロマトグラフイ−は、分剛10)機構によってゲル
パーi J−−ンヨンク1−+71グラソイ−(以上、
c I) Cと略称する)、イAン交換りしJマドグラ
フィー、分配クロマドグシフイー及び吸着りL17トグ
ラフイーに大別されている。G l) Cは充填剤(以
下、ゲルと言う)の微細JLの大小を利用して溶質分子
の大きいものから順次溶出させて分離する、いわゆる分
子ふるい作用に基づくりUマドグラフィーであり、血液
中の血漿タンパク質の分離に適している。他の分離機構
に基つくクロマトグラフィーは、いずれも吸着、分配等
ゲルに溶質を保持する親和力を持たせて溶質量の親和力
の差を利用して分離するクロマトグラフィーであり、血
液や尿中のアミノ酸、各種アミン等の低分子量成分の分
離に適している。
In recent years, liquid chromatography has rapidly become faster and has many advantages over conventionally widely used fractional precipitation methods and electrophoresis methods, such as ease of operation, rapidity, and separation performance. It is also expected to be used as a separation technology. Liquid chromatography is performed using a Gelper I J-Yonk 1-+71 Glassoi- (above,
(abbreviated as C), ion-exchanged chromatography, distribution chromatography, and adsorption L17 chromatography. Gl) C is U-mography based on the so-called molecular sieving action, which utilizes the size of the fine JL of a packing material (hereinafter referred to as gel) to sequentially elute and separate large solute molecules. Suitable for separating plasma proteins. Chromatography based on other separation mechanisms is a type of chromatography in which gels have an affinity for retaining solutes, such as adsorption or distribution, and separation is performed by utilizing the difference in affinity between the amounts of solutes. Suitable for separating low molecular weight components such as amino acids and various amines.

GPCを用いた体液成分の分離は、他の分離機構のクロ
マトグラフィーのようなタンパク質を除去する前処理が
不溶のため操作が簡略化されるという利点もある。近年
、多くの研究帽告がなされており、例えばJourna
l of Polymer 5eicence :Po
lymer Letters [1dition、 V
ol 17+ 335 (1979)には多くの研究者
に知られている1rIJ速G I) Cカラムを用いた
血清の分離例が示されている。その実験例では、フーグ
ロプリン等のグロブリン成分とアルブミンが分団1され
ているが、更に高い分離性能が望まれる。
Separation of body fluid components using GPC also has the advantage that pretreatment for removing proteins, such as chromatography, which is used for other separation mechanisms, is not soluble and the operation is simplified. In recent years, many research reports have been made, such as Journal
l of Polymer 5eicence :Po
Lymer Letters [1dition, V
ol 17+ 335 (1979) shows an example of serum separation using a 1rIJ fast GI) C column, which is known to many researchers. In the experimental example, globulin components such as fooglopurin and albumin are separated into fraction 1, but even higher separation performance is desired.

GPCは、前記のようにタンパク質のような高分子量物
質を含む体液成分の分離には原理的に有力であるが、反
面溶質を分子の大きさの差異で分離する分sat ta
構であるため、血漿タンパク質、アミノ酸等と、分子量
の近い物質相互の分離は困難になる。液体クロマトグラ
フィーにおいて、GPCの高分子量物質を分離する機能
と分配や吸着クロマトグラフィーの高分離機能を合せ持
ち、かつ分配や吸着クロマトグラフィーの持つ煩雑な操
作を解消できれば、画期的な体液成分の分離技術になる
。近年、上記のような分離機能を目的にした試みとして
、高速用GPCゲルにイオン交換基を導入して分子ふる
い作用と吸着もしくは分配作用を同時に起こさせて前処
理の簡略化と分離性能の向上を同時に満足せしめようと
する研究がなされ−(いる。しかしながら、この方法は
イオン交換基のような溶質に対して親和性の強い官能基
を導入するのでl容離液の組成を分離操作の途中で変え
る心間がある等の煩雑さがあったり、あるいは分離のi
lT現性に問題が残されていたりしている。
As mentioned above, GPC is effective in principle for separating body fluid components that contain high molecular weight substances such as proteins, but on the other hand, it is difficult to separate solutes based on their molecular size.
This structure makes it difficult to separate substances with similar molecular weights, such as plasma proteins and amino acids. In liquid chromatography, if it were possible to combine the high-molecular-weight substance separation function of GPC with the high-separation function of partition and adsorption chromatography, and eliminate the complicated operations of partition and adsorption chromatography, it would be possible to achieve a revolutionary separation of body fluid components. Becomes a separation technology. In recent years, attempts have been made to achieve the above-mentioned separation function by introducing ion exchange groups into high-speed GPC gels to simultaneously cause molecular sieving action and adsorption or distribution action, thereby simplifying pretreatment and improving separation performance. However, since this method introduces functional groups that have a strong affinity for solutes, such as ion exchange groups, the composition of the eluent must be adjusted during the separation process. There may be complications such as having to change the mind, or there may be problems with separation.
There are still problems with IT performance.

不発切者らは、前記した液体クロマトグラフィーによる
体液成分の分離技術における問題点を解決すべく、ゲル
と溶1i!+1液の両面より総合的に検討を車ねた結果
、従来にない優れた体液成分の分離法を完成した。ずな
わら、本発明に従えば、少なくともカルボン酸ビニルエ
ステル単量体と、イソシアヌレート環を有する架橋性単
量体と、前記両車量体を溶解するが水に溶解しにくい有
ta熔媒とを含む混合液を懸濁重合した共重合体をケン
化反応又はエステル交換反応して得られた粒状の充填剤
を充填してなる液体クロマトグラフィーカラムに、少な
くとも弱酸と弱酸塩よりなる緩衝用基剤及び硫酸塩が共
存しかつ該緩衝用基剤を0.01〜0.4M/7!の濃
度で含む/8R液の通液下に体液試料を注入して分離す
ることを特徴とする体液成分の分離法が提供される。
In order to solve the problems in the separation technology of body fluid components using liquid chromatography mentioned above, the unsuccessful researchers developed gel and solution 1i! +1 After comprehensively examining both aspects of the fluid, we have completed an unprecedented and superior method for separating body fluid components. According to the present invention, at least a carboxylic acid vinyl ester monomer, a crosslinkable monomer having an isocyanurate ring, and a melting medium that dissolves both of the monomers but is difficult to dissolve in water are used. A liquid chromatography column packed with a granular filler obtained by saponification or transesterification of a copolymer obtained by suspension polymerization of a mixed solution containing a buffer containing at least a weak acid and a weak acid salt. The base and sulfate coexist and the buffer base is 0.01 to 0.4 M/7! A method for separating body fluid components is provided, which comprises injecting and separating a body fluid sample while passing through a /8R solution containing a concentration of .

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で用いられるカルボン酸ビニルエステルとは重合
可能なカルボン酸ビニルエステル基ヲ一つ以上有する化
合物のことで、例えば酢酸ビニル、プロピオン酸ビニル
、酪酸ビニル、吉草酸ビニル及びピバリン酸ビニルの中
から選ばれ、単独又は二種以上の組合せで用いられる。
The carboxylic acid vinyl ester used in the present invention refers to a compound having one or more polymerizable carboxylic acid vinyl ester groups, such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, and vinyl pivalate. selected and used alone or in combination of two or more.

なかでも重合やエステル交換又はケン化及び入手の容易
さから酢酸ビニルやプロピオン酸ビニルが特に好ましい
Among these, vinyl acetate and vinyl propionate are particularly preferred from the viewpoint of ease of polymerization, transesterification, saponification, and availability.

次に本発明で用いられるイソシアヌレート環を有する架
橋性単量体とは下記の構造式で表わされるものである。
Next, the crosslinkable monomer having an isocyanurate ring used in the present invention is represented by the following structural formula.

1 B (ただしR,、R2及びR8はそれぞれ独立に−C11
2−CIf  =  C112、−C112−C=  
CH又4よ−(二l+、2− C= CIf、、を示ず
。)ミ C1l已 とりわけ、R1、R2及びR3がすべて−C112−C
It = CIげある1−リアリルイソシアヌレートは
酢酸ビニルとの共重合性が良く、かつエステル交換又は
ケン化に対しても安定性が大きし1ので架橋剤として好
ましい。
1 B (However, R,, R2 and R8 are each independently -C11
2-CIf = C112, -C112-C=
CH also 4 - (2l+, 2- C= CIf, , not shown) Mi C1l especially R1, R2 and R3 are all -C112-C
1-Reallyl isocyanurate is preferred as a crosslinking agent because it has good copolymerizability with vinyl acetate and great stability against transesterification or saponification.

全単量体中のイソシアヌレート環を有する架橋性単量体
の割合は特に限定されないが、特Gこ機械的強度の大き
いゲルを必要とする場合は次式の範囲にあるのが良い。
The proportion of the crosslinkable monomer having an isocyanurate ring in all the monomers is not particularly limited, but when a gel with high mechanical strength is required, it is preferably within the range of the following formula.

0.2≦3b/(a+3b)≦0.4 、 ここで a;カルボン酸ビニルエステルのモJし数b:イソシア
ヌレート環を有する架橋性単量体のモル数 また本発明ではカルボン酸ビニルエステル単量体とイソ
シアヌレート環を有する架橋性単量体とを懸濁重合させ
る際に、生成共重合体を」ξ−ラスな構造にするために
、単量体を溶解するが水に熔解しにくい有機溶媒を前記
単量体に共存さ・lる。
0.2≦3b/(a+3b)≦0.4, where a: number of moles of carboxylic acid vinyl ester b: number of moles of crosslinkable monomer having an isocyanurate ring Also, in the present invention, carboxylic acid vinyl ester When a monomer and a crosslinkable monomer having an isocyanurate ring are subjected to suspension polymerization, the monomer is dissolved in water in order to give the resulting copolymer a ξ-ras structure. A difficult organic solvent is allowed to coexist with the monomer.

用いる有機溶媒の種類は生成する共重合体の微♀Ill
孔孔径及び同孔径分布を対象となる被分離成分に応して
コントロールするために適当に配合する。
The type of organic solvent used depends on the fineness of the copolymer to be produced.
In order to control the pore size and pore size distribution according to the target component to be separated, the mixture is appropriately mixed.

例えば被分Pa1物質の分子量が1万以下の中低分子f
il質の場合、トルエン、キシレン、酢酸エチル、酢酸
ブチル等の比較的カルボン酸ビニルエステル重合体を溶
解し易い有機溶媒が好ましい。また血v貫タンパク質等
のように被分離物質の分子量が1万以上の高分子量物質
の場合、前記の有機溶媒中にカルボン酸ビニルエステル
重合体を溶解しにくい有機溶媒、例えばヘプタノ、デカ
ン、ドデカン等炭素数7〜15の鎖状炭化水素化合物、
又はジブチルエーテル、ジー2−エチルヘキシルエーテ
ル等炭素数7〜25のエーテル化合物を全有機溶媒中の
5〜50重量%共存させると良い。
For example, the molecular weight of the analyte Pa1 substance is a medium-low molecule f of 10,000 or less.
In the case of silica, organic solvents that relatively easily dissolve the carboxylic acid vinyl ester polymer, such as toluene, xylene, ethyl acetate, and butyl acetate, are preferred. In addition, if the substance to be separated is a high molecular weight substance with a molecular weight of 10,000 or more, such as blood protein, etc., organic solvents that do not easily dissolve the carboxylic acid vinyl ester polymer in the above-mentioned organic solvent, such as heptano, decane, and dodecane, may be used. A chain hydrocarbon compound having 7 to 15 carbon atoms,
Alternatively, it is preferable that an ether compound having 7 to 25 carbon atoms such as dibutyl ether or di-2-ethylhexyl ether be present in an amount of 5 to 50% by weight based on the total organic solvent.

このよ・うな有機溶媒の配合は分子ふるい作用に必要な
前記微細孔をコントロールするとともに、本発明の他方
の目的である分配作用のコントロールにも関与する。主
体成分を分離する際のゲル、溶離lfkと被分離物質の
間の吸着又は分配作用に対して、本発明で重合時に用い
る有機溶媒がどのように関与しているのかその理由は必
ずしも明らかでないが、重合時の骨格分子の配向がポー
ラス化剤として用いられる有機溶媒によって影響を受け
るためと推測している。
The blending of such an organic solvent not only controls the micropores necessary for the molecular sieving action, but also participates in the control of the distribution action, which is the other objective of the present invention. Although it is not necessarily clear how the organic solvent used during polymerization in the present invention is involved in the adsorption or distribution effect between the gel, eluate lfk, and the substance to be separated when separating the main components, it is not clear why. We speculate that this is because the orientation of the skeleton molecules during polymerization is affected by the organic solvent used as a porous agent.

前記有機溶媒の共存量は単量体100重量部に対して通
當20〜250重量部、好ましくは20〜100重量部
の範囲で用いられる。
The amount of the organic solvent used is generally 20 to 250 parts by weight, preferably 20 to 100 parts by weight, based on 100 parts by weight of the monomer.

前記の単量体と有機溶媒の混合液を重合開始剤の存在下
で懸濁重合して共重合体を得るが、!!!濁重合は一般
的な方法で良い。
A copolymer is obtained by suspension polymerizing the mixture of the above monomer and organic solvent in the presence of a polymerization initiator, but! ! ! The turbidity polymerization may be carried out by a general method.

重合に際して用いられる開始剤は、通常の懸濁重合に用
いられる一般的なラジカル重合開始剤でよく、例えば2
,2′−アゾビスイソブチロニトリル、2.2′−アゾ
ビス−(2,4−ジメチルバレロニトリル)等のアブ系
の開始剤や、過酸化ヘンジイル、過酸化ラウロイル、ジ
ーt−プチルパーオキザイド又はクメンハイドロパーオ
キザイド等の過酸化物系の開始剤を用いることができる
The initiator used in the polymerization may be a general radical polymerization initiator used in normal suspension polymerization, such as 2
, 2'-azobisisobutyronitrile, 2,2'-azobis-(2,4-dimethylvaleronitrile), hendyl peroxide, lauroyl peroxide, di-t-butyl peroxide, etc. Peroxide-based initiators such as zide or cumene hydroperoxide can be used.

得られた粒状の共重合体は酸又はアルカリを用いて水又
はアルコールを溶媒としてケン化又はエステル交換反応
を行い、体液成分の分離に必要な水酸基を生成せしめて
体液成分の分離に適したゲルを得る。本発明においては
、ゲルに十分な水酸基が含有されていることによって被
分離物質がゲル内に強く吸着することがなく回収率を損
なうことのない良好な分離性能が満足される。
The resulting granular copolymer undergoes saponification or transesterification using an acid or alkali and water or alcohol as a solvent to generate hydroxyl groups necessary for separating body fluid components, resulting in a gel suitable for separating body fluid components. get. In the present invention, since the gel contains sufficient hydroxyl groups, the substance to be separated is not strongly adsorbed within the gel, and good separation performance is achieved without impairing the recovery rate.

特に被分離物質が高分子量物質の場合はゲル中の水酸基
の量比を共重合体中のエステル基に対してモル分率で0
.4〜0.8にコントロールすると、特に良好な分離性
能が達成される。その場合水酸基の存在量比が被分離物
質のゲルと溶離液間の親和力のバランスに大きく関与し
、分配作用に寄与しているものと考えられる。このよう
なゲルの好適な水酸基の量比は酸あるいはアルカリの量
、反応温度や反応時間をコントロールすることによって
容易に設定できる。
In particular, when the substance to be separated is a high molecular weight substance, the molar ratio of hydroxyl groups in the gel to the ester groups in the copolymer is 0.
.. Particularly good separation performance is achieved when the ratio is controlled to between 4 and 0.8. In this case, the abundance ratio of hydroxyl groups is considered to be largely involved in the balance of affinity between the gel of the substance to be separated and the eluent, contributing to the distribution effect. A suitable ratio of hydroxyl groups in such a gel can be easily set by controlling the amount of acid or alkali, reaction temperature and reaction time.

本発明のカラムの作製方法は、一般に良く知られたゲル
の充填性で何ら支障はないが、例えば特願昭56−17
985号明細書に記載されている方法、ずなわらゲルス
ラリーをカラム内に導入してゲル床を形成さ一已るとき
、ゲルスラリーのカラム内流速を0.2〜1.5 m 
/ hrに調整し、ゲル床の充填密度を高めるとき、ゲ
ル床1mあたりの最大昇圧速度(短時間の昇圧勾配)を
1分間あたり60kg/ct以下で平均昇圧速度(長時
間の昇圧勾配)を1時間あたり2〜80kg/cnlで
昇圧してカラムを作製すると一段と高い分離性能が得ら
れる。
The method for producing the column of the present invention has no problems due to the generally well-known packing properties of gel.
In the method described in No. 985, when Zunawara gel slurry is introduced into a column to form a gel bed, the flow rate of gel slurry in the column is set at 0.2 to 1.5 m.
/ hr, and when increasing the packing density of the gel bed, the maximum pressure increase rate (short-time pressure increase gradient) per meter of gel bed should be 60 kg/ct or less per minute and the average pressure increase rate (long-term pressure increase gradient) If the column is prepared by increasing the pressure at 2 to 80 kg/cnl per hour, even higher separation performance can be obtained.

次に本発明で別の重要な要件である溶離液の組成につい
て詳しく説明する。前記のように本発明の目的は好適な
ゲルと溶離液組成を組合せて、分子ふるい作用に基づ<
cpc分離に適当な分配作用を付加して従来にない高分
離性能を達成しようとするものであるが、分子ふるい作
用と分配作用を明確に区別することば困難である。そこ
で本発明の達成にあたっては次のようなりロマトグラム
特性を活用した。すなわち、被分離物質の溶出容量VR
をX座標に、同物質の分子量の対数変換値log  (
MW)をY座標にした較正曲線を作成し、較正曲線上に
プロットされる物質の特性を分子ふるい作用と仮想(一
般的GPCの概念である)し、同曲線より明瞭に遅れて
溶出する特性を分配作用の目安にした。
Next, the composition of the eluent, which is another important requirement in the present invention, will be explained in detail. As mentioned above, the object of the present invention is to combine suitable gel and eluent compositions to achieve
Although it is attempted to achieve unprecedented high separation performance by adding an appropriate distribution effect to CPC separation, it is difficult to clearly distinguish between the molecular sieving effect and the distribution effect. Therefore, in achieving the present invention, the following romatogram characteristics were utilized. That is, the elution volume VR of the substance to be separated
to the X coordinate, the logarithmically transformed value of the molecular weight of the same substance log (
A calibration curve is created with MW) as the Y coordinate, and the properties of the substance plotted on the calibration curve are assumed to be molecular sieving effects (this is a general GPC concept), and the properties of substances that elute clearly later than that curve are assumed. was used as a guideline for the distribution effect.

第1図は本発明で基本になる分子ふるい作用と分配作用
に関する代表的な溶出特性例を図示したものである。第
1図は人血清タンパク質の各種の標準物質(ミドリ十字
(株)製)をそれぞれカラムに注入し、その溶出性能を
高分子量側よりIgM。
FIG. 1 illustrates typical examples of elution characteristics related to the molecular sieving action and distribution action that are the basis of the present invention. Figure 1 shows the elution performance of various human serum protein standards (manufactured by Midori Juji Co., Ltd.) injected into the column, starting from the high molecular weight side to IgM.

ハプトグロビン、IgG、トランスフェリン、アルブミ
ンの順序でプロットした較正曲線を示す。図中、aはア
ルミブンが顕著な分配作用を生じている例であり、デキ
ストランを溶質とした排除限界分子量(molecul
ar weight exclusion 11m1t
)が50万で水酸基の量比が0.57のゲルを充填した
カラムに0.1M、#の硫酸ナトリウムを含む0.1M
/βリン酸ナトジナトリウム緩衝液H= 7.0 )を
溶離液にしたときの溶出特性である。またbは分子ふる
い作用に近い溶出特性を示す例であり、同上ゲルの水酸
基の量比を0.2に変えたゲルを充填したカラムに0.
3M/1塩化ナトリウムを含む0.1M/lリン酸ナト
リウム緩fiiン& (+)H= 7.0 )を溶離l
皮にし、たときの溶出特性である。aのような溶出特性
を持つ分離法を用いて例えば血清タンパク質相互の分離
、分析を行うと血液中のタンパク成分中で通雷最も多量
に存在するアルブミンと2番目に多量に存在し分子量も
比較的近接するIgGがより −離れた位置に溶出する
ので、アルブミンは勿論のこと、他のタンパク質も分離
性能が向上する。更に過大な吸着又は分配作用を排除す
るために、一定組成の溶離液で高い回収率(recov
ery+ 80%以上)を示し、かつ溶出容量が高い再
現性を示すことが必要とした。
A calibration curve plotted in the order of haptoglobin, IgG, transferrin, and albumin is shown. In the figure, a is an example in which aluminum has a remarkable distribution effect, and the exclusion limit molecular weight (molecular weight) with dextran as a solute is shown.
ar weight exclusion 11m1t
) is 500,000 and the amount ratio of hydroxyl groups is 0.57.
/β sodium phosphate buffer H=7.0) is used as the eluent. In addition, b is an example showing elution characteristics close to molecular sieve action, in which a column packed with a gel in which the hydroxyl group ratio of the same gel as above was changed to 0.2.
Elute 0.1M/l sodium phosphate with 3M/1 sodium chloride ((+)H=7.0).
This is the elution characteristic when peeled. For example, when separating and analyzing serum proteins using a separation method with elution characteristics such as a, it is found that albumin is the second most abundant protein component in blood, and its molecular weight is also compared. Since IgG that is close to the target is eluted at a more distant position, the separation performance of not only albumin but also other proteins is improved. Furthermore, in order to eliminate excessive adsorption or partitioning effects, a high recovery rate (recov
ery+ 80% or more) and the elution volume had to be highly reproducible.

本発明に用いられる溶離液には、少なくとも弱酸と弱酸
塩よりなる緩衝用基剤及び硫酸塩が共存し、緩衝用基剤
の濃度は0.01〜0.4M#!、好ましくは0.01
〜0.2M/#、更に好ましくは0.01〜0.1M/
Aの範囲にあることが肝要である。緩衝用基剤の具体例
としては、リン酸、酢酸、乳酸、酒石酸、クエン酸等と
これら弱酸の置換された塩又はそれらの組合せが用いら
れる。また硫酸塩としては硫酸ナトリウム、硫酸カリウ
ム、硫酸アンモニウム等又はそれらの組合せが用いられ
る。本発明者らの検討によると本発明におけるゲルと溶
離液を用いた場合、分離が主として分子ふるい作用によ
って行なわれる物質、例えば血漿タンパク質中の免疫グ
ロブリンであるIgM、 IgA、 IgGやトランス
フェリン、ハプトグロビン、ミオグロビン等は上記緩衝
用基剤の濃度の比較的低い領域で良好な分離性能を示す
。しかしながらアルブミン、尿酸、クレアチニン、アミ
ノ酸等のように分配作用の顕著な物質は、同緩衝用基剤
の濃度の低い領域では分配作用が弱くなり良好な分離が
得られない。一方、硫酸塩の濃度の比較的高い領域では
分配作用の顕著な物質の分離性能は良好になるが分子ふ
るい作用によって主に分離される物質相互の分離が満足
されなくなる。ところが前記のように溶離液中に弱酸と
その弱酸塩よりなる緩衝用基剤と硫酸塩を適当に共存さ
せると、相反する特徴を示す両者の共存物質が同質の特
徴を示す物質相互を含めて驚異的に良好な分離をした。
In the eluent used in the present invention, a buffer base consisting of at least a weak acid and a weak acid salt and a sulfate coexist, and the concentration of the buffer base is 0.01 to 0.4 M#! , preferably 0.01
~0.2M/#, more preferably 0.01~0.1M/
It is important that it be within the range of A. Specific examples of the buffer base include phosphoric acid, acetic acid, lactic acid, tartaric acid, citric acid, substituted salts of these weak acids, or combinations thereof. Further, as the sulfate, sodium sulfate, potassium sulfate, ammonium sulfate, etc. or a combination thereof can be used. According to studies conducted by the present inventors, when the gel and eluent of the present invention are used, substances that are mainly separated by molecular sieving action, such as immunoglobulin IgM, IgA, and IgG in plasma proteins, transferrin, haptoglobin, Myoglobin and the like exhibit good separation performance in a relatively low concentration range of the buffer base. However, for substances such as albumin, uric acid, creatinine, amino acids, etc., which have a remarkable distribution effect, the distribution effect becomes weak in the region where the concentration of the buffer base is low, and good separation cannot be obtained. On the other hand, in a region where the concentration of sulfate is relatively high, the separation performance of substances with a significant distribution effect is good, but the mutual separation of substances that are mainly separated by the molecular sieving effect becomes unsatisfactory. However, as mentioned above, when a buffer base consisting of a weak acid and its weak acid salt and a sulfate are properly co-existed in the eluent, the two coexisting substances, which exhibit contradictory characteristics, can be mixed together, including the substances which exhibit the same characteristics. A surprisingly good separation was achieved.

硫酸塩の濃度は対象とする被分離物質によって異なるが
、特に血漿タンパク質相互の分離においては0.05〜
0.3M/j2の範囲が好適である。共存塩種として硫
酸塩以外の塩、例えば塩化すトリウム、硝酸ナトリウム
等を用いた場合、前記の硫酸塩のような作用〃J果が顕
著に現われないので、緩衝用基剤の濃度をコントロール
して前記の異なる特性を示す物質相互のバランス分離点
を見出すことになる。
The concentration of sulfate varies depending on the target substance to be separated, but is particularly suitable for separation of plasma proteins from 0.05 to 0.05.
A range of 0.3 M/j2 is preferred. When salts other than sulfate, such as thorium chloride and sodium nitrate, are used as the coexisting salt species, the effect of the sulfate described above does not appear as markedly, so the concentration of the buffer base should be controlled. By doing so, we will find the point of balance between substances exhibiting the above-mentioned different properties.

この場合、例えば分配作用の顕著な物質相互の分離性能
を高めるために緩衝用基剤濃度を高くすると分子ふるい
によって主に分離される物質相互の分離性能が悪化し、
逆に緩衝用基剤濃度を低くすると分配作用の顕著な物質
相互の分離性能が不十分になる。従って、このような組
成からなる溶離液を用いた分離、分析方法は分離作用の
異なる物質量の分離又はいずれか一方の同質の作用を示
す物質相互の分離、分4jiに有効といえる。本発明方
法は分子ふるい作用に近い特性を持つ物質と分配作用の
顕著な物質を分離するとともに両特性物質の共存下で同
質の作用を示す物質相互の分離を両者ともに満足させる
ものである。
In this case, for example, if the concentration of the buffer base is increased in order to improve the separation performance between substances that have a remarkable distribution effect, the separation performance between substances that are mainly separated by molecular sieves will deteriorate;
On the other hand, if the concentration of the buffering base is lowered, the ability to separate substances with a significant distribution effect from each other will become insufficient. Therefore, it can be said that a separation and analysis method using an eluent having such a composition is effective for separating amounts of substances with different separation effects or for separating substances exhibiting either one of the same effects. The method of the present invention satisfies both the separation of substances with properties similar to those of molecular sieve action and substances with remarkable partitioning action, as well as the separation of substances exhibiting the same action in the coexistence of substances with both properties.

本発明で用いられる/8離液のpHは5〜8、望ましく
は5.5〜7.5が良い。この範囲で安定した良好な分
Pe1tが得られる。また本発明で用いられる溶l1i
u液は水溶液を基本とするが、本発明方法の/8Iil
II液の特徴あるいは安定性を損なわない範囲で水溶性
の有m/8媒、各種塩類等の添加を妨げるものでない。
The pH of the /8 syneresis used in the present invention is preferably 5 to 8, preferably 5.5 to 7.5. A stable and good minute Pelt can be obtained within this range. In addition, the solution l1i used in the present invention
The u solution is basically an aqueous solution, but /8Iil of the method of the present invention
This does not preclude the addition of water-soluble m/8 medium, various salts, etc., as long as the characteristics or stability of the liquid II are not impaired.

本発明で用いられるゲルの平均粒径は通常5〜lOOμ
mの範囲にあり、高速液体クロマトグラフィーによる分
離、分析には5〜20μmの範囲が良い。
The average particle size of the gel used in the present invention is usually 5 to 1OOμ
m, and a range of 5 to 20 μm is suitable for separation and analysis by high performance liquid chromatography.

本発明の方法は各種の体液の分離、分析に適用でき、血
液、尿、髄液等の体液を好ましくはカラム内の流通を妨
げる働きをする血球成分のような固形物の除去をした上
で直接注入でき、多くの場合、除タンパク等の前処理を
必要としない。また本発明の方法は、通常試料の注入か
ら分離、分析完了まで一貫として同し組成の溶離液を用
いることができ、従来のイオン交換クロマトグラフィー
や分配りし1マドグラフイーによる体液成分の分離例の
ような分離工程中に/88離液成を変化さゼる必要がな
い。その結果、高分離性能が再現性よく簡単な操作で得
られる。
The method of the present invention can be applied to the separation and analysis of various body fluids, such as blood, urine, cerebrospinal fluid, and other body fluids, preferably after removing solid substances such as blood cell components that block the flow within the column. They can be injected directly and often do not require pretreatment such as protein removal. In addition, the method of the present invention can use an eluent with the same composition throughout the process from sample injection to separation to completion of analysis, which is comparable to the separation of body fluid components by conventional ion-exchange chromatography or partitioned chromatography. There is no need to change the /88 synergic composition during such a separation step. As a result, high separation performance can be obtained with good reproducibility and simple operation.

本発明方法を実施するに際し、分離された体液成分の検
出は、例えば紫外分光光度計、電気化学検出器、螢光分
光光度計、示差屈折針等の一般に用いられている検出器
でよく、必要により適当な発色試薬液をカラムの前又は
後に注入し特定の成分を選択的に検出することもできる
When carrying out the method of the present invention, the separated body fluid components may be detected using commonly used detectors, such as an ultraviolet spectrophotometer, an electrochemical detector, a fluorescence spectrophotometer, or a differential refraction needle. It is also possible to selectively detect specific components by injecting an appropriate coloring reagent solution before or after the column.

本発明の分離法は各種の体液成分、例えばタンパク質、
ペプチド類、アミン類、アミノ酸、糖IJf等の分q+
、分析に適用できるが、中でも特に分子量が1万以上の
各種タンパク質相互の分δ1t、分析に用いると、従来
困紺と想われていた成分相互の分δ11が画期的に改良
される。
The separation method of the present invention can be applied to various body fluid components, such as proteins,
Peptides, amines, amino acids, sugar IJf, etc. q+
It can be applied to analysis, but especially when used for analysis, the mutual component δ1t of various proteins with a molecular weight of 10,000 or more, and the mutual component δ11, which was conventionally thought to be difficult, can be dramatically improved.

以上のように、本発明は高い親水性と適当な微細孔を保
合し、かつ適度の吸着又は分配作用を持つゲルの充填さ
れたカラムに分子ふるい作用と分配作用を適当にコント
ロールする溶離液を通液する液体クロマトグラフィーに
よって、従来にない体液成分の分離、分析を可能にする
とともに、分離操作を大幅に簡略化した利点も実用上有
効である。
As described above, the present invention provides an eluent that appropriately controls molecular sieving and distribution effects in a column packed with a gel that has high hydrophilicity, appropriate micropores, and has an appropriate adsorption or distribution effect. Liquid chromatography that allows liquid to flow through the liquid makes it possible to separate and analyze body fluid components that were not possible before, and also has the advantage of greatly simplifying the separation operation, which is also practically effective.

以下、実施例によって本発明を更に詳細に説明するが、
本発明の範囲をこれらの実施例に限定するものでないこ
とばいうまでもない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
It goes without saying that the scope of the present invention is not limited to these Examples.

実施例1 酢酸ヒニル200g、)リアリルイソシアヌレ−)、 
82.8 g 、酢酸n−ブチル158 g、デカン4
0g及び2.2′−アゾビスイソブチロニトリル6.8
gよりなる均一混合液と、ポリビニールアルコールとリ
ン酸ナトリウムを溶解した水1.67!とを5βフラス
コに入れ、十分攪拌した後65℃で18時間、更に75
℃で5時間加熱攪拌して懸濁重合を行い粒状重合体を得
た。濾過、水洗、次いでアセトン抽出後、NaOH94
g及びメタノール41よりなる溶液中で15℃で20時
間前記共重合体のエステル交換反応を行い、その後分級
してi12均粒径9.5μrnのゲルを(Gだ。ゲルの
水酸茫の量比は0.57であった。次に内径7.5 璽
m、長さ50 [) amのステンレス製カラム4本に
各々このケルを充填して同様のカラムを4本作製した。
Example 1 200 g of hinyl acetate, ) realyl isocyanurate),
82.8 g, n-butyl acetate 158 g, decane 4
0 g and 2.2'-azobisisobutyronitrile 6.8
A homogeneous mixed solution consisting of 1.67g and water in which polyvinyl alcohol and sodium phosphate were dissolved! was placed in a 5β flask, stirred thoroughly, and then heated at 65°C for 18 hours, and then heated at 65°C for 75 hours.
Suspension polymerization was carried out by heating and stirring at °C for 5 hours to obtain a granular polymer. After filtration, water washing, and acetone extraction, NaOH94
The above copolymer was subjected to transesterification reaction at 15°C for 20 hours in a solution consisting of g and methanol 41, and then classified to obtain a gel with an average particle size of 9.5 μrn (G).The amount of hydroxyl in the gel was The ratio was 0.57.Four stainless steel columns each having an inner diameter of 7.5 m and a length of 50 am were filled with this column to prepare four similar columns.

このカラムの1ノ1除限界分子量はデキストラン基準で
50万であった。Na211PO47,2g 、、Na
112PO41,53g、 Na、230414.2 
gの混合物を蒸留水で溶解して全量を1zにした0、 
03 Mリン酸ナトリウムと0、1 M硫酸ナトリウム
からなるpl+7.0の溶離液をl mlll分で上記
カラム1本に通液下で各種人血清タンパク質(ミトリ+
字製)を各々注入して回収率を求めたところ下記の結果
を得た。
The molecular weight limit of this column was 500,000 based on dextran. Na211PO47.2g ,,Na
112PO41.53g, Na, 230414.2
g mixture was dissolved in distilled water to make a total volume of 1z0,
Various human serum proteins (Mitri +
The following results were obtained when the recovery rate was determined by injecting each sample.

回収率 免疫グロブリン(IgM):91% 免疫グロブリン(1g八)= 94% 免疫グロブリン(IgG):96% ハプトグロビン:     96% トランスフェリン:    94% アルブミン:       99% 次に上記カラム4本を連結しカラム内温度を37°Cに
して上記/8離液を1 m I!/分で通液下に波長2
50 nmの紫外分光光度針を検出器として健雷人の血
清5μlを注入して含有成分を分離した。
Recovery rate Immune globulin (IgM): 91% Immunoglobulin (1 g 8) = 94% Immunoglobulin (IgG): 96% Haptoglobin: 96% Transferrin: 94% Albumin: 99% Next, connect the above four columns and collect the inside of the column. Adjust the temperature to 37°C and add 1 m I of the above /8 syneresis! Wavelength 2 while passing liquid at /min.
Using a 50 nm ultraviolet spectrophotometer needle as a detector, 5 μl of Kenraito's serum was injected to separate the contained components.

第2図ば(Mられたクロマトグラムであり、図中、■は
1.G、2はトランスフェリン、3と4はアルブミン、
5はクレアチニン、6は尿酸を各々主成分とするピーク
である。血清中の重要成分が良好に分離されている。な
おピーク3と4に観られるアルブミンの2ピ一ク分81
【は、市販の高純度の人アルブミンでも同様に観測され
るものであり性質の異なるアルブミン相互の分離をも可
能にしている。
Figure 2 is a chromatogram. In the figure, ■ is 1.G, 2 is transferrin, 3 and 4 are albumin,
5 is a peak whose main component is creatinine, and 6 is a peak whose main component is uric acid. Important components in serum are well separated. In addition, 2 peaks of albumin seen in peaks 3 and 4 are 81
This is also observed in commercially available high-purity human albumin, making it possible to separate albumins with different properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分子ふるい作用と分配作用に関する代表的な溶
出特性例を図示したものであり、図中aばアルブミンが
顕著な分配作用を生じている例であり、bは分子ふるい
作用に近い溶出特性を示す例である。 第2図は本発明方法によって健富人の血清を分離した際
のクロマトグラム例であり、図中1は1、、G、2はト
ランスフェリン、3と4はアルブミン、5はクレアチニ
ン、6は尿酸を各々主成分とするピークである。 特許出願人 )0化成工業株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 石 1)  敬 弁理士 山 口 昭 之 第1図1 →俗出容f4X、V R(mal 第2図
Figure 1 shows typical examples of elution characteristics related to molecular sieving action and distribution action. This is an example showing the characteristics. Figure 2 is an example of a chromatogram when serum of a healthy individual is separated by the method of the present invention, in which 1 is 1, G, 2 is transferrin, 3 and 4 are albumin, 5 is creatinine, and 6 is uric acid. These are the peaks whose main components are: Patent Applicant) 0 Kasei Kogyo Co., Ltd. Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Ishi 1) Kei Patent Attorney Akira Yamaguchi Figure 1 1 → General Publication f4X, VR (mal No. Figure 2

Claims (1)

【特許請求の範囲】 1、液体クロマトグラフィーで体液成分を分離するにあ
たり、少なくともカルボン酸ビニルエステル単量体と、
インシアスレート環を有する架橋性単量体と、前記両型
量体を溶解するが水に溶解しにくい有機溶媒とを含む混
合液を懸濁重合した共重合体をケン化反応又はエステル
交換反応して得られた粒状の充填剤を充填してなる液体
クロマトグラフィーカラムに、少なくとも弱酸と弱酸塩
よりなる緩衝用基剤及び硫酸塩が共存しかつ該緩衝用基
剤を0.01〜0.4M/Nの濃度で含む溶離液の通液
下に体液試料を注入して分離することを特徴とする体液
成分の分離法。 2、単量体を溶解するが水に溶解しにくい有機溶媒が、
カルボン酸ビニルエステル重合体を溶解しにくい炭化水
素化合物もしくはエーテル化合物を全有機溶媒の5〜5
0重量%含み、充填剤が懸濁重合で得られた共重合体中
のエステル基のモル分率で0.4〜0.8をケン化反応
又はエステル交換反応して水酸基に変換したものである
特許請求の範囲第1項に記載の体液成分の分離法。 3、溶離液中の硫酸塩の濃度が0.05〜0.3M/l
である特許請求の範囲第1項又は第2項に記載の体液成
分の分離法。
[Claims] 1. In separating body fluid components by liquid chromatography, at least a carboxylic acid vinyl ester monomer;
A copolymer obtained by suspension polymerizing a mixture containing a crosslinkable monomer having an insia slate ring and an organic solvent that dissolves both of the above monomers but is difficult to dissolve in water is subjected to a saponification reaction or transesterification reaction. In a liquid chromatography column packed with the granular filler obtained by the process, a buffer base consisting of at least a weak acid and a weak acid salt and a sulfate coexist, and the buffer base has a concentration of 0.01 to 0. A method for separating body fluid components, which comprises injecting and separating a body fluid sample while passing through an eluent containing a concentration of 4M/N. 2. Organic solvents that dissolve monomers but are difficult to dissolve in water,
Hydrocarbon compounds or ether compounds that are difficult to dissolve the carboxylic acid vinyl ester polymer should be added to 5 to 5% of the total organic solvent.
Contains 0% by weight, and the molar fraction of ester groups in the copolymer obtained by suspension polymerization is 0.4 to 0.8 as a filler and is converted into hydroxyl groups by saponification reaction or transesterification reaction. A method for separating body fluid components according to claim 1. 3. The concentration of sulfate in the eluent is 0.05-0.3M/l
A method for separating body fluid components according to claim 1 or 2.
JP57167473A 1982-09-28 1982-09-28 Separation of humor component Pending JPS5957160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167473A JPS5957160A (en) 1982-09-28 1982-09-28 Separation of humor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167473A JPS5957160A (en) 1982-09-28 1982-09-28 Separation of humor component

Publications (1)

Publication Number Publication Date
JPS5957160A true JPS5957160A (en) 1984-04-02

Family

ID=15850326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167473A Pending JPS5957160A (en) 1982-09-28 1982-09-28 Separation of humor component

Country Status (1)

Country Link
JP (1) JPS5957160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62857A (en) * 1985-02-15 1987-01-06 Asahi Chem Ind Co Ltd Analysis of glutathione in vital sample
JPS63163275A (en) * 1986-12-26 1988-07-06 Sekisui Chem Co Ltd Method for fractionating and measuring bilirubin in blood

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62857A (en) * 1985-02-15 1987-01-06 Asahi Chem Ind Co Ltd Analysis of glutathione in vital sample
JPS63163275A (en) * 1986-12-26 1988-07-06 Sekisui Chem Co Ltd Method for fractionating and measuring bilirubin in blood

Similar Documents

Publication Publication Date Title
Tiselius et al. Protein chromatography on calcium phosphate columns
JP6266597B2 (en) Separation method and separation matrix
CA1203944A (en) Filler for liquid chromatography
EP2562178A1 (en) Filler for affinity chromatography
SU1311631A3 (en) Tip for liquid chromatography
CA2445211C (en) Copolymer, and adsorbent or concentrating medium and needle for solid phase microextraction prepared using the copolymer
AU609361B2 (en) Separation of hemoglobin A2 from hemoglobin mixture
JPS5957160A (en) Separation of humor component
JP3848459B2 (en) Method for measuring hemoglobins
JP4268730B2 (en) Method for producing packing material for liquid chromatography
JPH03255360A (en) Separation and determination of glycohemoglobin
JP2001159626A (en) Packing material for liquid chromatography and measuring method using the same
Dunn The study of ligand-protein interactions utilizing affinity chromatography
CN113176365B (en) Colorant extraction column and detection method of artificially synthesized colorant in food
JP4746402B2 (en) Packing agent for liquid chromatography and method for measuring hemoglobin
JPH0248063B2 (en)
Giddings Chromatography
CN116087389B (en) HPLC determination method of bivalirudin related substances for injection
Jandera et al. Liquid chromatography on unmodified and modified spheron gels I. Nucleosides, bases and related compounds
CN113908589B (en) Hydrophobic charge induction mode membrane chromatography medium of surface imprinted antibody and preparation method thereof
JP4203191B2 (en) Packing for liquid chromatography
JPS5938649A (en) Preparation of packing material for liquid chromatography
CS228510B2 (en) Method for producing a packing prod for quick liquid chromatography
JPS6361619B2 (en)
JPH0330802A (en) Modified carrier substance for chromatog- raphy