JPS5956771A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5956771A
JPS5956771A JP57166677A JP16667782A JPS5956771A JP S5956771 A JPS5956771 A JP S5956771A JP 57166677 A JP57166677 A JP 57166677A JP 16667782 A JP16667782 A JP 16667782A JP S5956771 A JPS5956771 A JP S5956771A
Authority
JP
Japan
Prior art keywords
insulating film
substrate
film
diffusion layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57166677A
Other languages
Japanese (ja)
Inventor
Yuji Tanida
谷田 雄二
Takaaki Hagiwara
萩原 隆旦
Shinichi Minami
眞一 南
Tatsu Toriyabe
達 鳥谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57166677A priority Critical patent/JPS5956771A/en
Publication of JPS5956771A publication Critical patent/JPS5956771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To contrive to form at high withstand voltage by dispersing the field concentration at a drain or source diffused layer end part at two points by a method wherein a channel part and the insulation film thereon are formed by self-alignment, and a gate electrode and the source and drain diffused layers are formed by self-alignment. CONSTITUTION:An SiO2 film 17 and an Si3N4 film 18 are formed on a P type Si substrate 11, and then the Si3N4 film 18 is left only at a fixed part. A diffused layer 13 is formed by implanting P<+> ions with the Si3N4 mask 18 as the mask. An SiO2 film 19 is formed on the layer 13 by exposing the substrate to an oxidizing atmosphere, and an SiO2 film 20, an Si3N4 film 21, and a polycrystalline film 22 which are available for tunnel are successively deposited after removing the Si3N4 film 18 and the SiO2 film 17 under the film 18. After removing the films 20, 21, and 20 by being left to the position of overlaying the layer 13, the P<+> ions are implanted into the surface of the substrate with the left polycrystalline Si film 22 as the mask, resulting in the formation of a diffused layer 12.

Description

【発明の詳細な説明】 本発明は半導体装置□JS型716導体装置)およびそ
の製造方法に関し、特にMNO3素子及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device (JS type 716 conductor device) and a manufacturing method thereof, and particularly relates to an MNO3 element and a manufacturing method thereof.

従来、MIS型半導体装置において知られている代表的
な構造は、第1図[a+〜te+に示すものかある°。
Typical structures conventionally known in MIS type semiconductor devices are shown in FIG. 1 [a+ to te+].

各図において同一符号は同一 または均等部分を小して
おり、lは基板、2はソース、トレイン、3は低濃度拡
散層、4は絶縁膜、5はケート電極、6は電極・配線で
ある。
In each figure, the same reference numerals represent the same or equivalent parts, l is the substrate, 2 is the source, train, 3 is the low concentration diffusion layer, 4 is the insulating film, 5 is the gate electrode, and 6 is the electrode/wiring. .

第1図falは、多結晶S]ゲートで代表される、ケー
トとソース、ドレイン拡散領域が自己整合的に形成され
ている4’i/i造、(1))は、Mヶ−1・て代表さ
れる、ゲーI・とソース、ドレインが絶縁膜を介して重
なっている構造である。fclは2重拡散構造、[dl
はオフセットケ−1・構造で、いずれもソース、ドレイ
/の耐圧を高めるト1的で作られたものである□。
Figure 1 fal is a 4'i/i structure in which the gate, source, and drain diffusion regions are formed in a self-aligned manner, represented by a polycrystalline S] gate, and (1)) is an M-1/i structure. This is a structure in which the gate I, the source, and the drain overlap with each other with an insulating film interposed therebetween. fcl has a double diffusion structure, [dl
□ has an offset cable structure, and both of them are made of a transistor which increases the withstand voltage of the source and drain.

telはゲート電極をドレイン」二に引き出した構造で
・、最近高耐圧化を目的として提案されているものであ
る。
TEL has a structure in which the gate electrode is drawn out to the drain, and has recently been proposed for the purpose of increasing the breakdown voltage.

これら従来の構造を有する素子は、はとんどのものが、
ソース、ドレイン部の耐圧か比較的小さく、大電圧を用
いる装置では使いづらいという欠点をもっていた。また
、耐圧を高める構造のものは、高集積化に不向きな構造
であるという欠点をもっていた。
Most of these elements with conventional structures are
The source and drain portions have a relatively low breakdown voltage, making them difficult to use in devices that use large voltages. Furthermore, those with a structure that increases the withstand voltage have the disadvantage that they are unsuitable for high integration.

本発明の1」的は、−1−1記の欠点を解消し、高集積
に向き、かつ、ソース、トレインが高耐月、化されたM
IS型半導体装置を提供することにある。また、本発明
の他の1」的は、該半導体装置をMNO8素子とし、バ
イト消去可能な不揮発性メモリを実現することにある。
The first object of the present invention is to solve the disadvantages mentioned in -1-1, to be suitable for high integration, and to have a source and a train with high durability.
An object of the present invention is to provide an IS type semiconductor device. Another object of the present invention is to use the semiconductor device as an MNO8 element to realize a byte-erasable nonvolatile memory.

第2図は」−記の171的を達成するために開発された
本発明の半導体装置の主要部構成を示す模式的断面図で
ある。本発明の半導体装置は、基本的には先に述べた従
来の素子をさらに効率よく高耐1[化し、さらに高集積
化に向く構造にしたものである。図において、11は基
板、12は基板と逆導電形を有するソース、トレイン拡
散層、]3はソース。
FIG. 2 is a schematic cross-sectional view showing the main structure of the semiconductor device of the present invention developed to achieve the objective 171. The semiconductor device of the present invention is basically a structure in which the above-described conventional element is made more efficient and has a higher durability, and is also suitable for higher integration. In the figure, 11 is a substrate, 12 is a source having a conductivity type opposite to that of the substrate, a train diffusion layer, and 3 is a source.

ドレイン拡散層と同−導電形で不純物濃度かそれと同等
以下の拡散層、14は絶縁膜、15はゲート電極、]6
は絶縁膜(第1の絶縁膜)である。本構造1において、
チャネル部(あるいは拡11を層l:3)とこの」二の
比較的薄い絶縁膜16とは、自己整合で形成されており
、さらにゲート電極15とソース、トレイン拡散層12
は自己整合で形成されている。このような構造にするこ
とにより、トレイン又はソース拡散層]2端部ての電界
集中を2箇所に分散させ、高耐圧化をはかるとともに、
高集積化にも向く素r−構造となる。特にMNO8型メ
モリ素子のように1・゛レイン(又はソース)に高電圧
を印加する素子で有効になる。
A diffusion layer having the same conductivity type as the drain diffusion layer and having an impurity concentration equal to or lower than that, 14 an insulating film, 15 a gate electrode, ]6
is an insulating film (first insulating film). In this structure 1,
The channel part (or layer 1:3 of the expansion layer 11) and this relatively thin insulating film 16 are formed in self-alignment, and the gate electrode 15 and the source and train diffusion layers 12 are formed in a self-aligned manner.
is formed by self-alignment. By adopting such a structure, electric field concentration at the two ends of the train or source diffusion layer is dispersed to two locations, and a high withstand voltage is achieved.
It has an elementary r-structure suitable for high integration. This is particularly effective in devices such as MNO8 type memory devices in which a high voltage is applied to the 1.sup. line (or source).

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

なお、説明を簡明にするために、本発明の半導体装置を
構成する各部の拐質、導電形5寸法等を規定して説明す
るか、本発明はこれに限定されるものではない。
In order to simplify the explanation, the structure of each part constituting the semiconductor device of the present invention, the dimensions of the conductive type 5, etc. will be defined and explained, but the present invention is not limited thereto.

第3図は本発明の半導体装置の製造工程説明図であり、
[a+〜+e)は主要工程における断面構造を示し、f
e]か本製造上程により完成した半導体装置である。な
お、げ)は+e)の平面図であり、図中のAHA線に沿
った断面かte+に示されている。図の順番[a)〜t
c+に対応させて、説明する。
FIG. 3 is an explanatory diagram of the manufacturing process of the semiconductor device of the present invention,
[a+~+e) shows the cross-sectional structure in the main process, f
e] is a semiconductor device completed by this manufacturing process. Note that ge) is a plan view of +e), and a cross section along the AHA line in the figure is shown as te+. Order of diagrams [a) to t
This will be explained in correspondence with c+.

f2+1 : p形Si基板] 1、−1:tに、厚さ
約10 nm (1’) 5i02膜17および約10
0 nmの5i3Nll ntb 18を形成する。
f2+1: p-type Si substrate] 1, -1: 5i02 film 17 and about 10 with a thickness of about 10 nm (1') at t
Form 5i3Nll ntb 18 of 0 nm.

(1))  ホ)・リソグラフィにより、所定部分にの
みS+;(N4 膜(酸化(7) ? スフ) 18ヲ
残L/ テ、該513N4膜18をマスクとしてPl−
イオンをイオン注入法によりSi基板1j表面に注入し
た拡散層(n層、又は第1の拡散層とも呼ぶ)13を形
成する。この時のドース量はl X JO”’〜] x
 1015cm−2程度であった。
(1)) E) - By lithography, S+; (N4 film (oxidation (7)? Suff) 18 is left L/T, using the 513N4 film 18 as a mask, Pl-
A diffusion layer (also referred to as an n-layer or first diffusion layer) 13 is formed by implanting ions into the surface of the Si substrate 1j by an ion implantation method. The dose at this time is l x JO''~] x
It was about 1015 cm-2.

(C)°酸化性雰囲気にさらし、」−記イオン注入によ
り形成されたn層」3−1−に厚さ約5Q nmの5i
02膜19を形成する。この後、Si3N4膜18およ
びこの下の8102膜17を除去する。たたし、このと
き厚い5i02膜1つか形成された部分はある厚さの5
102膜19か残り、Si3N4膜18か形成されてい
た領域のみSi基板1jの表miが露出する。その後、
電荷がトンネルt+J能な厚さ約2nmの5i02膜2
0と、厚さ約30nm(7)Si3N4膜21と、さら
に厚さ約300 nmの多結晶S1膜22を順次堆積さ
せる。この工程で、Si基板1j表面の露出部分に堆積
した絶縁膜(5i02膜20. Si3N4膜・21)
を第1の絶縁1漠と呼び、S]02膜1つとその1−に
堆積した絶縁膜(5i02膜20. S+3N4膜21
)を第2の絶縁膜と呼ぶことにする。
(C) Exposure to an oxidizing atmosphere to form a 5i layer with a thickness of about 5Q nm on the n layer 3-1 formed by ion implantation.
02 film 19 is formed. After this, the Si3N4 film 18 and the 8102 film 17 underneath it are removed. However, at this time, one thick 5i02 film or the formed part has a certain thickness of 5i02 film.
The surface mi of the Si substrate 1j is exposed only in the region where the 102 film 19 remains and the Si3N4 film 18 was formed. after that,
5i02 film 2 with a thickness of about 2 nm that allows charge to tunnel t+J
0, a Si3N4 film 21 with a thickness of about 30 nm (7), and a polycrystalline S1 film 22 with a thickness of about 300 nm are successively deposited. In this step, the insulating film (5i02 film 20, Si3N4 film 21) deposited on the exposed part of the surface of the Si substrate 1j
is called the first insulating film, and there is one S]02 film and the insulating film deposited on the first insulating film (5i02 film 20, S+3N4 film 21
) will be referred to as the second insulating film.

fd)  上記工程で堆積させた多結晶S1膜22を、
1層13と重なる所定位置まで残し、その他の部分を除
去する。このとき、除去した部分のSi基板1j表面が
露出するように、その部分に存在する第2の絶縁膜も合
わせて除去する。その後、残された多結晶Si膜22を
マスクに、露出したS】基板11表面にplイオンをイ
オン注入法により注入し拡散層(耐層、又は第2の拡散
層とも呼ぶ)12を形成する。
fd) The polycrystalline S1 film 22 deposited in the above step,
A predetermined position overlapping with the first layer 13 is left, and the other parts are removed. At this time, the second insulating film present in the removed portion is also removed so that the surface of the Si substrate 1j in the removed portion is exposed. Thereafter, using the remaining polycrystalline Si film 22 as a mask, PL ions are implanted into the exposed surface of the S] substrate 11 by ion implantation to form a diffusion layer (also called a resistance layer or a second diffusion layer) 12. .

この11〒の1・−ズ量は1×1016cm−2であっ
た。なお、−1−記残された多結晶S1膜22が半導体
装置完成時のケート電極15になる。
The amount of 1·-z of this 11〒 was 1×10 16 cm −2 . It should be noted that the polycrystalline S1 film 22 left with -1- becomes the gate electrode 15 when the semiconductor device is completed.

fCIIJンガラス膜(絶縁膜)23を堆積後、アニー
ル等の工程を経て、コンタクト用の穴を形成し、M電極
・配線24を施ず。
After depositing the fCIIJ glass film (insulating film) 23, a hole for contact is formed through processes such as annealing, and the M electrode/wiring 24 is not provided.

以−1−の71−:程により、本発明の半導体装置(M
NO8素子)か完成する。なお、」1記の製造方法にお
いて、工程の一部を変更することによって、構造が1若
干異なる種々の半導体装置が得られる。例えば、icl
の」1程で、Si3N4膜21」−にさらに約5 nm
 (D 5i02膜を形成し、5i02− Si3N4
−5i02 (D 3層’l” −1−絶縁膜構造にし
た場合には、信頼性が一層向−1−シた半導体装置が得
られる。また、fclの工程で5i02膜19を形ん屯
した後、Si3N4膜18と5i02膜17を除去せず
、これらをそのまま第1の絶縁膜としても良い。この方
法による場合はSi3N4膜21はあらためて堆積する
必要かなく、すなわち第2の絶縁膜は5i02膜19の
みて構成されるか、この5102膜19を1−分厚くす
るのか良い。さらに工程簡略化のために、厚さ約50n
mのSi○2膜19全19する工程を省略し、第1の絶
縁膜(チャネル−1−の絶縁膜)と第2の絶縁膜(n層
] 3 J二の絶縁膜)を同一に形成した場合にも、所
定の特性を満足できる結果を得た。
Below-1-71-: According to the steps, the semiconductor device of the present invention (M
NO8 element) is completed. In addition, in the manufacturing method described in item 1, by changing some of the steps, various semiconductor devices having slightly different structures can be obtained. For example, icl
By approximately 1", an additional approximately 5 nm is added to the Si3N4 film 21".
(D 5i02 film is formed, 5i02-Si3N4
-5i02 (D 3-layer 'l'' -1- Insulating film structure, it is possible to obtain a semiconductor device with reliability in the direction of -1- layer.Furthermore, the 5i02 film 19 is formed in the fcl process. After that, the Si3N4 film 18 and the 5i02 film 17 may be used as the first insulating film without removing them.If this method is used, there is no need to deposit the Si3N4 film 21 again, that is, the second insulating film is Either the 5i02 film 19 should be used, or the 5102 film 19 should be made 1-thick.Furthermore, to simplify the process, the thickness should be approximately 50 nm.
The first insulating film (channel-1- insulating film) and the second insulating film (n-layer] 3 J2 insulating film) are formed identically by omitting the entire step of forming the 19-m Si○2 film 19. Even in this case, results were obtained that satisfied the specified characteristics.

第4図は本発明の半導体装置を用いた不揮発メモリの回
路構成図である。前記実施例で示した方法で作られたM
NOS素子40と、これに直列接続されたスイッチMO
Sトランラスタ(以下、単にIVIO8Tと略記する。
FIG. 4 is a circuit diagram of a nonvolatile memory using the semiconductor device of the present invention. M made by the method shown in the above example
NOS element 40 and switch MO connected in series to it
S trans raster (hereinafter simply abbreviated as IVIO8T).

)、旧の2素子で書換え1丁能な不揮発1性メモリセル
を構成している。MO8T4]のゲート101はXデコ
ーク42の出力に接続され、MNO3素子40のゲート
102は書込回路43の出力に接続され、MO8T41
の他の端子103は71インチMO8l・ランジスタ4
4を介してセンスアンプ45及びデータ人力回路401
こつなかり、MNO8素子40の他の一端(ソース又は
トレイン)104は書込fXll +1回路47の出力
に接続される。なお、MNO8素子および■l08Tは
、1バイトX n (17;l li位で共通のウェル
内に形成されている。ウェルには消去回路48か接続さ
れる。
), a single rewritable non-volatile memory cell is made up of two old elements. The gate 101 of the MO8T4] is connected to the output of the X decoke 42, the gate 102 of the MNO3 element 40 is connected to the output of the write circuit 43,
The other terminal 103 is 71 inch MO8l transistor 4
Sense amplifier 45 and data human power circuit 401 through 4
Otherwise, the other end (source or train) 104 of the MNO8 element 40 is connected to the output of the write fXll +1 circuit 47. Note that the MNO8 element and 108T are formed in a common well at 1 byte X n (17; l li ). An erase circuit 48 is connected to the well.

1、記M N OS素子40の書込、書込]川1)−2
非選1ノく。
1. Writing of the MNOS element 40] River 1)-2
1 non-selection.

あるいは消去の各モードに7]する電位関係を第5図に
図表で示した。図表の中で、V■・はプロクラム電圧、
■−■ハハイレベルの信弓、Lはローレベルの信号を意
味する。
Alternatively, the potential relationship for each erasing mode is shown graphically in FIG. In the diagram, V■・ is the program voltage,
■-■Ha high level signal, L means low level signal.

第4図に示したように+hv成することにより、バイト
消去1丁能な不揮発性メモリを実現できる。
By constructing +hv as shown in FIG. 4, a non-volatile memory capable of erasing one byte can be realized.

以1−説明したように、本発明によれは、トレイン又は
ソースの耐圧を向」−できるため、素子を微細にして、
かつ、比較的高い電圧を使用することかり能となる。こ
のため、特に不揮発性メモリの」:うな通常動作よりも
高い電圧を印加する必要のある半導体装置で自効となる
。特にハイド消去あるいは内部昇圧方式をとる場合、わ
ずかなフレークタウンが問題となるが、本発明により、
これをIi+1止することかできるため、上記の低能を
有するプロクラム可能な不揮発性メモリを実現できる。
As explained above, according to the present invention, the withstand voltage of the train or source can be improved, so the element can be made finer and
Moreover, it is possible to use a relatively high voltage. Therefore, it is especially effective in semiconductor devices such as non-volatile memories that require application of a higher voltage than in normal operation. Particularly when using the hide erase or internal boost method, a slight flake town is a problem, but with the present invention,
Since this can be stopped by Ii+1, a programmable nonvolatile memory having the above-mentioned low performance can be realized.

また、本発明は、薄い部分のケート絶縁膜とn層、ゲー
トとn4層か自己整合となっており、高集積化に対して
も効果的である。なお、本発明の半導・1斗装置に似た
構造として、Mゲートを用いた3ゲー1−構造のものか
既知であるか、これと比へ、合せずれ等の差を考慮する
と、約2倍の高集積化、約15倍の高耐圧化か可能にな
る。
Further, in the present invention, the thin portions of the gate insulating film and the n layer, and the gate and the n4 layer are self-aligned, and are effective for high integration. It should be noted that as a structure similar to the semiconductor 1D device of the present invention, is there a known 3-game 1-structure using M gates? It will be possible to achieve twice as high integration and approximately 15 times as high voltage resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+〜(elはいずれも従来のMIS型半導体
装置の構造説明図、第2図は本発明の半導体装置の主要
部構成を示す模式的断面図である。第3図は本発明の半
導体装置の製造工程説明図て、ta+〜f(1は主要工
程における断面構造を示し、te+か完成しまた半導体
装置の断面図、山はその1′・面図である。 第4図は本発明の半導体装置を用いた不揮発メモリの回
路構成図、第5図は第4図の不揮発メモリの各モードに
刻する電位関係を示す図表である。 ]・基板        2・ ソース、トレイン3 
低濃度拡散層   4 絶縁膜 5 ・ケート電極    6・電極・配線11・・基板 12・ソース、トレイン拡散層(01層、又は第2の拡
散層) 13・拡散層(n層、又は第1の拡散層)1/l−絶縁
膜      15・ゲート電極16・・絶縁膜(第1
の絶縁膜) 17・5i02膜 18− Si3N4膜(酸化のマスク)10・S】02
膜     20・・5102膜21・Si3N4膜 
    22・多結晶Si膜2:3・ リンガラス膜(
絶縁膜) 24・・電極・配線    40・・・MNO3素子4
1・・スイッチMOSトランンスタ(MO8T)/17
・書込阻市回路 代理人弁理士 中村純之助 〕(し° コ p (Q) (b)(e) (C)            (c)第2図 i3図 卆3図 4i 5− 1’5図
FIG. 1 is a structural explanatory diagram of a conventional MIS type semiconductor device, and FIG. 2 is a schematic cross-sectional view showing the main structure of a semiconductor device of the present invention. FIG. In the diagram explaining the manufacturing process of a semiconductor device, ta+ to f (1 indicates the cross-sectional structure in the main process, te+ is a cross-sectional view of the completed semiconductor device, and the crest is the 1' side view. A circuit configuration diagram of a non-volatile memory using the semiconductor device of the invention, FIG. 5 is a chart showing the potential relationship in each mode of the non-volatile memory of FIG. 4. ]・Substrate 2・Source, train 3
Low concentration diffusion layer 4 Insulating film 5 Kate electrode 6 Electrode Wiring 11 Substrate 12 Source, train diffusion layer (01 layer or second diffusion layer) 13 Diffusion layer (n layer or first diffusion layer) 1/l-insulating film 15, gate electrode 16...insulating film (first
(insulating film) 17.5i02 film 18- Si3N4 film (oxidation mask) 10.S]02
Film 20...5102 film 21/Si3N4 film
22・Polycrystalline Si film 2:3・Phosphorus glass film (
Insulating film) 24... Electrode/wiring 40... MNO3 element 4
1...Switch MOS transistor (MO8T)/17
・Junnosuke Nakamura, Patent Attorney, Circuit Agent]

Claims (1)

【特許請求の範囲】 (1)少なくとも第1の絶縁膜とこれに隣接してイア存
する第2の絶縁膜をゲート電極と基板間に有し、歩な(
とも1″、記第2の絶縁股下の基板表面に形成された基
板と逆導電形の第1の拡散ハク、および該第1の拡散層
をはさんで」二記第1の絶縁膜下のチャネルと反対側の
基板表面に」−記第1の拡散層に隣接して形成された基
板と逆導電形の第2の拡散層を有して構成したことを特
徴とする半導体装置。 +2)  I−記第1の絶縁膜形成領域と第1の拡散層
、−1−記ゲート電極ど第2の拡散層か、自己整合的に
形成されている1゛1許請求の範囲第1項記載の半導体
装置。 t3+  1−記第1の絶縁膜又は第2の絶縁膜か、2
層以七の複数層の絶縁膜からなるものである特許請求の
範囲第1項又は第2項記載の半導体装置。 (4)1−記第1の絶縁膜および第2の絶縁膜か、2層
以」二のIV数層の絶縁膜からなり、該少数層のうち少
なくとも1層の絶縁膜か同11冒こ形成された等しい絶
縁物からなるものである特許請求の範囲第1項又は第2
項記載の半導体装置。 (514記第1の絶縁膜か少数層からなり、該第1の絶
縁膜の基板側に位置する絶縁膜の膜厚か、電荷かトンネ
ル可能な値である特許請求の範囲第1項5第2項、第3
項、第4項のいずれかに記i1i!2の半導体装置。 (6) J:、記第1の絶縁膜と第2の絶縁膜か、4Z
質。 厚さともに実質的に同一の絶縁膜て形成したものである
特許請求の範囲第1項記載の半導体装置。 (7)基板−11の第1の絶縁膜を形成する領域に酸化
のマスクとなる層を形成する工程と、該マスクを用いて
基板」−の第2の絶縁膜を形成する領域に基j板と逆導
電形の第1の拡散層を形成する工程と、該第1の拡散層
−1−に−I−記マスクを用いて酸化膜を形成する工程
と、上記マスクを除去し除去部分の基板表面を露出させ
る=L程と、該露出した部分を含む基板上に絶縁膜を堆
積して第1の絶縁膜と第2の絶縁膜を形成する1ユ程と
、該第1及び第2の絶縁膜1−の所定位置にゲート電極
を形成する工程と、該ケート電極をマスクとして第2の
絶縁膜の不用部分を除去し基板表面を露出させる11程
と、該露出した基板部分に基板と逆導電形の第2の拡散
層を形成する「ユ稈を有することを特徴とする半導体装
置の製造方法。 (8)基板上に第1の絶縁膜の一部をなす第1の酸化膜
を形成する工程と、該酸化膜」二の所定領域に前記第1
の絶縁膜の一部をなす窒化膜を形成する工程と、該窒化
膜をマスクとして前記基板中に前記基板と反対導電形の
第1の拡散層を形成する工程と、該窒化膜をマスクとし
て前記第1の絶縁膜に隣接する第2の絶縁膜をなす第2
の酸化膜を形成する工程と、該第1.第2の絶縁膜上の
所定位置にゲート電極を形成する一J二程と、該ゲート
電極をマスクとして第2の絶縁力(への不用部分を除去
する二I―程と、該ゲート電極をマスクとして前記基板
に前記基板と反対導電形の第2の拡散層を形成する工程
を有するこ′とを特徴とする半導体装置の製造方法。 (9)少なくとも複数層からなる第1の絶縁膜とこれに
隣接して存在する第2の絶縁膜をゲート電極と基板間に
有し、少なくとも−1−記第2の絶縁股下の基板表面に
形成された基板と逆導電形の第1の拡散層、および該第
1の拡散層をはさんで上記第1の絶縁膜下のチャネルと
反対側の基板表向に上記第1の拡散層に隣接して形成さ
れた基板と逆導電形の第2の拡散層を有して構成したM
NO8素子を、不揮発性メモリセルに用い、−11記M
NO8素子のソース又はドレインに書込阻止用の高電圧
を印加する周辺回路を接続してメモリ装置を構成したこ
とを特徴とする半導体装置。
[Scope of Claims] (1) At least a first insulating film and a second insulating film disposed adjacent to the first insulating film are provided between the gate electrode and the substrate;
a first diffusion layer of conductivity type opposite to that of the substrate formed on the surface of the substrate under the second insulating film, and a first diffusion layer under the first insulating film; 1. A semiconductor device comprising: a second diffusion layer formed adjacent to the first diffusion layer and having a conductivity type opposite to that of the substrate on the surface of the substrate opposite to the channel. +2) The first insulating film forming region and the first diffusion layer in I-, the gate electrode and the second diffusion layer in -1- are formed in a self-aligned manner. 1. Semiconductor device described in Section 1. t3+ 1- first insulating film or second insulating film, 2
3. The semiconductor device according to claim 1 or 2, which comprises a plurality of insulating films of seven or more layers. (4) The first insulating film and the second insulating film described in 1- above are composed of an insulating film of two or more IV several layers, and at least one insulating film among the few layers is Claim 1 or 2 consists of an equal insulator formed.
1. Semiconductor device described in Section 1. (Claim 514) The first insulating film is composed of a small number of layers, and the thickness of the insulating film located on the substrate side of the first insulating film has a value that allows tunneling of charges. Section 2, 3rd
Item i1i! 2. Semiconductor device. (6) J:, first insulating film and second insulating film, 4Z
quality. The semiconductor device according to claim 1, wherein the semiconductor device is formed of an insulating film having substantially the same thickness. (7) Forming a layer to serve as an oxidation mask in the region of the substrate 11 where the first insulating film is to be formed, and using the mask to form a layer on the region of the substrate 11 where the second insulating film is to be formed. A step of forming a first diffusion layer having a conductivity type opposite to that of the plate, a step of forming an oxide film on the first diffusion layer -1- using a mask described in -I-, and a step of removing the mask to form a removed portion. = L length to expose the surface of the substrate; L length to deposit an insulating film on the substrate including the exposed portion to form a first insulating film and a second insulating film; Step 11 of forming a gate electrode at a predetermined position of the second insulating film 1-, removing an unnecessary portion of the second insulating film using the gate electrode as a mask to expose the substrate surface, and forming a gate electrode on the exposed substrate portion. A method for manufacturing a semiconductor device characterized by forming a second diffusion layer of conductivity type opposite to that of the substrate. (8) First oxidation forming a part of the first insulating film on the substrate. forming a film in a predetermined region of the second oxide film;
a step of forming a nitride film forming a part of an insulating film; a step of forming a first diffusion layer of a conductivity type opposite to that of the substrate in the substrate using the nitride film as a mask; a second insulating film adjacent to the first insulating film;
a step of forming an oxide film of the first oxide film; Step 1 of forming a gate electrode at a predetermined position on the second insulating film, step 2 of removing unnecessary portions of the second insulating force using the gate electrode as a mask, and step 2 of forming the gate electrode at a predetermined position on the second insulating film. A method for manufacturing a semiconductor device, comprising the step of forming a second diffusion layer of a conductivity type opposite to that of the substrate on the substrate as a mask. (9) A first insulating film consisting of at least a plurality of layers; A first diffusion layer having a second insulating film adjacent thereto between the gate electrode and the substrate, and having a conductivity type opposite to that of the substrate formed on the surface of the substrate under at least the second insulating crotch. , and a second diffusion layer having a conductivity type opposite to that of the substrate, which is formed adjacent to the first diffusion layer on the surface of the substrate opposite to the channel under the first insulating film with the first diffusion layer in between. M configured with a diffusion layer of
Using the NO8 element in a nonvolatile memory cell, -11 M
1. A semiconductor device comprising a memory device configured by connecting a peripheral circuit that applies a high voltage for inhibiting writing to the source or drain of an NO8 element.
JP57166677A 1982-09-27 1982-09-27 Semiconductor device and manufacture thereof Pending JPS5956771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57166677A JPS5956771A (en) 1982-09-27 1982-09-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57166677A JPS5956771A (en) 1982-09-27 1982-09-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5956771A true JPS5956771A (en) 1984-04-02

Family

ID=15835673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57166677A Pending JPS5956771A (en) 1982-09-27 1982-09-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5956771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480070A (en) * 1987-09-21 1989-03-24 Mitsubishi Electric Corp Semiconductor integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527695A (en) * 1978-08-15 1980-02-27 Rockwell International Corp Method of manufacturing super large scale integrated circuit chip
JPS5630768A (en) * 1979-08-20 1981-03-27 Matsushita Electric Ind Co Ltd Manufacture of mnos type semiconductor device
JPS58128772A (en) * 1982-01-27 1983-08-01 Toshiba Corp Semiconductor nonvolatile memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527695A (en) * 1978-08-15 1980-02-27 Rockwell International Corp Method of manufacturing super large scale integrated circuit chip
JPS5630768A (en) * 1979-08-20 1981-03-27 Matsushita Electric Ind Co Ltd Manufacture of mnos type semiconductor device
JPS58128772A (en) * 1982-01-27 1983-08-01 Toshiba Corp Semiconductor nonvolatile memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480070A (en) * 1987-09-21 1989-03-24 Mitsubishi Electric Corp Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
KR100231964B1 (en) Method of making a non-volatile memory cell utilizing polycrystalline silicon spacer tunnel region
KR940009644B1 (en) Non-volatile semiconductor memory device and manufacturing method thereof
US7399667B2 (en) Method of manufacturing a semiconductor integrated circuit device having single-element type non-volatile memory elements
US6246089B1 (en) P-channel EEPROM devices
EP0780902A1 (en) Nonvolatile semiconductor memory and method for fabricating the same
JP2003508920A (en) Non-volatile storage device structure for 2-bit storage and method of manufacturing the same
JPH07508859A (en) Triple gate flash EEPROM memory and its manufacturing method
JP2855509B2 (en) Method of manufacturing nonvolatile semiconductor memory device
US6555869B2 (en) Non-volatile memory device and method of manufacturing the same
JPH09507616A (en) Field effect device
US6248629B1 (en) Process for fabricating a flash memory device
US6144064A (en) Split-gate EEPROM device having floating gate with double polysilicon layer
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
JP2956549B2 (en) Semiconductor memory device, manufacturing method thereof and data erasing method
JP3271105B2 (en) Semiconductor device and method for forming the same
JPS5956771A (en) Semiconductor device and manufacture thereof
US20050139894A1 (en) Nonvolatile memory device and methods of fabricating the same
US6756272B1 (en) Method of manufacturing non-volatile semiconductor memory device
KR930008081B1 (en) Single poly eeprom cell and method for fabricating thereof
JP2001148430A (en) Nonvolatile semiconductor memory
JP3185746B2 (en) Nonvolatile semiconductor memory device
JP2003086717A (en) Non-volatile semiconductor memory, and writing and erasing methods thereof
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
JP3139633B2 (en) Method of manufacturing MOS type semiconductor memory device
KR19990012155A (en) Nonvolatile Memory Device and Manufacturing Method Thereof